首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data on 154 species of lepidopteran pests in the Upper Volga region, of which 9 are considered as principal, 29 as minor, and 116 as potential pests are summarized. Most of harmful species belong to the families Tortricidae (27), Noctuidae (24), Gelechiidae (11), Gracillariidae (9), Geometridae (8), and Lymantriidae (6). The pests of forest trees and shrubs are most numerous, followed by the pests of fruit trees and berry shrubs, pests of ornamental trees and shrubs, etc. There is no lepidopteran pest of field and forage crops in the region. On the whole, the economic importance of Lepidoptera in the Upper Volga region is lower than that of the other insect orders.  相似文献   

2.
Bulb mites of the genus Rhizoglyphus (Claparède) (Acari: Acaridae) have been identified as pests of many crops and ornamentals in storage, in the greenhouse, and in the field. The most importanthosts are species in the family Liliaceae (e.g. Allium spp.), but bulb mites will often attack otherimportant crops such as potatoes (Solanum sp.) and carrots (Daucus carota). Despite their economicimportance and broad distribution, the systematics of the genus remains in a state of confusion and is inneed of a comprehensive revision. In addition, the field biology and ecology of these mites is not wellunderstood, and methods for sampling, monitoring, and loss assessment are limited. Management of bulbmites is complicated by their short generation time, high reproductive potential, broad food niche,interactions with other pests and pathogens, and unique adaptations for dispersal. Historically, control ofthese acarine pests has relied on the use of synthetic miticides and insecticides, but this option is nowlimited due to documented resistance and withdrawal of registration of some products. Alternativecontrol strategies, including cultural and biological control, have shown limited success, but need to befurther developed and implemented.  相似文献   

3.
Predator mites of Phytoseiidae family are among the most important biocontrol agents in the world. These beneficial mites are considered as natural enemies of many pests and herbivore mites, and can feed on different growth stages of pests (egg, larva or nymph). Five species of Phytoseiidae mites were found during a survey conducted on tea plants, Camellia sinensis (Theaceae), in the Mazandaran and Guilan Provinces in the north of Iran, on the coast of the Caspian Sea, the major tea-growing region of Iran. Some of these species are recorded for the first time in tea gardens of Iran.  相似文献   

4.
北京和湖南烟粉虱生物型及其抗药性监测   总被引:1,自引:0,他引:1  
烟粉虱是蔬菜等园艺作物上为害严重、最难以防治的害虫之一,生产上防治该虫主要还是依靠化学药剂。本研究鉴定了北京、湖南地区设施蔬菜上烟粉虱的生物型,并监测了其对6种不同杀虫剂的抗药性。结果表明,北京、湖南地区蔬菜烟粉虱生物型分别是Q型和B型。两地烟粉虱对阿维菌素尚处于敏感状态;对烯啶虫胺及其他烟碱类杀虫剂噻虫嗪和吡虫啉的抗药性达中抗到高抗水平,湖南地区抗性水平比北京地区更高,抗性倍数最高达到71.58倍;传统杀虫剂毒死蜱和联苯菊酯对湖南、北京两地烟粉虱的毒杀活性差。  相似文献   

5.
褐飞虱Nilaparvata lugens Stal是危害水稻Oryza sativa L.的毁灭性害虫。种植抗虫水稻品种可以控制褐飞虱危害,技术手段绿色、经济且可持续。但是,褐飞虱致害性变异速度快且程度高,常导致抗虫水稻品种使用年限缩短。目前,针对褐飞虱致害性个体表型及分子标记、产生原因与机制、功能基因研究等已开展了大量研究。本文围绕褐飞虱致害性变异产生的遗传基础、分子标记、变异的主动机制和被动机制等方面进行综述,并对该领域未来方向进行展望。为更好地利用抗虫品种控制虫害,做好害虫的致害性监测及制定防治策略提供参考。  相似文献   

6.

Background  

The entomopathogenic fungi of the genus Beauveria are cosmopolitan with a variety of different insect hosts. The two most important species, B. bassiana and B. brongniartii, have already been used as biological control agents of pests in agriculture and as models for the study of insect host - pathogen interactions. Mitochondrial (mt) genomes, due to their properties to evolve faster than the nuclear DNA, to contain introns and mobile elements and to exhibit extended polymorphisms, are ideal tools to examine genetic diversity within fungal populations and genetically identify a species or a particular isolate. Moreover, mt intergenic region can provide valuable phylogenetic information to study the biogeography of the fungus.  相似文献   

7.
The viral, bacterial, fungal and nematode pathogens of arthropod pests of apple and pear in northern and central Europe and their use as biocontrol agents are reviewed. Baculoviruses are important viral pathogens of several lepidopterous pests of apple and pear but other viral pathogens have not been investigated in depth and are little known. The granuloviruses of codling moth, Cydia pomonella (CpGV), and to a lesser extent, of the summer fruit tortrix moth, Adoxophyes orana (AoGV), have been researched extensively and are exploited as biological control agents. Commercial development and use has been limited because of their high costs, slow action, short persistence and specificity relative to broad-spectrum pesticides. The widespread development of strains of codling moth multi-resistant to insecticides and the desire to reduce dependence on pesticides have improved the commercial prospects of CpGV and use is likely to increase. The development of a genetically improved egt-strain of CpGV (lacking the ecdysteroid-UDP glucosyl transferase gene) in the UK is a significant breakthrough, though commercialization in the UK may be difficult due to adverse public attitudes to the release of genetically-modified microorganisms. Future research and development approaches include further genetic manipulation of CpGV and AoGV to improve potency, speed of kill and/or persistence, improvement of formulation (to reduce UV light sensitivity) and development of cheaper mass production techniques and possibly in vitro production. A systematic search for baculoviruses and other viruses of apple and pear pests is likely to reveal important new opportunities. The most important bacterial pathogen used as a biological control agent is Bacillus thuringiensis (Bt). However, Bt products currently available have limited effectiveness against many orchard pests due to the pests' cryptic life habits. The HD-1 Bt strain has been investigated and used extensively for control of leaf-rolling tortricid larvae and is widely used, but efficacy is moderate. Advances in biotechnology and genetic engineering provide opportunity for development of Bt strains designed specifically to control orchard pests, but this has not yet been done for commercial reasons. Other research approaches include the evaluation of new Bt products developed for other markets worldwide and the bioassay of strains from Bt collections against specific apple or pear pests. Entomopathogenic fungi provide good opportunity for development as biological control agents of apple and pear pests. The main factor limiting their effectiveness is the requirement for high humidities and moderate temperatures for spore germination and development. For foliar pests, a useful starting point for research might be the control of sucking pests which excrete honeydew (e.g. Cacopsylla sp. or aphids) or those that inhabit protected microenvironments (e.g. Dasineura sp.). Key areas for research are improved formulation, the selection of low temperature-active strains, field evaluation and avoiding possible adverse effects of fungicides. An alternative approach is to examine the exploitation of entomopathogenic fungi in soil, to which many species of entomopathogenic fungi are adapted ecologically. Apple and pear orchards provide long-term stable habitats where populations of entomopathogenic fungi in soil are likely to be large. There are few important soil pests of apple or pear. However, many species spend part of their life in soil, mainly to pupate or overwinter, where they may be targeted by fungal entomopathogenic biocontrol agents. Entomopathogenic nematodes have many attributes which favour them as biological control agents. However, their requirement for surface moisture for survival and movement means there are only limited prospects for using them as biological control agents for foliar pests. As with entomopathogenic fungi, there are better prospects for control of pests that occur in soil. Microbial pathogens and entomopathogenic nematodes are important components of the natural enemy complex of apple and pear orchards and more effort needs to be devoted to fostering them and exploiting them as biocontrol agents in sustainable, biologically-based Integrated Pest Management programmes. They can in many cases be mass produced at low cost by bulk fermentation processes and applied as sprays (as 'biopesticides') and are, at least potentially, ideal biological control agents for many apple or pear pests. Important general characteristics are their comparative environmental and human safety, compatibility with other control strategies in Integrated Pest Management programmes and reproductive capacity. They tend to be effective in a narrower range of environmental conditions than pesticides, but there is considerable potential to improve their effectiveness by improved formulation, strain selection and genetic manipulation. They are often host-specific and thus, offer restricted marketing opportunities, which is a significant barrier to development and commercialisation. Registration procedures and associated fees for microbial agents are a further significant barrier. Such requirements do not apply currently to nematodes.  相似文献   

8.
Advances in Transgenic Research for Insect Resistance in Sugarcane   总被引:2,自引:0,他引:2  
The first phase of transgenic research in sugarcane concentrated on the development and evaluation of transgenic lines transformed for resistance to biotic stresses, particularly diseases and insect pests. Sugarcane is attacked by a range of insects including tissue borers, sucking pests and canegrubs. Losses due to these pests are estimated to be around 10%. Although chemical control and integrated pest management are regularly practiced for the control of insect pests, success is often limited due to practical difficulties. The genetic complexity of sugarcane coupled with the non-availability of resistance genes in the germplasm has made conventional breeding for insect resistance difficult. In this context, transgenic technology has become a handy tool for imparting insect resistance to an elite variety which is otherwise superior for most other agronomic traits. A number of transgenic sugarcane lines have been developed with genes expressing Cry proteins, proteinase inhibitors or lectins resistant to borers, sucking insects or grubs. While commercializing transgenic lines, issues such as higher and stable transgene expression, preparedness for resistance management and non-target effects need to be addressed. To manage the constant threat of resistance development in target insects, it is imperative to deploy field-level strategies taking clues from other crops coupled with the search for new potent replacement molecules for transformation.  相似文献   

9.
Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.  相似文献   

10.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.  相似文献   

11.
Wan X  Nardi F  Zhang B  Liu Y 《PloS one》2011,6(10):e25238
The oriental fruit fly, Bactrocera dorsalis, expanded throughout mainland China in the last century to become one of the most serious pests in the area, yet information on this process are fragmentary. Three mitochondrial genes (nad1, cytb and nad5) were used to infer the genetic diversity, population structure and demographic history of the oriental fruit fly from its entire distribution range in China. High levels of genetic diversity, as well as a significant correspondence between genetic and geographic distances, suggest that the invasion process might have been gradual, with no associated genetic bottlenecks. Three population groups could be identified, nevertheless the overall genetic structure was weak. The effective number of migrants between populations, estimated using the coalescent method, suggested asymmetric gene flow from the costal region of Guangdong to most inland regions. The demographic analysis indicates the oriental fruit fly underwent a recent population expansion in the Central China. We suggest the species originated in the costal region facing the South China Sea and gradually expanded to colonize mainland China, expanding here to high population numbers.  相似文献   

12.
The Rosa damascena has organic production and this plant is the most important economic crop in Kerman province. Roses have been used since the earliest times in rituals, cosmetics, perfumes, medicines and aromatherapy. The rose stem sawfly (Hartigia trimaculata) and rose stem girdler (Agrilus aurichalceus) are new and major pests of R. damascena in the Lalehzar region of Kerman province. These pests cause severe damage to plants by feeding stems and new management strategies for their control are continually being investigated. To investigate appropriate biological control agent in the region during 2005–2007, 184 isolates of fungi were collected from these pests. Isolation of fungi was achieved using standard methods. In this study, H. trimaculata and A. aurichalceus from R. damascena for the first time were recorded in Iran. Lecnicillium muscarium from H. trimaculata, L. muscarium from A. aurichalceus, Acremonium kiliense from H. trimaculata, and A. egyptiacum from A. aurichalceus have for the first time been recorded, and L. muscarium has been introduced as a suitable biological agent for control of these pests.  相似文献   

13.
Date palm (Phoenix dactylifera) is the most important economic crop in Kerman province. The palm date leafhopper (Ommatissus lybicus) is one of the most important and key pests that causes high level damage to date crop. Date is an organic fruit in this area, and biological control has been introduced as the best long-term strategy in this region. To investigate appropriate biological control agents in Kerman province during 2005–2007, 178 isolates were collected from naturally infected O. lybicus for the first time recorded in the world, and Beauveria bassiana was introduced as a suitable biological control agent for control of this pest.  相似文献   

14.
A number of strategies have been proposed to manage the increasing threat of insect pests to non-native plantation forests, but the implementation of these strategies can be especially challenging in developing economies, such as in countries of sub-Saharan Africa. As in other parts of the world, invasions of non-native insect pests in this region are increasing due to increased trade as well as inadequate quarantine regulations and implementation. Some of these invasions result in substantial socio-economic and environmental losses. In addition, new host associations of native insects on the non-native tree hosts continue to occur. Identification of these insect pests is becoming increasingly difficult due to declining taxonomic expertise, and a lack of resources and research capacity hinders the widespread and effective deployment of resistant trees and biological control agents. The necessity to engage with an extremely diverse stakeholder community also complicates implementing management strategies. We propose that a regional strategy is needed for developing regions such as sub-Saharan Africa, where limited resources can be optimized and shared risks managed collectively. This strategy should look beyond the standard recommendations and include the development of an inter-regional phytosanitary agency, exploiting new technologies to identify insect pests, and the use of “citizen science” projects. Local capacity is also needed to develop and test trees for pest tolerance and to deploy biological control agents. Ideally, research and capacity development should, at least initially, be concentrated in centres of excellence to reduce costs and optimize efforts.  相似文献   

15.
Trophic cascades are important drivers of plant and animal abundances in aquatic and aboveground systems, but in soils trophic cascades have been thought to be of limited importance due to omnivory and other factors. Here we use a meta‐analysis of 215 studies with 1526 experiments that measured plant growth responses to additions or removals of soil organisms to test how different soil trophic levels affect plant growth. Consistent with the trophic cascade hypothesis, we found that herbivores and plant pathogens (henceforth pests) decreased plant growth and that predators of pests increased plant growth. The magnitude of this trophic cascade was similar to that reported for aboveground systems. In contrast, we did not find evidence for trophic cascades in decomposer‐ and symbiont‐based (henceforth mutualist) food chains. In these food chains, mutualists increased plant growth and predators of mutualists also increased plant growth, presumably by increasing nutrient cycling rates. Therefore, mutualists, predators of mutualists and predators of pests all increased plant growth. Further, experiments that added multiple organisms from different trophic levels also increased plant growth. As a result, across the dataset, soil organisms increased plant growth 29% and non‐pest soil organisms increased plant growth 46%. Omnivory has traditionally been thought to confound soil trophic dynamics, but here we suggest that omnivory allows for a simplified perspective of soil food webs – one in which most soil organisms increase plant growth by preying on pests or increasing nutrient cycling rates. An implication of this perspective is that processes that decrease soil organism abundance (e.g. soil tillage) are likely to decrease aboveground productivity. Synthesis Soil foodwebs have resisted generalizations due to their diversity and interconnectedness. Here we use results from a meta‐analysis to inform a simplified perspective of soil foodwebs: one in which most soil trophic guilds increase plant growth. Our review also includes the first widespread support for the presence of trophic cascades in soils.  相似文献   

16.
Given that forest dieback due to emerging pests is increasing under global warming, understanding the relationships between pests, climate, and forest biodiversity is an urgent priority. In Japan, mass attacks of an ambrosia beetle, vectoring a pathogenic fungus, cause oak wilt outbreaks in recent decades. Here, the associations of oak wilt and climate with wood-inhabiting fungal communities in apparently healthy Quercus serrata trunks were investigated using DNA metabarcoding in seven sites along a climatic gradient in Japan. Amplicon sequencing of the fungal internal transcribed spacer 1 region generated 1,339,958 sequence reads containing 879 fungal operational taxonomic units (OTUs) in 234 wood samples. OTU compositions were significantly different between sites with and without oak wilt. OTU richness increased with temperature and precipitation at sites where oak wilt was present, but this relationship was not observed at sites without oak wilt, possibly due to interaction between oak wilt and climate.  相似文献   

17.
Environmental variation and large-scale Gracilaria production   总被引:3,自引:3,他引:0  
Pizarro  A.  Santelices  B. 《Hydrobiologia》1993,260(1):357-363
Temporal and spatial abiotic variation in seaweed farms should be anticipated to maximize production through alternative exploitation strategies. This study describes the basic assumptions and the most relevant data used to empirically develop a production model aimed at improving prediction and increasing production of Gracilaria farms in northern Chile. Continuous light and temperature recordings since 1986 have allowed us to relate abiotic variations with high production seasons of Gracilaria or with the presence of pests and epiphytes. Much of the interannual variations in light and temperature appear as part of a predictable pattern of change between ENSO (El Niño/Southern Oscillation) and inter-ENSO years. Production has been found to be a function of stock density and harvesting frequency, two parameters that can be effectively manipulated in the field. Thus, the range of climatic change now can be anticipated to some extent which, in turn, suggests the best farming strategy. During seasons or growth periods anticipated to be highly productive, farming activities are oriented to maintain high percentage removal of the stock through frequent harvesting. During seasons anticipated to be low in production, activities are oriented to prevent biomass losses due to the blooms of epiphytes and pests and to secure stocks to renew through planting the damaged parts of the beds after the blooms.  相似文献   

18.
The ability to manage insect pests in a site-specific manner is hindered by the costs and time required to describe pest densities and distributions. The purpose of this study was to determine whether insect pest distributions are related to site-specific management zones (SSMZs). Site-specific management zones, as described in this study, delineate fields into three zones of similar yield potential: high, medium, and low productivity. If insect densities vary across SSMZs, it is possible that management decisions could be made at the SSMZ level instead of treating the whole field. This research was conducted during summers 2001 and 2002 on cooperators' farms in northeastern Colorado. Surveys were conducted within corn, Zea mays L., fields, so that densities of three common insect pests of Colorado corn could be compared across SSMZ. The three insect pests were western corn rootworm, Diabrotica virgifera virgifera LeConte; European corn borer, Ostrinia nubilalis (HiAbner); and western bean cutworm, Richia albicosta (Smith). D. v. virgifera larvae and adults were most common in the high-productivity SSMZ. O. nubilalis larval abundance was similar at three fields, whereas in a fourth field the larvae were most common in the high-productivity SSMZ. In one field that contained substantial numbers of R. albicosta, egg abundance was similar across SSMZs, whereas larvae were most common in the high-productivity SSMZ. Site-specific management zones seemed to correlate well with the abundance of some insect pests and might prove useful for managing insects in a site-specific manner.  相似文献   

19.
Many moth pheromones and synthetic attractants have been used to monitor or decrease pest populations. However, due to their low economic efficiencies and narrow target specificities these methods are of limited use for trapping pests in large agricultural fields. In an effort to address this problem, we selected oak (Quercus serrata) sawdust media fermented by the yeast strain Pichia anomala, and examined its ability to attract lepidopteran moth pests for mass trapping in an apple (Malus domestica) orchard. A total of 57 taxa were trapped, including 42 species of lepidopteran pests. The most frequently caught lepidopteran pests included Adoxophyes orana (40.0 ± 3.5 individuals/trap/week), Oraesia excavata (35.5 ± 2.5), and Adris tyrannus amurensis (35.5 ± 2.5). Notably, less fruit damage was recorded in the experimental orchard versus a trap-free neighboring control orchard. These results suggest that adult moths might be effectively attracted and mass captured using P. anomala-fermented oak sawdust media as bait.  相似文献   

20.
Although avian-mediated pest control is a significant ecosystem service with important economic implications, few experimental studies have ever documented its role in Mediterranean agroforests. Specifically, information on pest control by birds is lacking in certain permanent agroecosystems of worldwide importance such as olive groves.Here, we assess experimentally for the first time the effectiveness of insectivorous birds in controlling the two main olive-tree pests. We also explore the effects of distance to semi-natural habitat patches on avian insectivore abundance and pest control. We combined bird and pest surveys with pest damage monitoring and two field experiments (branch exclusion and plasticine models) at a regional scale.The experiments showed that birds played a negligible role as pest controllers (measured in terms of attack rates on plasticine models and controlled pest damage) in the studied olive groves; overall, pests were abundant and pest damage was high on most farms. In addition, surveys showed that insectivorous birds were more abundant and diverse in patches of semi-natural habitat, compared to the matrix of olive groves, and that proximity to semi-natural patches was not a driver of bird-driven pest control.This study experimentally demonstrates that insectivorous birds are not effective pest controllers in olive groves. The absence of patterns linking insectivorous birds’ availability and observed pest control suggests that birds are unable to exert effective control over the main olive-tree pests. This lack of biocontrol by birds is probably due to low accessibility and/or appetence for the current insectivorous groups. Habitat improvement aimed at encouraging some under-represented forager species could improve the likelihood that birds will provide this ecosystem service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号