首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Functional complementarity in the arbuscular mycorrhizal symbiosis   总被引:8,自引:2,他引:6  
The causes and consequences of biodiversity are central themes in ecology. Perhaps one reason for much of the current interest in biodiversity is the belief that the loss of species (by extinction) or their gain (by invasion) will significantly influence ecosystem function. Arbuscular mycorrhizal (AM) fungi are components of most terrestrial ecosystems and, while many research programs have shown that variability among species or isolates of AM fungi does occur (Giovannetti & Gianinazzi-Pearson, 1994), the basis for this variability and its consequences to the function of communities and ecosystems remains largely unexplored. Smith et al . (pp. 357–366 in this issue) now show clearly that ecologically significant functional diversity exists among AM fungal species in the regions of the soil from which they absorb phosphate, and their results suggest that such diversity may have significant ecological consequences.  相似文献   

2.
Model genetics and genomics have been developed as tools for studying the third largest family of flowering plants, the Leguminosae, which includes important crop plants. Functional genomics strategies for the global analysis of gene expression, the elucidation of pathways and reverse genetics are established. These approaches provide new possibilities for investigating rhizobial as well as mycorrhizal endosymbiosis. Plant genes with central functions in these mutualistic interactions have been identified by positional cloning and gene tagging. With progress in Lotus japonicus genome sequencing, which was recently initiated by Japanese researchers, comparative genomics will contribute to our understanding of symbiosis, pathogenesis and the evolution of plant genomes.  相似文献   

3.
Photobacterium comprises several species in Vibrionaceae, a large family of Gram-negative, facultatively aerobic, bacteria that commonly associate with marine animals. Members of the genus are widely distributed in the marine environment and occur in seawater, surfaces, and intestines of marine animals, marine sediments and saline lake water, and light organs of fish. Seven Photobacterium species are luminous via the activity of the lux genes, luxCDABEG. Much recent progress has been made on the phylogeny, genomics, and symbiosis of Photobacterium. Phylogenetic analysis demonstrates a robust separation between Photobacterium and its close relatives, Aliivibrio and Vibrio, and reveals the presence of two well-supported clades. Clade 1 contains luminous and symbiotic species and one species with no luminous members, and Clade 2 contains mostly nonluminous species. The genomes of Photobacterium are similar in size, structure, and organization to other members of Vibrionaceae, with two chromosomes of unequal size and multiple rrn operons. Many species of marine fish form bioluminescent symbioses with three Photobacterium species: Photobacterium kishitanii, Photobacterium leiognathi, and Photobacterium mandapamensis. These associations are highly, but not strictly species specific, and they do not exhibit symbiont-host codivergence. Environmental congruence instead of host selection might explain the patterns of symbiont-host affiliation observed from nature.  相似文献   

4.
Thirty years after Margulis revived the endosymbiosis theory for the origin of mitochondria and chloroplasts, two novel symbiosis hypotheses for the origin of eukaryotes have been put forward. Both propose that eukaryotes arose through metabolic symbiosis (syntrophy) between eubacteria and methanogenic Archaea. They also propose that this was mediated by interspecies hydrogen transfer and that, initially, mitochondria were anaerobic. These hypotheses explain the mosaic character of eukaryotes (i.e. an archaeal-like genetic machinery and a eubacterial-like metabolism), as well as distinct eukaryotic characteristics (which are proposed to be products of symbiosis). Combined data from comparative genomics, microbial ecology and the fossil record should help to test their validity.  相似文献   

5.
Metabolic symbiosis and the birth of the plant kingdom   总被引:2,自引:0,他引:2  
Eukaryotic cells are composed of a variety of membrane-bound organelles that are thought to derive from symbiotic associations involving bacteria, archaea, or other eukaryotes. In addition to acquiring the plastid, all Archaeplastida and some of their endosymbiotic derivatives can be distinguished from other organisms by the fact that they accumulate starch, a semicrystalline-storage polysaccharide distantly related to glycogen and never found elsewhere. We now provide the first evidence for the existence of starch in a particular species of single-cell diazotrophic cyanobacterium. We provide evidence for the existence in the eukaryotic host cell at the time of primary endosymbiosis of an uridine diphosphoglucose (UDP-glucose)-based pathway similar to that characterized in amoebas. Because of the monophyletic origin of plants, we can define the genetic makeup of the Archaeplastida ancestor with respect to storage polysaccharide metabolism. The most likely enzyme-partitioning scenario between the plastid's ancestor and its eukaryotic host immediately suggests the precise nature of the ancient metabolic symbiotic relationship. The latter consisted in the export of adenosine diphosphoglucose (ADP-glucose) from the cyanobiont in exchange for the import of reduced nitrogen from the host. We further speculate that the monophyletic origin of plastids may lie in an organism with close relatedness to present-day group V cyanobacteria.  相似文献   

6.
Genomics is changing the landscape of modern biology. The impact is far-reaching because it provides both the most economical means of acquiring large amounts of information and because it has forced the creation of new technologies to exploit this information. Five of the six genomes published in the year from August 1998 to August 1999 were human pathogens, all of which are highly host-adapted. Four of these are obligate intracellular pathogens and the study of these genomes is providing novel insights into the intricacies of pathogen-host interactions and co-evolution. These genomes are also significant because they mark the beginning of an important trend in the sequencing of closely related genomes, including the sequencing of more than one strain from a single pathogenic species. As comparative genomics truly comes of age, the ability to compare the genomes of pathogenic and non-pathogenic organisms will hopefully provide insight into what makes certain bacterial strains and species pathogens.  相似文献   

7.
8.
1. Parthenogenetic adults of the sycamore aphid Drepanosiphum platanoidis exhibited reproductive diapause for 4–6 weeks in the summer. 2. The diapausing aphids had small gonads (accounting for just 13% of the total aphid protein content) bearing small (< 0.5 mm long) and developmentally immature embryos. There was no evidence of embryo resorption. 3. The diapausing aphids had significantly depressed essential amino acid content and elevated glutamine content, relative to reproductively active D. platanoidis. 4. The reproductive characteristics and amino acid titres of the diapausing aphids resemble those of aphids lacking functional symbiotic bacteria. Uncoupling of maternal and embryo growth and suppression of bacterial function are proposed as key elements in the diapause of D. platanoidis.  相似文献   

9.
The consortium 'Chlorochromatium aggregatum' currently represents the most highly developed interspecific association between prokaryotes. It consists of green sulfur bacteria, so-called epibionts, which surround a central, motile, chemotrophic bacterium. Four putative symbiosis genes of the epibiont were recovered by suppression subtractive hybridization and bioinformatics approaches. These genes are transcribed constitutively and do not occur in the free-living relatives of the epibiont. The haemagglutinin-like putative gene products of open reading frames (ORFs) Cag0614 and Cag0616 are unusually large and contain repetitive regions and RGD tripeptides. Cag0616 harbours two betagamma-crystalline Greek key motifs. Cag1920 codes for a putative haemolysin whereas the gene product of Cag1919 is a putative RTX-like protein. Based on detailed analyses of Cag1919, the C-terminal amino acid sequence comprises six repetitions of the motif GGXGXD predicted to form a Ca(2+)-binding beta roll. Intact 'C. aggregatum' consortia disaggregated upon the addition of EGTA or pyrophosphate, but stayed intact in the presence of various lectine-binding sugars or proteolytic enzymes. Unlike other RTX toxins, a gene product of Cag1919 could not be detected by (45)Ca(2+) autoradiography, indicating a low abundance of the corresponding protein in the cells. The RTX-type C-terminus coded by Cag1919 exhibited a significant similarity to RTX modules of various proteobacterial proteins, suggesting that this putative symbiosis gene has been acquired via horizontal gene transfer from a proteobacterium.  相似文献   

10.
In the last few years, the emergence of complete genome sequences has had profound effects on all fields of biology. While the existence of these genome sequences has served to facilitate experimental work, it has also highlighted the gaps in our knowledge of bacterial metabolism. Our current knowledge of metabolism is primarily the result of data accumulated from decades of study by biochemists and geneticists. In general these studies focused on discrete pathways and their regulation. The technical innovations of the last decade, culminating with the sequencing of complete genomes, provide us with the ability to address the next frontier in physiology, metabolic integration. Herein we describe current approaches that can be used to complement classic genetic approaches and further our understanding of both novel metabolic functions and metabolic integration in microorganisms.  相似文献   

11.
12.
Whiteflies possess bacterial symbionts Candidatus Portiera aleyrodidium that are housed in specialized cells called bacteriocytes and are faithfully transmitted via the ovary to insect offspring. In one whitefly species studied previously, Bemisia tabaci MEAM1, transmission is mediated by somatic inheritance of bacteriocytes, with a single bacteriocyte transferred to each oocyte and persisting through embryogenesis to the next generation. Here, we investigate the mode of bacteriocyte transmission in two whitefly species, B. tabaci MED, the sister species of MEAM1, and the phylogenetically distant species Trialeurodes vaporariorum. Microsatellite analysis supported by microscopical studies demonstrates that B. tabaci MED bacteriocytes are genetically different from other somatic cells and persist through embryogenesis, as for MEAM1, but T. vaporariorum bacteriocytes are genetically identical to other somatic cells of the insect, likely mediated by the degradation of maternal bacteriocytes in the embryo. These two alternative modes of transmission provide a first demonstration among insect symbioses that the cellular processes underlying vertical transmission of bacterial symbionts can diversify among related host species associated with a single lineage of symbiotic bacteria.  相似文献   

13.
Many bacteria form intimate associations with plants. Despite the agricultural and biotechnological significance of these bacteria, no whole genome sequences have yet been described. Plant-associated bacteria form a phylogenetically diverse group, with representative species from many major taxons. Sequence information from genomes of closely related bacteria, in combination with technological developments in the field of functional genomics, provides new opportunities for determining the origin and evolution of traits that contribute to bacterial fitness and interactions with plant hosts.  相似文献   

14.
A comparative genomics analysis revealed 702 genes present in the bacterial Gram-negative core gene set (92 species analyzed) and 959 genes in the Gram-positive core gene set (93 species analyzed). Mycoplasma genitalium, which has the smallest known genome (517 genes) of a non-symbiont, was used in a three-way reciprocal analysis with the Gram-negative core genes and the Gram-positive core genes, and 151 common bacterial core genes were found. Of these 151 core genes, 39 were putative genes encoding the 30S and 50S ribosomal subunits, whilst among recognized cell division genes, only one gene, the major ftsZ, was present. In addition, 86 reciprocal matches were identified between the 151 common bacterial genes and a previously determined 2,723 common eukaryotic core gene set. An analysis was also done to optimize the threshold bit score used to declare that genes were homologous, and a bit score cutoff of 40 was selected.  相似文献   

15.
Lactic acid bacteria display a relatively simple and well described metabolism where the sugar source is converted mainly to lactic acid. Here we will shortly describe metabolic engineering strategies that led to the efficient re-routing of the lactococcal pyruvate metabolism to end-products other than lactic acid, including diacetyl and alanine. Moreover, we will review current metabolic engineering approaches that aim at increasing the flux through complex biosynthetic pathways, leading to exopolysaccharides and folic acid. Finally, the (future) impact of the developments in the area of genomics and corresponding high-throughput technologies will be discussed.  相似文献   

16.
Among plant-microbe interactions, root nodule symbiosis is one of the most important beneficial interactions providing legume plants with nitrogenous compounds. Over the past years a number of genes required for root nodule symbiosis has been identified but most recently great advances have been made to dissect signalling pathways and molecular interactions triggered by a set of receptor-like kinases. Genetic and biochemical approaches have not only provided evidence for the cross talk between bacterial infection of the host plant and organogenesis of a root nodule but also gained insights into dynamic regulation processes underlying successful infection events. Here, we summarise recent progress in the understanding of molecular mechanisms that regulate and trigger cellular signalling cascades during this mutualistic interaction.  相似文献   

17.
In recent years, various families of small non-coding RNAs (sRNAs) have been discovered by experimental and computational approaches, both in bacterial and eukaryotic genomes. Although most of them await elucidation of their function, it has been reported that some play important roles in gene regulation. Here we carried out comparative genomics analysis of possible sRNAs that are computationally identified in 30 bacterial genomes from gamma- and alpha-proteobacteria and Deinococcus radiodurans. Identified sRNAs are clustered by a complete-linkage clustering method to see conservation among the organisms. On average, sRNAs are found in approximately 30% of intergenic regions of each genome sequence. Of these, 25.7% are conserved among three or more organisms. Approximately 60% of the conserved sRNAs do not locate in orthologous intergenic regions, implying that sRNAs may be shuffled their positions in genomes. The current study implies that sRNAs may be involved in a more extensive range of functions in bacteria.  相似文献   

18.
19.
Impact of a parasitoid on the bacterial symbiosis of its aphid host   总被引:2,自引:0,他引:2  
Embryo production in aphids is absolutely dependent on the function of symbiotic bacteria, mainly Buchnera, and the growth and development of koinobiont parasitoids in aphids requires the diversion of nutrients from aphid embryo production to the parasitoid. The implication that the bacterial symbiosis may be promoted in parasitized aphids to support the growing parasitoid was explored by analysis of the number and biomass of mycetocytes, and the aphid cells bearing Buchnera, in the pea aphid Acyrthosiphon pisum Harris (Hemiptera: Aphididae) parasitized by the wasp Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids hosting a young larval parasitoid bore more mycetocytes of greater total biomass, and embryos of lower biomass than unparasitized aphids. Furthermore, one of the three aphid clones tested, which limited teratocyte growth (giant cells of parasitoid origin having a trophic role), bore smaller mycetocytes and larger embryos, than one or both of the two aphid clones with greater susceptibility to the parasitoid. These data suggest that susceptibility of the aphid‐Buchnera symbiosis to parasitoid‐mediated manipulation may, directly or indirectly, contribute to aphid susceptibility to parasitoid exploitation.  相似文献   

20.
Immense amounts of genetic information are contained within microbial genomes. As the number of completely sequenced microbial genomes is increasing, functional and comparative genomic techniques will be employed for sequence analysis and gene characterization. Sequence comparison and expression profiling by DNA microarrays can determine phylogenetic relationships and identify genes while bacterial artificial chromosomes (BACs) allow the study of entire biochemical pathways and permit the expression of bacterial genes in a foreign host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号