首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
陈红星  吴星  毕然  李莉霞  高蜜  李丹  谢凌天 《生态学杂志》2015,26(10):3226-3234
随着工业,特别是不锈钢产业的迅速发展,环境中的铬污染问题日益严重,Cr(Ⅵ)能够很容易地透过细胞膜进入细胞和生物体内,其毒性远高于Cr(Ⅲ).铬作为变价金属,其在鱼类体内能够产生活性氧自由基(ROS),对机体产生氧化胁迫效应;此外,Cr(Ⅵ)在细胞还原作用下生成的中间产物\[Cr(Ⅴ)、Cr(Ⅳ)等\]会进一步和DNA结合,导致基因的损伤和突变,从而危害鱼类的生长发育和种群结构.本文在不同水平上,系统总结了Cr(Ⅵ)对鱼类的毒性效应,从多个层次(分子、细胞、组织、器官、个体)阐述了Cr(Ⅵ)的毒性作用机制和鱼类相应的毒性解毒机制,并对于Cr(Ⅵ)的毒性研究中尚不完全清楚、需要深入考察的方面进行了探讨.  相似文献   

2.
生物吸附剂-活性污泥法吸附处理含铬电镀废水   总被引:3,自引:0,他引:3  
屈艳芬  叶锦韶  尹华  彭辉  张娜 《生态科学》2006,25(4):335-338
研究了复合生物吸附剂FY01和活性污泥处理含铬电镀废水的吸附性能.结果表明,铬的生物吸附分为快速15g·L-1污泥对通用电镀废水、康力电镀废水中铬的联合去除率分别高达97.7%和88.1%,比两者单独处理电镀废水的吸附和缓慢吸附两个阶段.FY01具有良好的吸附稳定性,对废水的pH适应能力强,当pH=2.5~6时,10g·L-1FY01和5g·L-1污泥曝气处理2000mL电镀废水2h后,68.6mg·L-1含铬通用电镀废水中总铬的去除率达71.5~75.6%;50.1mg·L-1含铬康力电镀废水中总铬的去除率高达80.0~90.0%.FY01和活性污泥具有良好的协同促进作用,10g·L-1FY01和除铬率总和分别高出39.8%、44.6%.  相似文献   

3.
自铬污染工业废水中分离得到若干株Cr(Ⅵ)耐受菌株,并通过对比各耐受菌株MIC(最小抑菌浓度)以及去除效率,确定实验菌株A57。通过形态学、生理生化鉴定结合16SrDNA序列比对分析,鉴定为奇异变形杆菌Proteus mirabilis A57。生物修复试验结果表明, P. mirabilis在100 mg·L–1的Cr(Ⅵ)浓度下即有较高的Cr(Ⅵ)去除能力, 28℃下培养24 h总去除率为44.79%。进一步的条件优化实验表明, P. mirabilis在最佳培养条件下(30℃,初始pH7.0),42 h可将150mg·L–1的Cr(Ⅵ)完全去除。不同组分试验结果显示,菌株A57的菌体可以更有效地去除Cr(Ⅵ)(相对于上清液和细胞裂解物)。扫描电子显微镜(SEM)试验观察到细胞表面形成不规则非晶态物质,表明Cr(Ⅵ)的生物修复反应主要发生在细菌细胞表面,XPS结果证实了生物还原反应的发生,菌体表面Cr元素存在形式主要为Cr(OH)3及CrCl3。  相似文献   

4.
5.
工业的迅猛发展使得重金属污染加剧,得到了人们的广泛关注。铬(Cr)在化工业中的广泛应用,使其成为一种主要的环境污染重金属离子。酿酒酵母是研究金属毒性最常用的生物之一。本文比较了三种铬盐(三氯化铬、三氧化铬、重铬酸钾)对酿酒酵母生长的影响,半抑制浓度的两种价态铬(Cr^3+,Cr^6+)处理酵母细胞,Cr^6+引起细胞的致死率更高。已有研究表明谷胱甘肽是胞内重要的还原剂,常用于细胞的重金属解毒,因此探究了两种价态的铬对酵母胞内谷胱甘肽水平的影响。结果显示重铬酸钾和三氧化铬浓度的升高都会引起胞内含量显著降低,而三氯化铬基本不变,过表达GSH1基因有利于提高酵母细胞对Cr^6+的抗性,但对Cr^3+没有明显效果,这说明两种价态铬在胞内生化作用方式不同,细胞应对的解毒机制也不一样。该研究对工业含铬废弃物处理和微生物治理环境污染提供了理论依据。  相似文献   

6.
铬(Cr)是一种广泛应用于钢铁、鞣革、印染等领域的重要工业原料,由此而带来的Cr(Ⅵ)污染已成为我国主要重金属污染之一。YEM001是一组能有效还原污泥和垃圾渗滤液中的Cr(Ⅵ),实现Cr(Ⅵ)污染生物修复的微生物菌群。然而菌群的扩大培养成为YEM001进一步应用的障碍。以优化菌群YEM001培养工艺条件为目标,通过单因素实验、正交实验对YEM001菌群的培养基和发酵条件进行了优化。结果显示以淀粉为碳源,YEM001能实现快速稳定的生长。优化后的YEM001菌群培养基为淀粉10 g/L,氯化铵3 g/L,硫酸镁2 g/L,酵母浸粉1 g/L。通过对搅拌转速、pH、通气等的调控,获得最佳发酵工艺条件为28 ℃、pH值 7.5、不通入空气、搅拌转速50 r/min。在该条件下,YEM001的培养液OD600值可达1.91,且在60 h内能够完全还原100 mg/L Cr(Ⅵ)。通过成本分析,优化后每100 L培养基价格降低了38.11元,较优化前成本降低51.85%。  相似文献   

7.
真菌还原Cr(Ⅵ)的研究   总被引:3,自引:0,他引:3  
从不同来源的样品中分离筛选出几株抗Cr(Ⅵ)的真菌,他们能在含300—500mg/LK2Cr2O7的蔗糖合成培养基中生长,其中BS-1菌株抗K2Cr2O7达900mg/L.BS-1等4株真菌在含200mg/LK2Cr2O7的培养基中生长4-6d后,培养液中的Cr(Ⅵ)已全部消失。这些真菌经鉴定为青霉菌(Penicilliumsp.)BS-1和BS-3,黑曲霉(Aspergillusniger)BR-4和黄曲霉(Aspergillusflavus)BX-1。经紫外可见光扫描及化学分析证实,高毒的Cr(Ⅵ)可被真菌还原成为低毒的Cr(Ⅲ)。BS-1菌株细胞还原Cr(Ⅵ)的最适温度为30℃,最适pH7.0。葡萄糖(0.25%)对细胞还原Cr(Ⅵ)有促进作用,但高浓度的Cr(Ⅵ)则抑制细胞对Cr(Ⅵ)的还原。  相似文献   

8.
硫酸盐还原菌及其还原解毒Cr(Ⅵ)的研究进展   总被引:4,自引:0,他引:4  
硫酸盐还原菌是一类分布广泛, 能进行硫酸盐异化还原反应的严格厌氧菌。利用硫酸盐还原菌可去除环境中的许多污染物, 因而该类细菌在环境污染治理中具有广阔的应用前景。本文介绍了硫酸盐还原菌的生物学特性和代谢特征及其在环境污染治理中的应用, 并对硫酸盐还原菌还原解毒Cr(Ⅵ)及应用于含Cr(Ⅵ)废水处理的研究进展作了综述, 分析了其未来的研究方向。  相似文献   

9.
[目的]考察pH值、初始Cr(Ⅵ)浓度、Fe(Ⅲ)的加入及氧气含量对隐藏嗜酸菌Acidiphiliumcryptum XTS还原Cr(Ⅵ)的影响及其六价铬还原相关基因在不同培养条件下的差异表达.[方法]采用正交试验法L9(34)优选Cr(Ⅵ)还原最适条件;根据模式菌A.cryptum JF-5同源功能基因序列设计引物,对菌株XTS中的六价铬还原相关基因Acry_2099在不同培养条件下的基因差异表达进行分析.[结果]pH为2.9,初始Cr(Ⅵ)浓度为80 mg/L,Fe(Ⅲ)浓度为100 mg/L的条件是该菌株还原Cr(Ⅵ)的最优化配合比,在该条件下处理24 h,Cr(Ⅵ)的还原率达到67.48%;从菌株XTS中成功克隆了Acry 2099基因,其序列与模式菌A.cryptum JF-5的同源功能基因序列一致性达到了99.7%;在不同pH值、初始Cr(Ⅵ)浓度及氧气含量下Acry_2099基因表达上调情况与Cr(Ⅵ)还原速率呈一致趋势,证明Acry 2099很可能参与还原Cr(Ⅵ)的代谢途径.虽然加入Fe(Ⅲ)能促进Cr(Ⅵ)的还原,但是铁的加入对Acry 2099基因表达水平没有显著的影响.[结论]A.cryptumXTS对Cr(Ⅵ)的还原与pH值、初始Cr(Ⅵ)浓度、Fe(Ⅲ)的存在等因素有关,较低的pH和较高的初始Cr(Ⅵ)浓度对该菌还原Cr(Ⅵ)具有促进作用.  相似文献   

10.
微生物还原Cr(VI)的研究进展   总被引:1,自引:0,他引:1  
随着现代工业的发展,水环境中的重金属对人类健康和环境带来严重的危害,其中的Cr(VI)具有强烈的毒性.微生物在代谢过程中可以将Cr(VI)还原为Cr(Ⅲ),有效降低Cr(VI)的毒性.本文从可还原Cr(VI)的微生物、微生物还原Cr(VI)的机理、还原过程中存在的问题及发展方向等方面进行了综述.  相似文献   

11.
The toxicity and mobility of chromium in the environment greatly depends upon its speciation. The reduction of hexavalent chromium to trivalent chromium in a soil environment was examined by spiking three soil types (sandy, clayey, and organic soils) with a common wood preservative solution known as chromated copper arsenate (CCA). Chromium in the CCA preservative solution exists in the hexavalent form. The total and hexavalent chromium concentrations (mg/kg) were measured over a period of 11 months. Leachable chromium concentrations (mg/L) were assessed using the synthetic precipitation leaching procedure (SPLP). The degree and rate of hexavalent chromium reduction were similar for the sand and clayey soil, but much greater for the organic soil. Most of the chromium reduction occurred within the first month of the experiment. At the end of the experiment, approximately 50% of the hexavalent chromium was converted to the trivalent form in the sand and clayey soils. Hexavalent chromium concentrations were below detection in the organic soil at the end of the experiment. Nearly all of the chromium observed in the SPLP leachates was in the form of hexavalent chromium. Chromium leaching was thus greatest in the sand and clay soils where the hexavalent chromium persisted. The results indicate that hexavalent chromium in soils can persist for considerable time periods, in particular in soils with low organic matter content.

  相似文献   


12.
Surface soil containing 25,100 mg/kg total Cr [12,400 mg/kg Cr(VI)] obtained from a Superfund site was used in laboratory microcosm studies to evaluate the potential for aerobic reduction of Cr(VI) by the indigenous soil microbial community. Hexavalent chromium in soil was reduced by as much as 33% (from 1840 to 1240 mg/L) within 21 days under enrichment conditions. Reduction of Cr(VI) in this system was biologically mediated and depended on the availability of usable energy sources. Mass balance studies suggested that the microbial populations removed Cr(VI) from the soil solutions by reduction. Indigenous microbial soil communities even with no history of Cr(VI) contamination were capable of mediating this process. However, Cr(VI) removal was not observed when microbial populations from a sewage sludge sample were added to the soil microcosms. The results suggest that Cr(VI)-reducing microbial populations are widespread in soil, and thus the potential exists for in situ remediation of environmentally significant levels of Cr( VI) contamination.  相似文献   

13.
Kinetic aspects of the bacterial reduction of hexavalent chromium (chromate: CrO2-4) were investigated using Enterobacter cloacae strain HO1. E. cloacae strain HO1 could reduce hexavalent chromium to the trivalent form (Cr3+) anaerobically. High concentrations of CrO2-4 inhibited the reduction, and a substrate inhibition model gave a good fit to the observed data. The rate of chromate reduction was proportional to cell density. The effect of temperature on the reduction rate followed the Arrhenius equation. The rate of chromate reduction was also dependent on pH and the concentrations of carbon and energy sources in the culutre medium. Amino acids including asparagine, methionine, serine and threonine were utilized effectively as carbon and energy sources for chromate reduction.  相似文献   

14.
Kinetic aspects of the bacterial reduction of hexavalent chromium (chromate: CrO2-4) were investigated using Enterobacter cloacae strain HO1. E. cloacae strain HO1 could reduce hexavalent chromium to the trivalent form (Cr3+) anaerobically. High concentrations of CrO2-4 inhibited the reduction, and a substrate inhibition model gave a good fit to the observed data. The rate of chromate reduction was proportional to cell density. The effect of temperature on the reduction rate followed the Arrhenius equation. The rate of chromate reduction was also dependent on pH and the concentrations of carbon and energy sources in the culutre medium. Amino acids including asparagine, methionine, serine and threonine were utilized effectively as carbon and energy sources for chromate reduction.  相似文献   

15.
A feasibility evaluation identified chemical reduction and biostimulation as a potential remedy for a plume containing hexavalent chromium (Cr(VI)) and tetrachloroethene (PCE) at an industrial site in southern California. The objectives of this laboratory study were to determine the stoichiometry of calcium polysulfide (CaSx) reaction with Cr(VI) in the presence of sediment, the effect of CaSx on the potential for in situ biological reductive dechlorination of PCE, and the potential to reduce Cr(VI) and PCE by addition of only an electron donor. Approximately 1 L of CaSx solution (containing 50 g S2-/L) was required per 1000 L of groundwater containing 45 mg/L of Cr(VI) (i.e., 1.8 mol S2- per mol Cr(VI)). The sediment also exerted a sulfide demand (≥0.38 g S2 - per kg sediment), but at a slower rate than the Cr(VI). In microcosms prepared with lactate, corn syrup, soybean oil, or methanol, but no CaSx, the Cr(VI) was biologically reduced in the treatments with lactate and corn syrup, but much more slowly than with CaSx. Even after 20 months of incubation, no significant reductive dechlorination of PCE occurred in any of the microcosms, including those in which the Cr(VI) was removed with CaSx. Bioaugmentation was tested with the microcosms that received lactate and corn syrup (following 20 months of incubation), using an enrichment culture that actively dechlorinates trichloroethene. PCE dechlorination began within 1 month in the lactate-only treatment; in the corn syrup-amended treatment, PCE dechlorination occurred in only one of the three bottles. However, no PCE dechlorination occurred following bioaugmentation of the lactate and corn syrup microcosms that were initially treated with CaSx, indicating that CaSx (and/or its reaction products) exerted a negative impact on the chlororespiring microbes. This outcome highlights the need to evaluate sites on a case-by-case basis when in situ chemical treatment is applied prior to microbial reductive dechlorination.  相似文献   

16.
Chromium (Cr) is routinely measured during environmental investigations involving soils and other solid matrix sampling. Regulatory-approved analytical methods are available to extract and quantify total Cr in various environmental media. However, due to significant toxicity differences between trivalent [Cr(III)] and hexavalent [Cr(VI)] valences, it is compelling that the two can be quantitatively distinguished. SW-846 Method 3060A is an effective extraction technique for soluble and insoluble Cr(VI). Several regulatory-approved methods exist for quantitating the Cr(VI) in extracts or aqueous samples. Although a 6-month holding time for total Cr is not encumbering, investigators are challenged by the typical 24-h holding time (sample collection through analysis) for Cr(VI) in aqueous samples and the 24- to 96-h holding time range for solid matrix samples typically set by regulators. This research report addresses quantitating Cr(VI) in solid matrices. Using SW-846 Methods 3060A/7196A, a scientifically defensible basis has been established for designating a 30-day holding time for Cr(VI) extraction from solid matrices and a 7-day holding time for Cr(VI) analysis once solubilized in the alkaline digestate. The study results indicate that a 30-day holding time, from sample collection to preparation, and a 7-day holding time, from digestion to analysis, are appropriate for Cr(VI) analysis.  相似文献   

17.
Ferrous iron [Fe(II)] reductively transforms heavy metals in contaminated groundwater, and the bacterial reduction of indigenous ferric iron [Fe(III)] to Fe(II) has been proposed as a means of establishing redox reactive barriers in the subsurface. The reduction of Fe(III) to Fe(II) can be accomplished by stimulation of indigenous dissimilatory metal-reducing bacteria (DMRB) or injection of DMRB into the subsurface. The microbially produced Fe(II) can chemically react with contaminants such as Cr(VI) to form insoluble Cr(III) precipitates. The DMRB Shewanella algae BrY reduced surface-associated Fe(III) to Fe(II), which in batch and column experiments chemically reduced highly soluble Cr(VI) to insoluble Cr(III). Once the chemical Cr(VI) reduction capacity of the Fe(II)/Fe(III) couple in the experimental systems was exhausted, the addition of S. algae BrY allowed for the repeated reduction of Fe(III) to Fe(II), which again reduced Cr(VI) to Cr(III). The research presented herein indicates that a biological process using DMRB allows the establishment of a biogeochemical cycle that facilitates chromium precipitation. Such a system could provide a means for establishing and maintaining remedial redox reactive zones in Fe(III)-bearing subsurface environments.  相似文献   

18.
Ferrous iron [Fe(II)] reductively transforms heavy metals in contaminated groundwater, and the bacterial reduction of indigenous ferric iron [Fe(III)] to Fe(II) has been proposed as a means of establishing redox reactive barriers in the subsurface. The reduction of Fe(III) to Fe(II) can be accomplished by stimulation of indigenous dissimilatory metal-reducing bacteria (DMRB) or injection of DMRB into the subsurface. The microbially produced Fe(II) can chemically react with contaminants such as Cr(VI) to form insoluble Cr(III) precipitates. The DMRB Shewanella algae BrY reduced surface-associated Fe(III) to Fe(II), which in batch and column experiments chemically reduced highly soluble Cr(VI) to insoluble Cr(III). Once the chemical Cr(VI) reduction capacity of the Fe(II)/Fe(III) couple in the experimental systems was exhausted, the addition of S. algae BrY allowed for the repeated reduction of Fe(III) to Fe(II), which again reduced Cr(VI) to Cr(III). The research presented herein indicates that a biological process using DMRB allows the establishment of a biogeochemical cycle that facilitates chromium precipitation. Such a system could provide a means for establishing and maintaining remedial redox reactive zones in Fe(III)-bearing subsurface environments.  相似文献   

19.
Arthrobacter sp. SUK 1201, a potent isolate reported from chromite mine overburden of Orissa, India, has been evaluated for Cr(VI) reduction with immobilized whole cells. For whole-cell immobilization, Ba-alginate was found to be most effective, and the Cr(VI) reduction potential was maximum in minimal salts (MS) medium with cells immobilized in 2% alginate. Fourier transform infrared spectra of depolymerized cells has failed to detect any sign of complexation of Cr(VI) or its reduced products with the cell mass. Reduction efficiency of the beads increased with increase in cell load, but decreased with increase in Cr(VI) concentration in the medium. Glycerol was the most potent electron donor for chromate reduction, followed by glucose and peptone. Optimum pH for Cr(VI) reduction was 7.0, and the process was inhibited by metal ions such as Ni(II), Co(II), Cd(II), Zn(II), and Mn(II) but not by Cu(II) and Fe(III). Similarly, CCCP (carbonyl cyanide-m-chlorophenylhydrazone), DCC (N,N,-dicyclohexylcarbodiimide), sodium azide, and sodium fluoride were inhibitory in nature, whereas chromate reduction was unaffected in the presence of DNP (2,4-dinitrophenol). Moreover, immobilized cells of SUK 1201 remained biologically active for four consecutive cycles, accompanied with an initial increase in cell number in the beads, although a decline in chromate reduction was recorded from the second cycle onward. Immobilized cells of Arthrobacter sp. SUK 1201, therefore, could be a potential tool for long-term uses in chromium detoxification.  相似文献   

20.
Abstract

Industrial activities discharge a large amount of wastes containing hexavalent chromium [Cr(VI)] into the environment, which poses a threat to human health. Microorganisms can be used as efficient tools for Cr(VI) remediation. In this study, the Cr(VI) removal capacity of Aspergillus niger was evaluated. A. niger could tolerate and reduce Cr(VI) by nearly 100% at concentrations ranging from 10 to 50?mg/L. Overall, almost 97% of the Cr(VI) removal was caused by extracellular reduction whereas 3% was caused by accumulation. Extracellular reduction was mediated by non-enzymatic cell secretions, whereas extracellular accumulated Cr formed precipitates on the hyphal surfaces and was partially absorbed on the cell wall. Cr(VI) also entered the cell and was reduced by the strong chromate reductase activity in cell-free extracts and then accumulated within the cell. These data suggest that A. niger, which has the capacity to remove Cr(VI) by reduction and accumulation, can be a useful tool for Cr(VI) remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号