首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice endosperm UDP-glucose pyrophosphorylase (UGPase) cDNA clones were isolated by screening a lambda ZAP II library prepared from poly (A(+)) RNA of japonica rice (cv Sasanishiki) endosperm with a probe of potato UGPase cDNA. One cDNA clone, possessing about 1,700 nucleotides, contained the complete open reading frame of rice UGPase. At the nucleotide-sequence level, the UGPase cDNA of rice endosperm had high homology with the UGPase cDNA of barley endosperm (84%) and potato tuber (71%). The calculated molecular weight (50 kDa) agrees with the value determined by SDS-PAGE (51 kDa). At the amino-acid sequence level, rice UGPase has high homology with the UGPase of barley (92%) and potato (85%). The enzyme contained conserved sequence elements which are thought to be involved in substrate binding and catalytic activity. A Southern-blot analysis indicated that the gene existed as a single copy. Expression of the enzyme in rice endosperm examined by Northern-blot analysis was high at 10-15 days after heading.  相似文献   

2.
Multiple isoforms of UDP-glucose pyrophosphorylase in rice   总被引:2,自引:0,他引:2  
Uridine diphosphate (UDP)-glucose pyrophosphorylases (UGPases, EC 2.7.7.9) are key enzymes in plant carbohydrate metabolism and cell-wall biosynthesis, catalyzing the reversible production of glucose-1-phosphate and uridine triphosphate from UDP-glucose and pyrophosphate. In the study presented here, two-dimensional gel electrophoresis followed by peptide sequencing analysis using nanospray electrospray ionization tandem mass spectrometry showed that rice ( Oryza sativa L.) UGPase undergoes N-terminal acetylation, which may be a conserved modification of plant UGPases. We also obtained indications, using two-dimensional gel electrophoresis in combination with western blot analysis, that multiple isoforms of UGPase are present in rice in vivo and are regulated tissue-specifically. The rice genome contains two homologous UGPase genes, OsUgp1 and OsUgp2 . We present evidence that both OsUgp1 and OsUgp2 are ubiquitously expressed throughout rice development, and that OsUgp1 is expressed at much higher levels than OsUgp2 . In accordance with the gene expression patterns, the UGPase isoform derived from the OsUgp1 gene predominated in various rice tissues and exhibited qualitative variations (position shifts and presence/absence) between rice varieties B5 and Taichung native 1 (TN1). Our results demonstrate that these qualitative variations are attributable to a single amino acid substitution of Asp-462 in B5 by His in TN1, corresponding to the allelic difference in the OsUgp1 gene between B5 and TN1.  相似文献   

3.
4.
UDP-sugars are widely used as substrates in the synthesis of oligosaccharides catalyzed by glycosyltransferases. In the present work a metabolic engineering strategy aimed to direct the carbon flux towards UDP-glucose and UDP-galactose biosynthesis was successfully applied in Lactobacillus casei. The galU gene coding for UDP-glucose pyrophosphorylase (GalU) enzyme in L. casei BL23 was cloned under control of the inducible nisA promoter and it was shown to be functional by homologous overexpression. Notably, about an 80-fold increase in GalU activity resulted in approximately a 9-fold increase of UDP-glucose and a 4-fold increase of UDP-galactose. This suggested that the endogenous UDP-galactose 4-epimerase (GalE) activity, which inter-converts both UDP-sugars, is not sufficient to maintain the UDP-glucose/UDP-galactose ratio. The L. casei galE gene coding for GalE was cloned downstream of galU and the resulting plasmid was transformed in L. casei. The new recombinant strain showed about a 4-fold increase of GalE activity, however this increment did not affect that ratio, suggesting that GalE has higher affinity for UDP-galactose than for UDP-glucose. The L. casei strains constructed here that accumulate high intracellular levels of UDP-sugars would be adequate hosts for the production of oligosaccharides.  相似文献   

5.
UDP-glucose pyrophosphorylases (UGPase; EC 2.7.7.9) catalyze the conversion of UTP and glucose-1-phosphate to UDP-glucose and pyrophosphate and vice versa. Prokaryotic UGPases are distinct from their eukaryotic counterparts and are considered appropriate targets for the development of novel antibacterial agents since their product, UDP-glucose, is indispensable for the biosynthesis of virulence factors such as lipopolysaccharides and capsular polysaccharides. In this study, the crystal structures of UGPase from Helicobacter pylori (HpUGPase) were determined in apo- and UDP-glucose/Mg2+-bound forms at 2.9 Å and 2.3 Å resolutions, respectively. HpUGPase is a homotetramer and its active site is located in a deep pocket of each subunit. Magnesium ion is coordinated by Asp130, two oxygen atoms of phosphoryl groups, and three water molecules with octahedral geometry. Isothermal titration calorimetry analyses demonstrated that Mg2+ ion plays a key role in the enzymatic activity of UGPase by enhancing the binding of UGPase to UTP or UDP-glucose, suggesting that this reaction is catalyzed by an ordered sequential Bi Bi mechanism. Furthermore, the crystal structure explains the specificity for uracil bases. The current structural study combined with functional analyses provides essential information for understanding the reaction mechanism of bacterial UGPases, as well as a platform for the development of novel antibacterial agents.  相似文献   

6.
7.
The structure of the UDP-glucose pyrophosphorylase encoded by Arabidopsis thaliana gene At3g03250 has been solved to a nominal resolution of 1.86 Angstroms. In addition, the structure has been solved in the presence of the substrates/products UTP and UDP-glucose to nominal resolutions of 1.64 Angstroms and 1.85 Angstroms. The three structures revealed a catalytic domain similar to that of other nucleotidyl-glucose pyrophosphorylases with a carboxy-terminal beta-helix domain in a unique orientation. Conformational changes are observed between the native and substrate-bound complexes. The nucleotide-binding loop and the carboxy-terminal domain, including the suspected catalytically important Lys360, move in and out of the active site in a concerted fashion. TLS refinement was employed initially to model conformational heterogeneity in the UDP-glucose complex followed by the use of multiconformer refinement for the entire molecule. Normal mode analysis generated atomic displacement predictions in good agreement in magnitude and direction with the observed conformational changes and anisotropic displacement parameters generated by TLS refinement. The structures and the observed dynamic changes provide insight into the ordered mechanism of this enzyme and previously described oligomerization effects on catalytic activity.  相似文献   

8.
An optimized coupled enzyme assay for UDP-glucose pyrophosphorylase (EC 2.7.7.9) using UDP-glucose dehydrogenase (EC 1.1.1.22) is presented. This optimized assay was developed by a detailed investigation of the kinetics of the UDP-glucose dehydrogenase reaction. In addition the data provide a basis for the enzymatic synthesis of UDP-glucuronic acid. The results demonstrate that the two binding sites of the dehydrogenase differ since a different modulation of the enzyme activity and stability is observed after preincubation with UDP-glucose or NAD+ at various pH values. This is of general interest for the preparation of assay mixtures where UDP-glucose dehydrogenase is used as an auxiliary enzyme.  相似文献   

9.
UDP-glucose pyrophosphorylase (UGPase) is an important enzyme of synthesis of sucrose, cellulose, and several other polysaccharides in all plants. The protein is evolutionarily conserved among eukaryotes, but has little relation, aside from its catalytic reaction, to UGPases of prokaryotic origin. Using protein homology modeling strategy, 3D structures for barley, poplar, and Arabidopsis UGPases have been derived, based on recently published crystal structure of human UDP-N-acetylglucosamine pyrophosphorylase. The derived 3D structures correspond to a bowl-shaped protein with the active site at a central groove, and a C-terminal domain that includes a loop (I-loop) possibly involved in dimerization. Data on a plethora of earlier described UGPase mutants from a variety of eukaryotic organisms have been revisited, and we have, in most cases, verified the role of each mutation in enzyme catalysis/regulation/structural integrity. We have also found that one of two alternatively spliced forms of poplar UGPase has a very short I-loop, suggesting differences in oligomerization ability of the two isozymes. The derivation of the structural model for plant UGPase should serve as a useful blueprint for further function/structure studies on this protein.  相似文献   

10.
11.
The effects of inorganic phosphate (Pi) deficiency and ABA/ethylene status on expression of UDP-glucose pyrophosphorylase (UGPase) genes (Ugp), involved in sucrose/polysaccharide metabolism, were investigated. Both wild-type (wt), aba and abi mutants (ABA-deficient and -in-sensitive), etr, ein and eto (ethylene resistant and overproducing) grown on Pi-deficient and complete nutrient solution, as well as phol (Pi-deficient) mutants of Arabidopsis thaliana were used for experiments. Generally, Pi-deficiency conditions (including mannose feeding to decrease cytosolic Pi pool) resulted in an increase of Ugp expression in the leaves, under all experimental conditions. Mutant backgrounds reflecting differences in ABA or ethylene status/ sensitivity had no effect on the level of Ugp up-regulation by Pi-stress. Furthermore, feeding ABA to the leaves of wt and pho1 plants had no effect on Ugp expression, regardless of the sucrose status in the leaves. The data suggest that Pi deficiency leading to up-regulation of Ugp acts independently of ABA and ethylene status.  相似文献   

12.
UDP-glucose is the universal activated form of glucose, employed in all organisms for glucosyl transfer reactions and as precursor for various activated carbohydrates. In animal and fungal metabolism, UDP-glucose is required for utilization of galactose and for the synthesis of glycogen, the major carbohydrate storage polymer. The formation of UDP-glucose is catalyzed by UDP-glucose pyrophosphorylase (UGPase), which is highly conserved among eukaryotes. Here, we present the crystal structure of yeast UGPase, Ugp1p. Both in solution and in the crystal, Ugp1p forms homooctamers, which represent the enzymatically active form of the protein. Ugp1p subunits consist of three domains, with the active site presumably located in the central SpsA GnT I core (SGC) domain. The association in the octamer is mediated by contacts between left-handed beta-helices in the C-terminal domains, forming a toroidal solenoid structure in the core of the complex. The catalytic domains attached to this scaffold core do not directly contact each other, consistent with simple Michaelis-Menten kinetics found for Ugp1p. Conservation of hydrophobic residues at the subunit interfaces suggests that all fungal and animal homologs form this quarternary structure arrangement in contrast to monomeric plant UGPases, which have charged residues at these positions. Implications of this oligomeric arrangement for regulation of UGPase activity in fungi and animals are discussed.  相似文献   

13.
The effects of inorganic phosphate (Pi) status, light/dark and sucrose on expression of UDP-glucose pyrophosphorylase (UGPase) gene (Ugp), which is involved in sucrose/ polysaccharides metabolism, were investigated using Arabidopsis wild-type (wt) plants and mutants impaired in Pi and carbohydrate status. Generally, P-deficiency resulted in increased Ugp expression and enhanced UGPase activity and protein content, as found for wt plants grown on P-deficient and complete nutrient solution, as well as for pho1 (P-deficient) mutants. Ugp was highly expressed in darkened leaves of pho1, but not wt plants; daily light exposure enhanced Ugp expression both in wt and pho mutants. The pho1 and pho2 (Pi-accumulating) mutations had little or no effect on leaf contents of glucose and fructose, regardless of light/dark conditions, whereas pho1 plants had much higher levels of sucrose and starch in the dark than pho2 and wt plants. The Ugp was up-regulated when leaves were fed with sucrose in wt plants, but the expression in pho2 background was much less sensitive to sucrose supply than in wt and pho1 plants. Expression of Ugp in pgm1 and sex1 mutants (impaired in starch/sugar content) was not dependent on starch content, and not tightly correlated with soluble sugar status. Okadaic acid (OKA) effectively blocked the P-starvation and sucrose-dependent expression of Ugp in excised leaves, whereas staurosporine (STA) had only a small effect on both processes (especially in -P leaves), suggesting that P-starvation and sucrose effects on Ugp are transmitted by pathways that may share similar components with respect to their (in) sensitivity to OKA and STA. The results of this study suggest that Ugp expression is modulated by an interaction of signals derived from P-deficiency status, sucrose content and dark/light conditions, and that light/sucrose and P-deficiency may have additive effects on Ugp expression.  相似文献   

14.
UDP-glucose pyrophosphorylase (UGPase) is an enzyme involved in the biosynthesis of UDP-D-galactose, a subunit of agar in red seaweeds. The relationship between agar content and expression levels of the UGPase encoding gene (glugp) was studied in thalli under different treatment conditions using a quantitative real-time PCR-based method (qPCR). Moreover, this qPCR method for the measurement of glugp expression was also applied to commercial varieties of Gracilariopsis lemaneiformis, a red macroalga, in order to examine its reliability on material obtained from field cultivation. Both the agar content and glugp gene expression in G. lemaneiformis grown under low salinity (17?‰) conditions for 1 week showed a slight increase in comparison with the control group (33?‰ salinity, natural salinity of seawater), but the difference was not statistically significant (P?>?0.05). However, when the culture time was extended to 2 weeks, the increase in both the agar yield and glugp expression became significant (P?glugp expression (P?>?0.05). Our results suggest that glugp gene expression and agar content are highly positively correlated and that the measurement of glugp expression, using only a small amount of thalli material, may be an efficient approach to evaluate agar content. In addition, both the agar content and glugp expression in cultivars 981, 07-2, and ZC differed significantly from those of MT-18. The findings of this study suggest that UGPase may be involved in agar biosynthesis and indicate that glugp gene expression could be a fairly reliable molecular marker to reflect the agar content of strains during breeding and selection of G. lemaneiformis.  相似文献   

15.
We have screened a pea genomic library using a cDNA probe derived from pea shoot RNA. From this screen, we isolated two closely related genes, designated as S2 and P4. An intriguing property of these two genes is the presence in their coding region of a repeated sequence that is conserved between them in sequence but not in the number of the repeating units. The predicted amino acid sequence suggests that these proteins could be exported and glycosylated. 3 S1 analysis reveals that one of the genes, S2, is expressed highly in stem, as expected from previous work. However, mRNA derived from the other gene, P4, is not detectable in stem tissue, but is present in tissue derived from pea pods. The 5 upstream sequence of S2 and P4 are 94% identical up to position -121, suggesting that sequences upstream of -121 are responsible for organ-specific expression of the two genes.  相似文献   

16.
Elastin is the extracellular matrix protein responsible for properties of extensibility and elastic recoil in large blood vessels, lung and skin of most vertebrates. Elastin is synthesized as a monomer, tropoelastin, but is rapidly transformed into its final polymeric form in the extracellular matrix. Until recently information on sequence and developmental expression of tropoelastins was limited to mammalian and avian species. We have recently identified and characterized two expressed tropoelastin genes in zebrafish. This was the first example of a species with multiple tropoelastin genes, raising the possibility of differential expression and function of these tropoelastins in elastic tissues of the zebrafish. Here we have investigated the temporal expression and tissue distribution of the two tropoelastin genes in developing and adult zebrafish. Expression was detected early in skeletal cartilage structures of the head, in the developing outflow tract of the heart, including the bulbus arteriosus and the ventral aorta, and in the wall of the swim bladder. While the temporal pattern of expression was similar for both genes, the upregulation of eln2 was much stronger than that of eln1. In general, both genes were expressed and their gene products deposited in most of the elastic tissues examined, with the notable exception of the bulbus arteriosus in which eln2 expression and its gene product was predominant. This finding may represent a sub-specialization of eln2 to provide the unique architecture of elastin and the specific mechanical properties required by this organ.  相似文献   

17.
A UDP-glucose pyrophosphorylase (UGPase) gene from Acetobacter xylinum BRC5 has been cloned, sequenced, and expressed in Escherichia coli. The gene consists of 867 nucleotides and encodes a polypeptide of 289 amino acid residues with a calculated molecular mass of 31,493 Da. The amino acid sequences of the enzyme showed an 85.8% identity to those of an enzyme from A. xilinum ATCC 23768. A polyhistidine-UGPase fusion enzyme was expressed and purified from the transformed E. coli. The enzyme showed a 35,620-Da single protein band on SDS/PAGE and an about 160,000-Da protein band on 8-16% pore-gradient polyacrylamide gel, indicating the enzyme may be a tetramer or pentamer composed of four or five identical subunits. Kinetic analysis of the enzyme showed a typical Michaelis-Menten substrate saturation pattern, from which Km and Vmax were calculated to be 3.22 mM and 175.4 micromol x min(-1) x mg(-1) for UDP-glucose and 0.24 mM and 69.4 micromol x min(-1) x mg(-1) for PPi, respectively, required Mg2+ for maximal activity, and was inhibited by free pyrophosphate. Computer-aided comparison of the Acetobacter enzyme sequence with those of other bacterial enzymes found significant similarities among them and predicted that Lys84 is a catalytically important residue. Lys84 in the enzyme, which was also conserved in other bacterial enzyme sequences, was replaced by arginine or leucine. The K84R mutant enzyme was successfully expressed in E. coli and showed enzyme activity (63% of the wild-type enzyme activity), but K84L was not isolated in stable form. These results suggest that Lys84 is significant in not only catalysis but also maintenance of the active structure.  相似文献   

18.
Uridine diphosphoglucose pyrophosphorylase (UDPGP) is a developmentally regulated enzyme in Dictyostelium discoideum, which is involved in trehalose, cellulose, and glycogen synthesis. Two independent UDPGP proteins are believed to be responsible for this activity. To determine the relative contributions of each protein, the genes encoding them were disrupted individually. Cells lacking the udpgp1 gene exhibit normal growth and development and make normal levels of cellulose. In agreement with these phenotypes, udpgp1(-) cells still have UDPGP activity, although at a reduced level. This supports the importance of the second UDPGP gene. This newly identified gene, ugpB, encodes an active UDPGP as determined by complementation in Escherichia coli. When this gene is disrupted, cells undergo aberrant differentiation and development ending with small, gnarled fruiting bodies. These cells also have decreased spore viability and decreased levels of glycogen, whose production requires UDPGP activity. These phenotypes suggest that UgpB constitutes the major UDPGP activity produced during development. Sequence analysis of the two UDPGP genes shows that UgpB has higher homology to other eukaryotic UDPGPs than does UDPGP1. This includes the presence of 5 conserved lysine residues. Udpgp1 only has 1 of these lysines.  相似文献   

19.
The UDP-glucose pyrophosphorylase of Streptococcus pneumoniae (GalUSpn) is absolutely required for the biosynthesis of capsular polysaccharide, the sine qua non virulence factor of pneumococcus. Since the eukaryotic enzymes are completely unrelated to their prokaryotic counterparts, we propose that the GalU enzyme is a critical target to fight the pneumococcal disease. A recombinant GalUSpn was overexpressed and purified. An enzymatic assay that is rapid, sensitive and easy to perform was developed. This assay was appropriate for screening chemical libraries for searching GalU inhibitors. This work represents a fundamental step in the exploration of novel antipneumococcal drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号