首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Summary. Heat shock proteins (HSPs) are synthesised by cells subsequent to a stress exposure and are known to confer protection to the cell in response to a second challenge. HSP induction and decay are correlated to thermotolerance and may therefore be used as a biomarker of thermal history. The current study tested the temperature-dependent nature of the heat shock response and characterised its time profile of induction. Whole blood from 6 healthy males (Age: 26 ± (SD) 2 yrs; Body mass 74.2 ± 3.8 kgs; VO2max: 49.1 ± 4.0 ml·kg−1·min−1) were isolated and exposed to in vitro heat shock (HS) at 37, 38, 39, 40, and 41 °C for a period of 90 min. After HS the temperature was returned to 37 °C and intracellular HSP70 was quantified from the leukocytes at 0, 2, 4, and 6 h after heat treatment. The concentration of HSP70 was not different between temperatures (P > 0.05), but the time-profile of HSP70 synthesis appeared temperature-dependent. At control (37 °C) and lower temperatures (38–39 °C) the mean HSP70 concentration increased up to 4 h post HS (P < 0.05) and then returned towards baseline values by 6 h post HS. With in vitro hyperthermic conditions (40–41 °C), the time-profile was characterised by a sharp rise in HSP70 levels immediately after treatment (P < 0.05 for 40 °C at 0 h), followed by a progressive decline over time. The results suggest a temperature-dependent time-profile of HSP70 synthesis. In addition, the temperature at which HSP70 is inducted might be lower than 37 °C.  相似文献   

4.
The present study was conducted (1) to examine the effect of an acute increase in ambient temperature on the development of porcine day 6 embryos in culture and after transfer to recipient gilts, and (2) to analyze intracellular production of heat shock proteins (hsps). The viability of porcine day 6 embryos following a temporary acute elevation in ambient temperature (at 42°–45.5°C and for 10–180 min) was examined. Synthesis of 70 kDa hsp (hsp 70) and 90 kDa hsp (hsp90) was determined by SDS-PAGE and Western blot analysis in porcine day 6 embryos subjected to heat stresses. Nonheat-stressed embryos were considered as control. Significantly higher numbers of viable nuclei were observed in treatment groups of 42°C-10 min (236.6 ± 71.4; P < 0.05) and 43°C-30 min (276.8 ± 89.4; P < 0.005) compared to control (173.9 ± 53.9). The 42°C-180 min group (158.0 ± 27.1 μm) had a greater increase in diameter after 24 hr in culture following heat stress compared to control (82.5 ± 47.3 μm), while heat stress with 43°C for ≧60 min, 44°–44.5°C for ≧30 min, or 45°-45.5°C for ≧10 min impaired their survival, as assessed by differences in number of viable nuclei. The embryos subjected to heat stresses under the conditions of 42°C-180 min, 43°C-10 min, 43°C-30 min, 44°C-10 min, or 45°C-10 min developed to normal piglets after transfer to recipient gilts. Overall pregnancy rate was 75% (6/8), and farrowing rate 62.5% (5/8). Of heat-stressed embryos transferred, 59% (36/61) developed to normal piglets. Heat-stress conditions of 42°C for 180 min, 43°C for 30 min, 44°C for 10 min, and 45°C for 10 min were determined as critical with respect to the in vitro and in vivo survival of porcine embryos. Porcine day 6 embryos constitutively synthesized hsp70 even without heat stress, while hsp90 was detected only at trace level. Neither hsp70 nor hsp90 levels increased in the embryos subjected to heat stresses. In conclusion, porcine day 6 embryos could continue to develop in vivo or during in vitro culture after exposure to acute and temporary rise in temperature. However, no increase of hsp70 and hsp90 was observed in the heat-stressed porcine embryos, while hsp70 was detected in the nonheat-stressed porcine embryos. The precise mechanism of the thermotolerance was unclear. © 1996 Wiley-Liss, Inc.  相似文献   

5.
6.
Heat shock proteins play an important role as molecular chaperones of the cell. Inducible heat shock protein 70 is rapidly synthesised in response to numerous stressors and monocytes are sensitive to changes in core temperature resulting in a circadian variation of Hsp70 expression. Monocytes were isolated via density centrifugation from nine healthy male volunteers at 5 am, 1 pm and 9 pm, representing the nadir (5 am), peak (9 pm) and intermediate (1 pm) of Hsp70 expression in the 24-h cycle. Analysis of freshly isolated monocytes for Hsp70 expression confirmed Hsp70 levels at the three selected time points. Monocytes were subjected to in vitro heat shock at 40°C (±0.1) for 90 min with a 90 min 37°C (±0.1) exposure acting as a control. A significant increase in Hsp70 was observed at 5 am (p < 0.001) and 1 pm (p = 0.028) at 40°C when compared to 37°C but not at 9 pm (p = 0.19). A significant increase was also observed from the basal levels of Hsp70, measured on freshly isolated monocytes and the levels detected after heat shock at 40°C at 5 am (p < 0.001) and 1 pm (p = 0.001), which was not observed at 9 pm (p = 0.15). Furthermore, a significant correlation was observed in the heat shock response at 40°C and that obtained at 37°C (p < 0.001). In conclusion, the heat shock response in monocytes is directly proportional to the amount of Hsp70 present in the cells and the stress response may be much higher at different times of the day.  相似文献   

7.
The temporal dynamics of heat shock protein 70 (HSP70) expression in response to longer‐term acclimation and rapid hardening in the butterfly Lycaena tityrus is investigated. After a 1‐h exposure to 1 °C or 37 °C, HSP70 is quickly up‐regulated within 1 h and down‐regulated within 2 h. The fast dynamic of HSP70 expression is in contrast to the patterns found in organisms inhabiting more stable thermal environments, and is interpreted as an adaptation to the large and rapid temperature variation experienced by flying ectotherms. HSP70 expression is higher in males than in females, as well as in animals reared at 27 °C than at 20 °C, although it is very similar across the high and low induction temperatures. Animals reared at the higher temperature, however, respond less strongly to high‐temperature stress.  相似文献   

8.
The present studies were conducted to investigate the difference response of dermal fibroblasts to heat stress in Tharparkar and Karan-Fries cattle. Skin is the most important environmental interface providing a protective envelope to animals. In skin, dermal fibroblasts are the most regular cell constituent of dermis that is crucial for temperature homeostasis. The study aimed to examine the reactive oxygen species (ROS) formation, cytotoxicity (%) and heat shock protein 70 (HSP70) genes expression in dermal fibroblast of Tharparkar and Karan-Fries cattle and to assess whether resistance of dermal fibroblast to heat stress is breed specific. Dermal fibroblasts from ear pinna of Tharparkar and Karan-Fries cattle were exposed at 25 °C, 37 °C, 40 °C and 44 °C for 3 h to measure the ROS, cytotoxicity (%) and HSP 70 (HSPA1A, HSPA2 and HSPA8) genes’ expression. The results showed that ROS formation at low temperature (25 °C) decreased in both breeds as compared to control (37 °C) and the differences were significant (P<0.0001). Heat stress at 40 °C did not increase ROS formation significantly in Tharparkar but increased significantly (P<0.001) in Karan-Fries cattle. The overall cytotoxicity (%) was also found to be significantly different (P<0.001) between Tharparkar and Karan-Fries cattle, and on exposure to different temperatures (P<0.001). The cytotoxicity (%) in dermal fibroblast cells of Karan-fries cows was more than Tharparkar. The expression studies indicated that all HSP70 genes (HSPA8, HSPA1A and HSPA2) were up-regulated at different temperatures in both breeds. In Tharparkar, the relative mRNA expression of HSPA8 gene was higher but HSPA1A and HSPA2 genes were low as compared to Karan-Fries cattle. At 40 and 44 °C, the relative expressions of inducible HSP 70 genes (HSPA1A and HSPA2) were higher in Karan-Fries than Tharparkar. In summary, dermal fibroblast resistance to heat shock differed between breeds. Dermal fibroblasts of Tharparkar were observed to be more heat tolerant than crossbred Karan-Fries cattle. The study concludes that zebu cattle (Tharparkar) dermal fibroblasts are more adapted to tropical climatic condition than crossbreed cattle (Karan-Fries). Differences exist in dermal fibroblasts of heat adapted and non-adapted cattle.  相似文献   

9.
Peristenus spretus Chen et van Achterberg (Hymenoptera: Braconidae), a parasitoid of the plant bug Apolygus lucorum (Hemiptera: Miridae), has been studied for use in augmentative biological control in China. Under laboratory conditions, we explored the development, survival, age-specific and potential lifetime fecundity, oviposition period and progeny sex ratio of P. spretus reared at six constant temperatures (15°C, 19°C, 23°C, 27°C, 31°C, 35°C) on the second instar nymphs of A. lucorum. At 15°C, male and female P. spretus took 48.7 ± 0.3 and 52.5 ± 0.3 days to complete their immature development, while developmental time was reduced by more than half at 23°C and 27°C. The parasitoid can only develop to the larval stage at 31°C and neither larva nor pupa survived at 35°C. The estimated lower developmental threshold of the immature stage was 7.3°C. When parasitoid adults were exposed at 15°C, females laid 90% of their eggs at first 19 days of oviposition and had an extended reproductive life. In contrast, females held at 27°C laid most of their eggs (90%) in their first of 10 days of oviposition and had shorter longevity. The highest potential lifetime fecundity of P. spretus was 671.2 ± 34.7 SE eggs produced over 23.4 ± 1.4 SE days at 23°C. At 15°C, 19°C and 23°C, sex ratios of reared parasitoids were male-biased, but at 27°C there was no male bias.  相似文献   

10.
The objective of the present study was to evaluate the effects of cyclical lower incubation temperature at different embryonic ages on the hatchability, body and organs weights, thyroid hormones, and liver HSP70 gene expression of newly hatched chicks. In a completely randomized design, fertile eggs of a broiler breeder (34 weeks of age) were assigned to three treatment groups with six replicates and 145 eggs per each. The treatment groups were as: control group (C) that eggs were incubated at 37.6 °C during the whole incubation period; incubation temperature was decreased to 36 °C for 3 h per day at embryonic age from 12 to 14 (T1); and incubation temperature was decreased to 36 °C for 3 h per day at embryonic age from 15 to 17 (T2). No significant difference was found among treatments for hatchability (P>0.05). There were no differences (P>0.05) among treatments for body weight and liver weight, while heart weight of chicks in T1 and T2 groups were significantly higher than the control group (P<0.05). There were no differences (P>0.05) among treatments for the levels of thyroid hormones, however, the levels of both hormones tended to increase in chicks exposed to cold stress (T1 and T2). Chicks in T2 group had higher liver HSP70 gene expression compared with those in T1 and the control group (P<0.05). Cold stress in both incubation periods had no significant effect on the plasma levels of aspartate aminotransferase and alanine aminotransferase. Treatments had no effect on the plasma levels of glucose, cholesterol and triglyceride. The results of this study suggest that cyclical lower incubation temperatures (36 °C) at the embryonic age from day 15–17 could induce the liver HSP70 gene expression, without negative effects on the hatchability and body weight of hatched chicks.  相似文献   

11.
12.
Serratia marcescens is an enteric bacterium that causes white pox disease in elkhorn coral, Acropora palmata; however, it remains unclear if the pathogenic strain has adapted to seawater or if it requires a host or reservoir for survival. To begin to address this fundamental issue, the persistence of strain PDL100 was compared among seawater and coral mucus microcosms. Median survival time across all conditions ranged from a low of 15 h in natural seawater [with a first‐order decay constant (k) = ?0.173] at 30°C to a maximum of 120 h in glucose‐amended A. palmata mucus (k = ?0.029) at 30°C. Among seawater and mucus microcosms, median survival time was significantly greater within Siderastrea siderea mucus compared with seawater or mucus of Montastraea faveolata or A. palmata (P < 0.0001). In seawater, the addition of phosphate and especially glucose resulted in significant improvements in survival (P < 0.001), while only the addition of glucose resulted in significant improvement in survival in A. palmata mucus (P < 0.0001). Increasing the temperature of seawater to 35°C resulted in a significantly slower decay than that observed at 30°C (P < 0.0001). The results of this study indicate that PDL100 is not well‐adapted to marine water; however, survival can be improved by increasing temperature, the availability of coral mucus from S. siderea and most notably the presence of dissolved organic carbon.  相似文献   

13.
Salivary enzymes of many piercing–sucking insects lead to host plant injury. The salivary enzymes, polygalacturonase (PGs), act in insect feeding. PG family genes have been cloned from the mirid bug Apolygus lucorum, a pest of cotton and other host crops in China. We investigated the function of two PG genes that are highly expressed in A. lucorum nymphs (PG3‐4) and adults (PG3‐5), using siRNA injection‐based RNA interference (RNAi). Accumulation of mRNA encoding both genes and their cognate proteins was significantly reduced (>60%) in experimental compared control green fluorescent protein (GFP) siRNA‐treated mirids at 48 h post injection. Injury levels of cotton buds were also significantly reduced after injecting saliva isolated from PG3‐4 and PG3‐5 siRNA‐treated A. lucorum. These results demonstrate that these two PG act in A. lucorum elicitation of plant injury.  相似文献   

14.
A series of experiments were designed to study the effect of elevated temperatures on developmental competence of bovine oocytes and embryos produced in vitro. In experiment 1, the effect of heat shock (HS) by a mild elevated temperature (40.5°C) for 0, 30, or 60 min on the viability of in vitro matured (IVM) oocytes was tested following in vitro fertilization (IVF) and culture. No significant difference was observed between the control (39°C) and the heat‐treated groups in cleavage, blastocyst formation, or hatching (P > 0.05). In experiment 2, when the HS temperature was increased to 41.5°C, neither the cleavage rate nor blastocyst development was affected by treatment. However, the rate of blastocyst hatching appeared lower in the HS groups (13% in control group vs. 3.9% and 5.6% in 30 min and 60 min, respectively; P < 0.05). When IVM oocytes were treated at 43°C prior to IVF (experiment 3), no difference was detected in blastocyst and expanded blastocyst development following heat treatment for 0, 15, or 30 min, but heat treatment of oocytes for 45 or 60 min significantly reduced blastocyst and expanded blastocyst formation (P < 0.05). In experiment 4, the thermotolerance of day 3 and day 4 bovine IVF embryos were compared. When embryos were pre‐treated with a mild elevated temperature (40.5°C) for 1 hr, and then with a higher temperature (43°C) for 1 hr, no improvement in thermotolerance of the embryos was observed as compared to those treated at 43°C alone. However, a higher thermotolerance was observed in day 4 than day 3 embryos. In conclusion, treatment at 43°C, but not 40.5°C or 41.5°C significantly reduced oocyte developmental competence. An increase in thermotolerance was observed from day 3 to day 4 of in vitro embryonic development, which corresponds to the maternal to zygotic transition of gene expression in bovine embryos. Mol. Reprod. Dev. 53:336–340, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
16.
Extracellular heat-shock protein 72 (eHsp72) expression during exercise-heat stress is suggested to increase with the level of hyperthermia attained, independent of the rate of heat storage. This study examined the influence of exercise at various intensities to elucidate this relationship, and investigated the association between eHsp72 and eHsp27. Sixteen male subjects cycled to exhaustion at 60% and 75% of maximal oxygen uptake in hot conditions (40°C, 50% RH). Core temperature, heart rate, oxidative stress, and blood lactate and glucose levels were measured to determine the predictor variables associated with eHsp expression. At exhaustion, heart rate exceeded 96% of maximum in both conditions. Core temperature reached 39.7°C in the 60% trial (58.9 min) and 39.0°C in the 75% trial (27.2 min) (P < 0.001). The rate of rise in core temperature was 2.1°C h−1 greater in the 75% trial than in the 60% trial (P < 0.001). A significant increase and correlation was observed between eHsp72 and eHsp27 concentrations at exhaustion (P < 0.005). eHsp72 was highly correlated with the core temperature attained (60% trial) and the rate of increase in core temperature (75% trial; P < 0.05). However, no common predictor variable was associated with the expression of both eHsps. The similarity in expression of eHsp72 and eHsp27 during moderate- and high-intensity exercise may relate to the duration (i.e., core temperature attained) and intensity (i.e., rate of increase in core temperature) of exercise. Thus, the immuno-inflammatory release of eHsp72 and eHsp27 in response to exercise in the heat may be duration and intensity dependent.  相似文献   

17.
Apolygus lucorum (Miridae) is an omnivorous pest that occurs worldwide and is notorious for the serious damage it causes to various crops and substantial economic losses. Although some studies have examined the biological characteristics of the mirid bug, no reference genome is available in Miridae, limiting in‐depth studies of this pest. Here, we present a chromosome‐scale reference genome of A. lucorum, the first sequenced Miridae species. The assembled genome size was 1.02 Gb with a contig N50 of 785 kb. With Hi‐C scaffolding, 1,016 Mb contig sequences were clustered, ordered and assembled into 17 large scaffolds with scaffold N50 length 68 Mb, each corresponding to a natural chromosome. Numerous transposable elements occur in this genome and contribute to the large genome size. Expansions of genes associated with omnivorousness and mesophyll feeding such as those related to digestion, chemosensory perception, and detoxification were observed in A. lucorum, suggesting that gene expansion contributed to its strong environmental adaptability and severe harm to crops. We clarified that a salivary enzyme polygalacturonase is unique in mirid bugs and has significantly expanded in A. lucorum, which may contribute to leaf damage from this pest. The reference genome of A. lucorum not only facilitates biological studies of Hemiptera as well as an understanding of the damage mechanism of mesophyll feeding, but also provides a basis on which to develop efficient control technologies for mirid bugs.  相似文献   

18.
The success of any organism depends not only on niche adaptation but also the ability to survive environmental perturbation from homeostasis, a situation generically described as stress. Although species-specific mechanisms to combat “stress” have been described, the production of heat shock proteins (HSPs), such as HSP70, is universally described across all taxa. Members of the HSP70 gene family comprising the constitutive (HSC70) and inducible (HSP70) members, plus GRP78 (glucose-regulated protein, 78 kDa), a related HSP70 family member, were cloned using degenerate polymerase chain reaction (PCR) from two evolutionary divergent Antarctic marine molluscs (Laternula elliptica and Nacella concinna), a bivalve and a gastropod, respectively. The expression of the HSP70 family members was surveyed via quantitative PCR after an acute 2-h heat shock experiment. Both species demonstrated significant up-regulation of HSP70 gene expression in response to increased temperatures. However, the temperature level at which these responses were induced varied with the species (+6–8°C for L. elliptica and +8–10°C for N. concinna) compared to their natural environmental temperature). L. elliptica also showed tissue-specific expression of the genes under study. Previous work on Antarctic fish has shown that they lack the classical heat shock response, with the inducible form of HSP70 being permanently expressed with an expression not further induced under higher temperature regimes. This study shows that this is not the case for other Antarctic animals, with the two molluscs showing an inducible heat shock response, at a level probably set during their temperate evolutionary past.  相似文献   

19.
Sepals play important roles in protecting inner floral organs from various stresses and in guaranteeing timely flower opening. However, the exact role of sepals in coordinating interior and exterior signals remains elusive. In this study, we functionally characterized a heat shock protein gene, Arabidopsis HSP70‐16, in flower opening and mild heat stress response, using combined genetics with anatomic, physiological, chemical, and molecular analyses. We showed that HSP70‐16 is required for flower opening and mild heat response. Mutation of HSP70‐16 led to a significant reduction in seed setting rate under 22°C, which was more severe at 27°C. Mutation of HSP70‐16 also caused postgenital fusion at overlapping tips of two lateral sepals, leading to failed flower opening, abnormal floral organ formation, and impaired fertilization and seed setting. Chemical and anatomic analyses confirmed specific chemical and morphological changes of cuticle property in mutant lateral sepals, and qRT‐PCR data indicated that expression levels of different sets of cuticle regulatory and biosynthetic genes were altered in mutants grown at both 22°C and 27°C temperatures. This study provides a link between thermal and developmental perception signals and expands the understanding of the roles of sepal in plant development and heat response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号