首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: A Robot Scientist is a physically implemented robotic system that can automatically carry out cycles of scientific experimentation. We are commissioning a new Robot Scientist designed to investigate gene function in S. cerevisiae. This Robot Scientist will be capable of initiating >1,000 experiments, and making >200,000 observations a day. Robot Scientists provide a unique test bed for the development of methodologies for the curation and annotation of scientific experiments: because the experiments are conceived and executed automatically by computer, it is possible to completely capture and digitally curate all aspects of the scientific process. This new ability brings with it significant technical challenges. To meet these we apply an ontology driven approach to the representation of all the Robot Scientist's data and metadata. RESULTS: We demonstrate the utility of developing an ontology for our new Robot Scientist. This ontology is based on a general ontology of experiments. The ontology aids the curation and annotating of the experimental data and metadata, and the equipment metadata, and supports the design of database systems to hold the data and metadata. AVAILABILITY: EXPO in XML and OWL formats is at: http://sourceforge.net/projects/expo/. All materials about the Robot Scientist project are available at: http://www.aber.ac.uk/compsci/Research/bio/robotsci/.  相似文献   

2.
The era of automation arrived with the introduction of the AutoAnalyzer using continuous flow analysis and the Robot Chemist that automated the traditional manual analytical steps. Successive generations of stand-alone analysers increased analytical speed, offered the ability to test high volumes of patient specimens, and provided large assay menus. A dichotomy developed, with a group of analysers devoted to performing routine clinical chemistry tests and another group dedicated to performing immunoassays using a variety of methodologies. Development of integrated systems greatly improved the analytical phase of clinical laboratory testing and further automation was developed for pre-analytical procedures, such as sample identification, sorting, and centrifugation, and post-analytical procedures, such as specimen storage and archiving. All phases of testing were ultimately combined in total laboratory automation (TLA) through which all modules involved are physically linked by some kind of track system, moving samples through the process from beginning-to-end. A newer and very powerful, analytical methodology is liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). LC-MS/MS has been automated but a future automation challenge will be to incorporate LC-MS/MS into TLA configurations. Another important facet of automation is informatics, including middleware, which interfaces the analyser software to a laboratory information systems (LIS) and/or hospital information systems (HIS). This software includes control of the overall operation of a TLA configuration and combines analytical results with patient demographic information to provide additional clinically useful information. This review describes automation relevant to clinical chemistry, but it must be recognised that automation applies to other specialties in the laboratory, e.g. haematology, urinalysis, microbiology. It is a given that automation will continue to evolve in the clinical laboratory, limited only by the imagination and ingenuity of laboratory scientists.  相似文献   

3.
Although potentiostats are the foundation of modern electrochemical research, they have seen relatively little application in resource poor settings, such as undergraduate laboratory courses and the developing world. One reason for the low penetration of potentiostats is their cost, as even the least expensive commercially available laboratory potentiostats sell for more than one thousand dollars. An inexpensive electrochemical workstation could thus prove useful in educational labs, and increase access to electrochemistry-based analytical techniques for food, drug and environmental monitoring. With these motivations in mind, we describe here the CheapStat, an inexpensive (<$80), open-source (software and hardware), hand-held potentiostat that can be constructed by anyone who is proficient at assembling circuits. This device supports a number of potential waveforms necessary to perform cyclic, square wave, linear sweep and anodic stripping voltammetry. As we demonstrate, it is suitable for a wide range of applications ranging from food- and drug-quality testing to environmental monitoring, rapid DNA detection, and educational exercises. The device's schematics, parts lists, circuit board layout files, sample experiments, and detailed assembly instructions are available in the supporting information and are released under an open hardware license.  相似文献   

4.
The QU-GENE Computing Cluster (QCC) is a hardware and software solution to the automation and speedup of large QU-GENE (QUantitative GENEtics) simulation experiments that are designed to examine the properties of genetic models, particularly those that involve factorial combinations of treatment levels. QCC automates the management of the distribution of components of the simulation experiments among the networked single-processor computers to achieve the speedup.  相似文献   

5.
Laboratory training and testing of auditory recognition skills in animals is important for understanding animal communication systems that depend on auditory cues. Songbirds are commonly studied because of their exceptional ability to learn complex vocalizations. In recent years, mounting interest in the perceptual abilities of songbirds has increased the demand for laboratory behavioural training and testing paradigms. Here, we describe and demonstrate the success of a method for auditory discrimination experiments, including all the necessary hardware, training procedures and freely-available, versatile software. The system can run several behavioural training and testing paradigms, including operant (go-nogo, stimulus preference, and two-alternative forced choice) and classical conditioning tasks. The software and some hardware components can be used with any laboratory animal that learns and responds to sensory cues. The peripheral hardware and training procedures are designed for use with songbirds and auditory stimuli. Using the go-nogo paradigm of the training system, we show that adult zebra finches learn to recognize and correctly classify individual female calls and male songs. We also show that learning the task generalizes to new stimulus classes; birds that learned the task with calls subsequently learned to recognize songs faster than did birds that learned the task and songs at the same time.  相似文献   

6.
Developing and characterization ordered clone collection from human chromosome specific DNA libraries is proceeding as part of a larger effort to construct a physical map of the entire human genome. The robotics and automation section at Los Alamos has been focussed on developing the hardware and software tools required to support this objective. These tools are typically integrated systems that combine an intuitive user interface, a database, as well as the relevant hardware technologies. To date, we have developed a system to automatically grid clones onto nylon filters in high density arrays. We have also developed a hybridization autoradiograph software scoring tool that combines image analysis, databasing, and a user interface.  相似文献   

7.
Structure-based drug design is a creative process that displays several features that make it closer to human reasoning than to machine automation. However, very often the user intervention is limited to the preparation of the input and analysis of the output of a computer simulation. In some cases, allowing human intervention directly in the process could improve the quality of the results by applying the researcher intuition directly into the simulation. Haptic technology has been previously explored as a useful method to interact with a chemical system. However, the need of expensive hardware and the lack of accessible software have limited the use of this technology to date. Here we are reporting the implementation of a haptic-based molecular mechanics environment aimed for interactive drug design and ligand optimization, using an easily accessible software/hardware combination.  相似文献   

8.
Experiments with Arabidopsis have been developed for spaceflight studies in the European Space Agency's Biorack module. The Biorack is a multiuser facility that is flown on the United States Space Shuttle and serves as a small laboratory for studying cell and developmental biology in unicells, plants, and small invertebrates. The purpose of our spaceflight research was to investigate the starch-statolith model for gravity perception by studying wild-type (WT) and three starch-deficient mutants of Arabidopsis. Since spaceflight opportunities for biological experimentation are scarce, the extensive ground-based testing described in this paper is needed to ensure the success of a flight project. Therefore, the specific aims of our ground-based research were: (1) to modify the internal configuration of the flight hardware, which originally was designed for large lentil seeds, to accommodate small Arabidopsis seeds; (2) to maximize seed germination in the hardware; and (3) to develop favorable conditions in flight hardware for the growth and gravitropism of seedlings. The hardware has been modified, and growth conditions for Arabidopsis have been optimized. These experiments were successfully flown on two Space Shuttle missions in 1997.  相似文献   

9.
A new system for computing brain electrical activity maps on a standard IBM-compatible computer has been developed. The EEG is recorded using a CED1401 intelligent laboratory interface and stored in the computer; colour coded maps are generated using softwave developed in Turbo PASCAL and displayed on the EGA graphics screen. An acceptable computation time of 1.2 s for a 64 × 64 map displayed as a 128 × 128 pixel image has been achieved by incorporating assembly language routines and a maths coprocessor. The system may be readily upgraded as improved hardware becomes available and further software can be added. In addition to triggering auditory, visual and somatosensory stimulators, it provides the potential for the generation of complex stimuli for cognitive experiments by means of mass RAM and digital-to-analogue converters.  相似文献   

10.
In a recent paper in Nature, Edith Heard from the European Molecular Biology Laboratory (EMBL) suggested that molecular biologists should ‘reconnect with nature’ by diversifying sampling locations. Although this approach has its own benefits, we suggest that advanced methods should rather be used to take hypothesis-based experiments to nature, thereby supplying a much-needed context for experimentation under controlled conditions. Following the CRISPR (clustered regularly interspaced short palindromic repeats) revolution, this approach has become accessible to many research groups. For the past several years we have developed the groundwork and initiated such experimentation. This included the assembly of a mobile laboratory on a four-wheel drive truck and examining genome-edited metabolic mutants in wild tree tobacco (Nicotiana glauca), grown in nature. Our findings included both targeted answers to focused questions, but also surprising results that could only be reached while working in natural settings.  相似文献   

11.
Robot locomotion is an active research area. In this paper we focus on the locomotion of quadruped robots. An effective walking gait of quadruped robots is mainly concerned with two key aspects, namely speed and stability. The large search space of potential parameter settings for leg joints means that hand tuning is not feasible in general. As a result walking parameters are typically determined using machine learning techniques. A major shortcoming of using machine learning techniques is the significant wear and tear of robots since many parameter combinations need to be evaluated before an optimal solution is found.This paper proposes a direct walking gait learning approach, which is specifically designed to reduce wear and tear of robot motors, joints and other hardware. In essence we provide an effective learning mechanism that leads to a solution in a faster convergence time than previous algorithms. The results demonstrate that the new learning algorithm obtains a faster convergence to the best solutions in a short run. This approach is significant in obtaining faster walking gaits which will be useful for a wide range of applications where speed and stability are important. Future work will extend our methods so that the faster convergence algorithm can be applied to a two legged humanoid and lead to less wear and tear whilst still developing a fast and stable gait.  相似文献   

12.
Experiments withArabidopsis have been developed for spaceflight studies in the European Space Agency's Blorack module. The Biorack is a multiuser facility that is flown on the United States Space Shuttle and serves as a small laboratory for studying cell and developmental biology in unicells, plants, and small invertebrates. The purpose of our spaceflight research was to investigate the starch-statolith model for gravity perception by studying wild-type (WT) and three starch-deficient mutants ofArabidopsis. Since spaceflight opportunities for biological experimentation are scarce, the extensive ground-based testing described in this paper is needed to ensure the success of a flight project. Therefore, the specific aims of our ground-based research were: (1) to modify the internal configuration of the flight hardware, which originally was designed for large lentil seeds, to accommodate smallArabidopsis seeds; (2) to maximize seed germination in the hardware; and (3) to develop favorable conditions in flight hardware for the growth and gravitropism of seedlings. The hardware has been modified, and growth conditions forArabidopsis have been optimized. These experiments were successfully flown on two Space Shuttle missions in 1997.  相似文献   

13.
Recently much effort has been spent on providing a shared address space abstraction on clusters of small-scale symmetric multiprocessors. However, advances in technology will soon make it possible to construct these clusters with larger-scale cc-NUMA nodes, connected with non-coherent networks that offer latencies and bandwidth comparable to interconnection networks used in hardware cache-coherent systems. The shared memory abstraction can be provided on these systems in software across nodes and hardware within nodes.Recent simulation results have demonstrated that certain features of modern system area networks can be used to greatly reduce shared virtual memory (SVM) overheads [5,19]. In this work we leverage these results and we use detailed system emulation to investigate building future software shared memory clusters. We use an existing, large-scale hardware cache-coherent system with 64 processors to emulate a complete future cluster. We port our existing infrastructure (communication layer and shared memory protocol) on this system and study the behavior of a set of real applications. We present results for both 32- and 64-processor system configurations.We find that: (i) System emulation is invaluable in quantifying potential benefits from changes in the technology of commodity components. More importantly, it reveals potential problems in future systems that are easily overlooked in simulation studies. Thus, system emulation should be used along with other modeling techniques (e.g., simulation, implementation) to investigate future trends. (ii) Our work shows that current SVM protocols can only partially take advantage of faster interconnects and wider nodes due to operating system and architectural implications. We quantify the related issues and identify the areas where more research is required for future SVM clusters.  相似文献   

14.
Using the teleost Fundulus heteroclitus as an experimental model, we demonstrate how a multi-disciplinary approach to problems of intraspecies genetic variation can provide a better understanding of complex biodiversity problems than can be addressed by a more monolithic approach. We emphasize the importance of starting with simple molecular systems and making predictions that can be tested by experimentation at a higher level of biological complexity-leading from molecules to cells to organ systems to organisms and eventually laboratory and field selection experiments. Using this interdisciplinary approach, we address the classical 'selectionisti neutralist' controversy.  相似文献   

15.
The ability to apply controlled forces to individual molecules has been revolutionary in shaping our understanding of biophysics in areas as diverse as dynamic bond strength, biological motor operation, and DNA replication. However, the methodology to perform single-molecule experiments remains relatively inaccessible because of cost and complexity. In 2010, we introduced the centrifuge force microscope (CFM) as a platform for accessible and high-throughput single-molecule experimentation. The CFM consists of a rotating microscope with which prescribed centrifugal forces can be applied to microsphere-tethered biomolecules. In this work, we develop and demonstrate a next-generation Wi-Fi CFM that offers unprecedented ease of use and flexibility in design. The modular CFM unit fits within a standard benchtop centrifuge and connects by Wi-Fi to an external computer for live control and streaming at near gigabit speeds. The use of commercial wireless hardware allows for flexibility in programming and provides a streamlined upgrade path as Wi-Fi technology advances. To facilitate ease of use, detailed build and setup instructions, as well as LabVIEW-based control software and MATLAB-based analysis software, are provided. We demonstrate the instrument’s performance by analysis of force-dependent dissociation of short DNA duplexes of 7, 8, and 9 bp. We showcase the sensitivity of the approach by resolving distinct dissociation kinetic rates for a 7 bp duplex in which one G-C basepair is mutated to an A-T basepair.  相似文献   

16.
There is an abundance of experimental studies and reviews that describe odorant-mediated behaviors of fish in laboratory microcosms, but research in natural field conditions has received considerably less attention. Fish pheromone studies in laboratory settings can be highly productive and allow for controlled experimental designs; however, laboratory tanks and flumes often cannot replicate all the physical, physiological and social contexts associated with natural environments. Field experiments can be a critical step in affirming and enhancing understanding of laboratory discoveries and often implicate the ecological significance of pheromones employed by fishes. When findings from laboratory experiments have been further tested in field environments, often different and sometimes contradictory conclusions are found. Examples include studies of sea lamprey (Petromyzon marinus) mating pheromones and fish alarm substances. Here, we review field research conducted on fish pheromones and alarm substances, highlighting the following topics: (1) contradictory results obtained in laboratory and field experiments, (2) how environmental context and physiological status influences behavior, (3) challenges and constraints of aquatic field research and (4) innovative techniques and experimental designs that advance understanding of fish chemical ecology through field research.  相似文献   

17.
In May 1982, a questionnaire was sent to all of the 170 French Blood Transfusion Services (BTS), on behalf of the French Society of Blood Transfusion. The purpose was to determine the types of automated equipment used for immunohematological controls, the way in which they are used and the result of automation and computerization in daily laboratory operations. We received 135 replies (80%). A generalized conclusion can be drawn from the collected information. 50% of the respondents are neither automated nor computerized. 30% are both automated and computerized. 10% are automated but not computerized and 8% are not automated but are computerized. In the field of automated serology there is an increased tendency to complete the ABO/Rh testing by Cc D Ee and Kell phenotyping. The use of computers allows the current test determination to be compared with previous donation data. However, no fully automated equipment, which can conduct antibody screening, exists, cost effectively, in small or average BTS. In France, there has been a significant increase in automation between 1970 and 1980 but only the most important BTS have carried out automation at the same time as computerization. The smaller BTS have usually become automated without becoming computerized. In 1978, Codabar was first used. This has been one of the principal advances of the last 10 years, allowing all the users of automation to start moving towards complete computerization. This advance was assisted by the use of prepackaged software. This questionnaire also determined that the current emphasis is now to computerize administrative and management activities before laboratory activities. This survey has been conducted during a turning point of the automation of French BTS. It shows that they are, on the whole, satisfied with their automation. As far as the safety and the efficiency of the service are concerned, it is only fair to consider that the main purposes of the automation have been achieved. But in terms of cost, and serological accuracy for antibody screening, a new generation of automated equipment should appear to satisfy the users in the nineties.  相似文献   

18.
High throughput and high content screening involve determination of the effect of many compounds on a given target. As currently practiced, screening for each new target typically makes little use of information from screens of prior targets. Further, choices of compounds to advance to drug development are made without significant screening against off-target effects. The overall drug development process could be made more effective, as well as less expensive and time consuming, if potential effects of all compounds on all possible targets could be considered, yet the cost of such full experimentation would be prohibitive. In this paper, we describe a potential solution: probabilistic models that can be used to predict results for unmeasured combinations, and active learning algorithms for efficiently selecting which experiments to perform in order to build those models and determining when to stop. Using simulated and experimental data, we show that our approaches can produce powerful predictive models without exhaustive experimentation and can learn them much faster than by selecting experiments at random.  相似文献   

19.
A general 'coherent signal averager' software package which can be run on a small laboratory computer is presented as an application of a new approach to medical instrumentation. The combination of the minicomputer, preprocessing hardware and the above-mentioned software yields a flexible multipurpose averaging system for electrophysiological signals. The possibilities of the system are discussed with reference to visual evoked potential measurements in a clinical function laboratory.  相似文献   

20.
In almost no field of technology are current developments as dramatic as in computing hardware and software and their applications in scientific research. This article briefly summarizes the history of computing and its applications in the laboratory, with particular citation of developments supporting nuclear magnetic resonance research, including increased use of graphics techniques. The article also attempts to forecast future trends leading to automated intelligent molecular structure determination from nuclear magnetic resonance and other experiments, coming to utilize, the author believes, extensive use of molecular graphics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号