首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stylonychia mytilus cells grown at 23 degrees C exhibit an immediate arrest at G1 and S stages in the cell cycle when subjected to a heat shock of 1 h at 35 degrees C. The duration of arrest was seen to be dependent on the stage at which heat shock was given. It varied from 3 to 7 h and was synchronously accompanied by the delay in the completion of cell cycle. G2 and the early dividing stage D1 were found to be even more sensitive to heat shock than G1 and S phases. Cells divide normally when heat shock was given at the late dividing stage D2. However, the G1 stage of progeny cells was prolonged to 30 h from normal 5.5 h. These observations have been compiled from the cytological studies of normal and heat-shocked Stylonychia mytilus cells at different stages of cell cycle.  相似文献   

2.
This study evaluated histamine release from cells at different stages of the cell cycle. Cells from the cloned rat basophilic leukemia subline (RBL-2H3) were fractionated by counterflow elutriation according to size and density. The smallest cells were predominantly in the G1 phase of the cell cycle. These cells contained the least histamine and after IgE-mediated triggering released the lowest fraction of their total histamine. In contrast cells in the S, G2, and M stages were larger, contained more histamine and released more of their histamine after activation. When G1 stage cells were recultured, there was an increase in cell size, in histamine content and histamine release. Therefore, there is heterogeneity in the capacity of cells for IgE-mediated triggering at different stages in the cell cycle, with optimal release from the more mature cells.  相似文献   

3.
A study was made of the dose dependence of the chromosome aberration frequency in human lymphocytes exposed to 60Co-gamma radiation and neutrons (mean energy of 0.85 MeV) at the G0 stage and in different periods of the G1 and G1/S stages of the cycle. With gamma irradiation the dose dependence for cells at the G1 and G1/S stages was at a higher level than that for cells at the G0 stage, whereas the opposite picture was observed for cells exposed to neutron radiation. The difference was also noted in the time-response curves where gamma radiation increased and neutrons, on the contrary, decreased the aberration yield in the cells that passed from G0 to G1 stage. The experimental data obtained are attributed to activation of repair system at the G1 stage which is mainly conditioned by chromatin decondensation; the activating, that is, the functional factor influences the aberration induction with gamma irradiation, while the decondensation, that is, the structural factor, with neutron irradiation.  相似文献   

4.
5.
We examined the in vitro developmental potential of nonactivated and activated enucleated ova receiving cumulus cells at various stages of the cell cycle. Eleven to 29% of activated ova receiving donor cells stopped developing at the 8-cell stage but 21% to 50% of nonactivated ova receiving donor cells at either the G(0), G(1), G(2), or M phase, or cycling cells developed into blastocysts. One normal calf was born after transferring five blastocysts that had developed from ova receiving donor cells at the M phase. The present study demonstrated that direct exposure of donor chromosomes to nonactivated ovum cytoplasm is effective for somatic cell nucleus reprogramming, and activated ovum cytoplasm does not reprogram the nucleus.  相似文献   

6.
A study of X chromosome regulation during oogenesis in the mouse   总被引:4,自引:0,他引:4  
Mature oocytes of mammals, in contrast to somatic cells, have two active X chromosomes. This situation might arise through either of two possible mechanisms. The germ line might be differentiated from somatic cells prior to X inactivation. Alternatively, an X chromosome in germ cells would be reactivated after prior inactivation. This paper presents data compatible with reactivation of the X in germ cells. X-linked enzymes were compared in oocytes of XX and XO fetal mice. The activity of G6PD is similar in the two classes of cells at early meiotic stages, but an XXXO ratio of 2:1 is approached at later times; this suggests reactivation of the G6PD locus. For HPRT, a 2:1 ratio is observed at all meiotic stages. HPRT shows a large increase in enzyme activity during early meiosis, while G6PD does not. Synthesis of this enzyme at early meiotic stages probably accounts for differences between these data and those obtained for G6PD, and places the time of X reactivation at the entry to meiosis.  相似文献   

7.
Differentiation of HL-60 cells: cell volume and cell cycle changes   总被引:2,自引:0,他引:2  
HL-60 promyelocytic leukemic cells can differentiate into more mature myeloid cells with the addition of dimethylsulfoxide, butyric acid or retinoic acid and can differentiate into macrophages with the addition of phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA). After the addition of an inducer, the HL-60 cell volume shows a daily decrease while the cell number increases at a rate similar to the untreated control cells. Flow cytometry measurements show an increase in G1 cells and a decrease in S cells after day 1. Since the generation time is constant, the data suggest that the length of time spent in the different cell cycle stages has changed during differentiation. Within 3 hours after the addition of TPA to HL-60 cells, selective adhesion of G1 cells occurs. Smaller sized cells are recovered from the flask bottom and larger sized cells are recovered from the supernate. Flow cytometric analysis reveals a G1 and S block in cells obtained from both the supernatant and from the flask bottom. After 1 day of TPA incubation, there is preferential adhesion of G1 and G2 cells with the nonadherent cells being primarily in the S and G2 cell cycle stages and undergoing a cell cycle traverse.  相似文献   

8.
Granulosa cells at different stages of differentiation were collected from ovarian follicles and oviducts during the periovulatory period, and their nuclear DNA content was monitored by flow cytometry to establish their cell cycle characteristics (G0 + G1, S, G2 + M). The proportion of cells in the three phases of the cell cycle varied in characteristics patterns depending upon the time they were collected, before or following ovulation. Granulosa (cumulus) cells recovered from ovulated oocytes were mitotically inactive as shown by the large proportion of cells with a 2C amount of DNA and the absence of cells in S phase. The proportion of granulosa cells in G2 + M decreased when recovery from the oviducts was delayed. In contrast, granulosa (cumulus and/or mural) cells recovered from preovulatory follicles prior to luteinizing hormone (LH) exposure contained a considerable population of cells undergoing DNA synthesis, and a decreased proportion of cells with a 2C DNA content. Our findings indicate that granulosa cells undergo dynamic and characteristics changes in all cell cycle phases during the periovulatory period, within follicular and oviductal environments. Intrafollicular events appear to play a major role in controlling DNA synthesis, proliferation, and related cell cycle events in the granulosa cells. Flow cytometric techniques provide objective and detailed information on the cell cycle characteristics of granulosa cell populations at different stages of differentiation. Elucidation of the mechanisms regulating cell cycle parameters of granulosa cells and their physiological significance thus seems feasible.  相似文献   

9.
Chloride channel-3 (ClC-3) is suggested to be a component and/or a regulator of the volume-activated Cl(-) channel in the plasma membrane. However, ClC-3 is predominantly located inside cells and the role of intracellular ClC-3 in tumor growth is unknown. In this study, we found that the subcellular distribution of endogenous ClC-3 varied in a cell cycle-dependent manner in HeLa cells. During interphase, ClC-3 was distributed throughout the cell and it accumulated at various positions in different stages. In early G1, ClC-3 was mainly located in the nucleus. In middle G1, ClC-3 gathered around the nuclear periphery as a ring. In late G1, ClC-3 moved back into the nucleus, where it remained throughout S phase. In G2, ClC-3 was concentrated in the cytoplasm. When cells progressed from G2 to the prophase of mitosis, ClC-3 from the cytoplasm translocated into the nucleus. During metaphase and anaphase, ClC-3 was distributed throughout the cell except for around the chromosomes and was aggregated at the spindle poles and in between two chromosomes, respectively. ClC-3 was then again concentrated in the nucleus upon the progression from telophase to cytokinesis. These results reveal a cell cycle-dependent change of the subcellular distribution of ClC-3 and strongly suggest that ClC-3 has nucleocytoplasmic shuttling dynamics that may play key regulatory roles during different stages of the cell cycle in tumor cells.  相似文献   

10.
The human G gamma-globin and beta-globin genes are expressed in erythroid cells at different stages of human development, and previous studies have shown that the two cloned genes are also expressed in a differential stage-specific manner in transgenic mice. The G gamma-globin gene is expressed only in murine embryonic erythroid cells, while the beta-globin gene is active only at the fetal and adult stages. In this study, we analyzed transgenic mice carrying a series of hybrid genes in which different upstream, intragenic, or downstream sequences were contributed by the beta-globin or G gamma-globin gene. We found that hybrid 5'G gamma/3'beta globin genes containing G gamma-globin sequences upstream from the initiation codon were expressed in embryonic erythroid cells at levels similar to those of an intact G gamma-globin transgene. In contrast, beta-globin upstream sequences were insufficient for expression of 5'beta/3'G gamma hybrid globin genes or a beta-globin-metallothionein fusion gene in adult erythroid cells. However, beta-globin downstream sequences, including 212 base pairs of exon III and 1,900 base pairs of 3'-flanking DNA, were able to activate a 5'G gamma/3'beta hybrid globin gene in fetal and adult erythroid cells. These experiments suggest that positive regulatory elements upstream from the G gamma-globin and downstream from the beta-globin gene are involved in the differential expression of the two genes during development.  相似文献   

11.
Despite numerous studies on late embryogenesis abundant (LEA) proteins, their functions, roles, and localizations during developmental stages in arthropods remain unknown. LEA proteins protect crucial proteins against osmotic stress during the development and growth of various organisms. Thus, in this study, fluorescence in situ hybridization was used to determine the crucial regions protected against osmotic stress as well as the distinctive localization of group 3 (G3) LEA+ cells during brine shrimp development. Several cell types were found to synthesize G3 LEA RNA, including neurons, muscular cells, APH‐1+ cells, and renal cells. The G3 LEA+ neuronal cell bodies outside of the mushroom body projected their axonal bundles to the central body, but those inside the mushroom body projected their axonal bundles toward the deutocerebrum without innervating the central body. The cell bodies inside the mushroom body received axons of the G3 LEA+ sensory cells at the medial ventral cup of the nauplius eye. Several glands were found to synthesize G3 LEA RNA during the nauplius stages of brine shrimp, including the sinus, antennal I and II, salt, and three ectodermal glands. This study provides the first demonstration of the formation of G3 LEA+ sinus glands at the emergence stages of brine shrimp. These results suggest that G3 LEA protein is synthesized in several cell types. In particular, specific glands play crucial roles during the emergence and nauplius stages of brine shrimp.  相似文献   

12.
The ts 2 derivative of BALB/c-3T3 mouse fibroblasts is a cell division cycle (cdc) mutant. Upon expression of the heat-sensitive defect, ts 2 cells arrest late in G1 at, or very near the G1/S traverse. This conclusion derives from three kinds of experiment. In the first the cells were brought to different stages of the cell cycle by physiological manipulation, or with specific anti-metabolites. They were then released from the resulting blocks, and their subsequent cell-cycle progression, at the permissive- and non-permissive temperature (npt), was followed. The second experiment was an execution point analysis. In the third, premature chromosome condensation was performed between metaphase HeLa cells and temperature-blocked ts 2 cells. The resulting prematurely-condensed chromosomes were largely of the morphotype of very late G1 cells. The ts 2 cells are prevented from expressing their defect by temporary incubation at 38.5 degrees C in the G0, non-cycling state and by prior arrest in early S phase, imposed by hydroxyurea treatment. Such prevention is not allowed ts 2 cells incubated at the npt in the absence of isoleucine, a procedure which brings cells to mid-G1 arrest.  相似文献   

13.
DNA double-strand breaks (DSBs) are dangerous lesions that can lead to potentially oncogenic genomic rearrangements or cell death. The two major pathways for repair of DSBs are nonhomologous end joining (NHEJ) and homologous recombination (HR). NHEJ is an intrinsically error-prone pathway while HR results in accurate repair. To understand the origin of genomic instability in human cells it is important to know the contribution of each DSB repair pathway. Studies of rodent cells and human cancer cell lines have shown that the choice between NHEJ or HR pathways depends on cell cycle stage. Surprisingly, cell cycle regulation of DSB repair has not been examined in normal human cells with intact cell cycle checkpoints. Here we measured the efficiency NHEJ and HR at different cell cycle stages in hTERT-immortalized diploid human fibroblasts. We utilized cells with chromosomally-integrated fluorescent reporter cassettes, in which a unique DSB is introduced by a rare-cutting endonuclease. We show that NHEJ is active throughout the cell cycle, and its activity increases as cells progress from G1 to G2/M (G1 < S < G2/M). HR is nearly absentin G1, most active in the S phase, and declines in G2/M. Thus, inG2/M NHEJ is elevated, while HR is on decline. This is in contrastto a general belief that NHEJ is most active in G1, while HR isactive in S, G2 and M. The overall efficiency of NHEJ was higherthan HR at all cell cycle stages. We conclude that human somaticcells utilize error-prone NHEJ as the major DSB repair pathway atall cell cycle stages, while HR is used, primarily, in the S phase.  相似文献   

14.
A capillary electrophoresis (CE)-based technique is reported here to monitor differential RNA synthesis in individual Chinese hamster ovary cells at distinct stages of the cell proliferation cycle. Cell synchronization was achieved by the shake-off method, in which mitotic (M) cells were dislodged, and cells at G(1), S, and G(2) phases were harvested 2.5, 10, and 13 h, respectively, after synchronizing the mitotic cells. Thirty-two cells (eight from each phase) were analyzed by injecting each cell into the capillary, lysing it with dilute surfactant, separating the RNA by capillary electrophoresis, and detecting the peaks with laser-induced fluorescence. The results from single cells show that the total amount of RNA increased at each successive stage (from G(1) to M), while the relative synthetic rates of different RNA fractions varied with progression through the cycle. There was a threefold increase in the synthetic rate of total RNA from S to G(2), compared with G(1) to S. In addition, differential accumulation of specific RNA fractions was observed, with the low-molecular-mass fraction exhibiting a much higher synthetic rate from G(2) to M, relative to the rates of the larger ribosomal RNA (rRNA) fractions. Comparison of the large rRNA fractions with one another reveals that at S phase more 28S rRNA was accumulated than 18S rRNA, and at G(1) and M phases, the synthetic rate of 28S rRNA was slowed compared with that of 18S. Minimal sample preparation, combined with the separation power of CE and single-cell detection sensitivity of laser-induced fluorescence, results in a simple method for assessing differential accumulation of RNA from distinct individual cells.  相似文献   

15.
Inducibility of metallothionein throughout the cell cycle.   总被引:1,自引:0,他引:1  
Synchronized Chinese hamster cells were induced with ZnCl2 at multiple stages of the cell cycle and labeled with [35S]cysteine, and the 35S-labeled proteins were isolated and separated into metallothionein and nonmetallothionein fractions. Metallothionein was found to be inducible in all stages of the cell cycle and in G1-arrested cells.  相似文献   

16.
The technique of premature chromosome condensation (PCC) was adapted to human first-trimester chorionic villi cells to analyze the cell-cycle kinetics of interphase chromatin. Uncultured cells of the cytotrophoblast (CT) and the mesenchymal core (MC) were obtained by a two-step digestion. PCC was induced by fusion of the chorionic interphase cells with mitotic Chinese hamster ovary or HeLa cells. Cells showing PCC in G1 (classes 1-6), S, and G2 were found. To analyze further the proliferation stages of chorionic G1 interphases, the proliferation potential index (PPI) of 34 placentae recovered between the 8th and 12th week of gestation was determined. The mean PPI found in the CT and MC cells ranged from 18% to 73%, values similar to those described for intensely proliferating tissues. The highest mean PPI value (73%) was observed in CT cells from placentae recovered at the 9th week of gestation, indicating a high specific proliferative activity of CT cells at this developmental stage.  相似文献   

17.
The aim of this study was to analyze, using electron microscopy, the morphological alterations that progressively appear in the pancreas of rats with acute pancreatitis induced by bile-pancreatic obstruction over 48 h. In addition, in order to ascertain the capability of pancreas regeneration at different stages of pancreatitis, the distribution of pancreatic cells throughout the different phases of the cell cycle was also analyzed by flow cytometry using propidium iodide staining. Interstitial edema, macrophage infiltration, vacuolization, and dilatation of endoplasmic reticulum were observed from 1.5 h after obstruction onward. Interestingly, cell cycle studies showed an increased proportion of S-phase cells at early stages of pancreatitis (1.5 h after obstruction), which leads to a significant increase in cells in G2/M phase 12 h after pancreatic obstruction. Histological studies revealed severe alterations in pancreas of rats with obstruction maintained over 48 h which affects the nuclear structure. Intracellular disorganization, apoptosis, and focal necrosis were observed at this stage. Furthermore, flow-cytometric analysis of cell DNA contents showed a significant decrease in the proportion of S and G2/M cells and a significant increase in G0/G1 cells, suggesting an arrest of almost all cells in quiescent states. These results suggest that rat pancreas cells are able to recover during the first 12 h after pancreatic obstruction. However, the gland would lose its ability to regenerate if the obstruction was maintained for longer periods.  相似文献   

18.
Yu YS  Sun XS  Jiang HN  Han Y  Zhao CB  Tan JH 《Theriogenology》2003,59(5-6):1277-1289
The effect of serum starvation and olomoucine treatment on the cell cycle and apoptosis of goat skin fibroblasts cultured in vitro is reported in this paper. The cells were obtained from the ear of a female goat 1.5 years of age. Analysis of cell cycle distribution by fluorescence-activated cell sorting (FACS) showed that 3.4, 60.8 and 15.1% of normally cycling cells were at G1, G0 and S phase, respectively. Serum starvation for 1, 3 and 5 days arrested 70.1, 70.2 and 83.4% cells, respectively, at G0/G1 phase. Seventy-eight percent of confluent cells were at G0/G1 stage, but in contrast to the serum starved group, this high percentage of G0/G1 cells was mainly associated with G1 cells. Of cells not deprived of serum, 73.6% were arrested at G1/G0 when treated with 100 microM olomoucine for 9 h compared to 85.5% of cells that had been starved of serum for 2 days (co-inhibition) (P<0.01). After co-inhibition, 45% of cells entered S phase when re-cultured in normal medium for 5 h, indicating that the inhibition was reversible. Under normal culture conditions, 1.2% of cells underwent apoptosis. Serum starvation for 1, 2, 3, 5 and 10 days caused apoptosis in 1.7, 3.9, 4.5, 11.7 and 90.3% of cells, respectively. Treatment with 100 microM olomoucine for 9h did not increase the number of apoptotic cells significantly (1.9%, P>0.05). When cells were co-inhibited, 4.1% of cells underwent apoptosis. In conclusion, although serum withdrawal for 5 days or more effectively arrested cells at G0/G1 stages, it increased apoptosis of cells significantly. However, co-inhibition by serum withdrawal and olomoucine treatment was found to be an appropriate treatment to obtain more healthy G0/G1 cells based on the low percentage of apoptotic cells after treatment.  相似文献   

19.
H Park  R Davis    T S Wang 《Nucleic acids research》1995,23(21):4337-4344
The status of Schizosaccharomyces pombe (fission yeast) DNA polymerase alpha was investigated at different stages of the cell cycle. S.pombe DNA polymerase alpha is a phosphoprotein, with serine being the exclusive phosphoamino acid. By in vivo pulse labeling experiments DNA polymerase alpha was found to be phosphorylated to a 3-fold higher level in late S phase cells compared with cells in the G2 and M phases, but the steady-state level of phosphorylation did not vary significantly during the cell cycle. Tryptic phosphopeptide mapping demonstrated that the phosphorylation sites of DNA polymerase alpha from late S phase cells were not the same as that from G2/M phase cells. DNA polymerase alpha partially purified from G1/S cells had a different mobility in native gels from that from G2/M phase cells. The partially purified polymerase alpha from G1/S phase cells had a higher affinity for single-stranded DNA than that from G2/M phase cells. Despite the apparent differences in cell cycle-dependent phosphorylation, mobility in native gels and affinity for DNA, the in vitro enzymatic activity of the partially purified DNA polymerase alpha did not appear to vary during the cell cycle. The possible biological significance of these cell cycle-dependent characteristics of DNA polymerase alpha is discussed.  相似文献   

20.
Chubykin VL 《Genetika》2001,37(9):1233-1242
Homolog pairing, chromosome morphology, and chromosome disjunction in the first meiotic division were studied in the oocytes of c(3)G/c(3)G female Drosophila melanogaster at developmental stages 3-4 and 14. It was found that homologs were completely or partly paired in some cells (about 20% in either case). The lengths of chromosomes in +/+, +/c(3)G, and c(3)G/c(3)G cells were at a ratio of 1.0:1.6:2.2. The chromocenters of homozygous cells had an abnormal structure. There was no meiotic block in metaphase 1, and chromosomes only segregated equally in about 80% of anaphases of the first meiotic division. The data obtained correspond to the abnormal variants of the formation of the chromocenter in c(3)G/c(3)G females that could be predicted based on the two-ring structure of the chromocenter. The mechanism of the effect of the homo- and heterozygosity for the hypomorphic mutation c(3)G on the formation of the synaptonemal complex (SC) and crossing over frequency was suggested. In nod/nod homozygous females, asynapsis of pericentromeric regions of homologs was observed in the chromocenter. It was assumed that NOD kinezin is necessary at the last stages of pairing of the pericentromeric regions of homologs and formation of the coordinating bonds between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号