首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary An anaerobic hybrid reactor was used in the anaerobic treatment of an acidic petrochemical effluent. An organic loading rate of 20.04 kg COD/(m3d) at a HRT of 17 hours was obtained with a volatile fatty acid removal of 91%, and COD removal of 84%. A final reactor effluent containing 44 mg/l ammonia nitrogen and 12.3 mg/l PO4-P was produced.  相似文献   

2.
Qiao W  Peng C  Wang W  Zhang Z 《Bioresource technology》2011,102(21):9904-9911
The supernatant of hydrothermally treated sludge was treated by an upflow anaerobic sludge blanket (UASB) reactor for a 550-days running test. The hydrothermal parameter was 170 °C for 60 min. An mesophilic 8.6 L UASB reactor was seeded with floc sludge. The final organic loading rate (OLR) could reach 18 kg COD/m3 d. At the initial stage running for 189 days, the feed supernatant was diluted, and the OLR reached 11 kg COD/m3 d. After 218 days, the reactor achieved a high OLR, and the supernatant was pumped into the reactor without dilution. The influent COD fluctuated from 20,000 to 30,000 mg/L and the COD removal rate remained at approximately 70%. After 150 days, granular sludge was observed. The energy balance calculation show that heating 1.0 kg sludge needs 0.34 MJ of energy, whereas biogas energy from the supernatant of the heated sludge is 0.43 MJ.  相似文献   

3.
A 19.2 l multiplate anaerobic reactor (MPAR) was used to assess the impact of lime (Ca(OH)2) on the anaerobic treatment of whey permeate effluents. The amount of Ca(OH)2 required to maintain the pH of the whey permeate around 5 ranged between 3.0 and 4.5 kg/m3, which corresponded to concentration varying between 1.62 and 2.43 kg/m3. Soluble chemical oxygen demand (COD) removal efficiency exceeded 92% with a methane production rate of 6.7 m3/m3.d. at an organic loading rate (OLR) as high as 20 kg COD/m3.d. Extended operation of the MPAR resulted in the accumulation of significant amounts of calcium precipitates in the sludge bed which reached after three months of operation 0.19, 0.25 and 0.33 kg Ca2+ per kg of suspended solid (SS) in the lower, the middle and the upper compartment of the MPAR, respectively. The volatile suspended solids to suspended solids ratio (VSS/SS) decreased from 0.83 in inoculum to 0.37, 0.22 and 0.08 in the lower, the middle and the upper compartment of the MPAR, respectively. As a result, the soluble COD reduction and the methane production rate decreased to 31% and to 2.3 m3/m3.d. respectively, at OLR of 20 kg COD/m3.d.The authors thank Saputo Cheese Ltd. for providing the whey permeate effluents, Alain Corriveau for expert analytical assistance and Hervé Macarie for revising the article. NRC Paper No. 33907  相似文献   

4.
Summary A stepped-loading start-up regime utilising variable organic influent concentrations in the range 1650–11600 mgCOD1–1 was applied to an anaerobic fluidised bed bioreactor at 37°C. The reactor was sensitive to variable influent COD concentrations, but the stepped-loading aided rapid recovery from transient organic loading shocks. Variable effluent COD levels were produced but a COD removal efficiency of 76% was obtained at a final HRT of 0.5 d and an organic loading rate of 5.3 kg COD m–3 d–1.  相似文献   

5.
This is a scale-down study of a 500-m3 methane recovery test plant for anaerobic treatment of palm oil mill effluent (POME) where biomass washout has become one of the problems because of the continuous mixing of effluent during anaerobic treatment of POME. Therefore, in this study, anaerobic POME treatment using a scaled down 50-l bioreactor which mimicked the 500-m3 bioreactor was carried out to improve biogas production with and without biomass sedimentation. Three sets of experiments were conducted under different conditions in terms of biomass sedimentation applied to the system. The first experiment was operated under semi-continuous mode whereas the second and third experiments were operated based on mix and settle mode. As expected, biomass retention improved the anaerobic process as the POME treatment incorporated with mix and settle system were able to operate at an organic loading rate (OLR) of 3.5 and 6.0 kg COD/m3/day respectively, while the semi-continuous operated anaerobic treatment only achieved OLR of 3.0 kg COD/m3/day. The highest biogas and methane production rates achieved were 2.42 m3/m3 of reactor/day and 0.992 m3/m3 of reactor/day, respectively at OLR 6.0 kg COD/m3/day. The biomass or solids retention in the reactors was represented by the total solids measured in this study.  相似文献   

6.
Kim HW  Nam JY  Shin HS 《Bioresource technology》2011,102(15):7272-7279
Assessing contemporary anaerobic biotechnologies requires proofs on reliable performance in terms of renewable bioenergy recovery such as methane (CH4) production rate, CH4 yield while removing volatile solid (VS) effectively. This study, therefore, aims to evaluate temperature-phased anaerobic sequencing batch reactor (TPASBR) system that is a promising approach for the sustainable treatment of organic fraction of municipal solid wastes (OFMSW). TPASBR system is compared with a conventional system, mesophilic two-stage anaerobic sequencing batch reactor system, which differs in operating temperature of 1st-stage. Results demonstrate that TPASBR system can obtain 44% VS removal from co-substrate of sewage sludge and food waste while producing 1.2 m3CH4/m3system/d (0.2 m3CH4/kgVSadded) at organic loading rate of 6.1 gVS/L/d through the synergy of sequencing-batch operation, co-digestion, and temperature-phasing. Consequently, the rapid and balanced anaerobic metabolism at thermophilic stage makes TPASBR system to afford high organic loading rate showing superior performance on OFMSW stabilization.  相似文献   

7.
In order to improve the reliability of fixed-bed anaerobic reactors, the effects of a media and biomass control method were studied using bench scale equipment and mathematical simulation. Test results showed that the allowable volumetric loading rates (kg COD/m3·d) were directly proportional to the packed ratio of the media. Although a reactor completely filled with media (packed media ratio: 100%) could handle an 80% reduction in COD at a loading rate of 11 kg COD/m3·d, a packed reactor half-filled with media (packed media ratio: 50%) could not handle more than 5.5 kg COD/m3·d to achieve the same degree of reduction in COD. Simulation results were based on actual commercial plant operation and showed a practical correlation between COD removal and effective void volume ratio. To achieve a steady reduction of more than 80% in COD, the range of the void volume ratio was presumed to be 0.6 ∼ 0.85.  相似文献   

8.
The effect of starch addition on the microbial composition and the biological conversion was investigated using two upflow anaerobic sludge bracket (UASB) reactors treating methanolic wastewater: one reactor was operated with starch addition, and another reactor was operated without starch addition. Approximately 300 days of operation were performed at 30 kg COD/m3/d, and then, the organic load of the reactors was gradually increased to 120 kg COD/m3/d. Successful operation was achieved at 30 kg COD/m3/d in both reactors; however, the methanol-fed reactor did not perform well at 120 kg COD/m3/d while the methanol-starch-fed reactor did. The granule analysis revealed the granule developed further only in the methanol-starch-fed reactor. The results of the microbial community analysis revealed more Methanosaeta cells were present in the methanol-starch-fed reactor, suggesting the degradation of starch produced acetate as an intermediate, which stimulated the growth of Methanosaeta cells responsible for the extension of granules.  相似文献   

9.
Three anaerobic downflow stationary fixed-film (DSFF) reactors using multiple vertical clay channels of different heights (31, 92 and 183 cm) and treating bean blanching waste showed improved performance and mixing characteristics with increased reactor height. A start-up period of 100 days was necessary to achieve the best performance in terms of loading rate (up to 9.5 kg Chemical Oxygen Demand (COD) m?3 d?1) and methane production rate (up to 2.7 m3 m?3 d?1). During this period, differences in performance could only be related to the surface-to-volume ratio. At steady-state, mixing analysis indicated that the reactors deviated from the perfect-mixed pattern. Some dead space and shortcircuiting occurred. The amount of dead space due to biomass accumulation decreased as the reactor height increased (up to 44% for the shortest reactor). The COD removal efficiency was dependent on loading rate, decreasing from 90% at a loading rate of 1.0 kg COD m?3 d?1 to 75% at 7.0 kg COD m?3 d?1. However, the effect was more pronounced in the shortest reactor than in the tallest one. The improvement in mixing characteristics in the tallest reactor could be related to the higher liquid velocity inside channels which in turn permitted better support utilization and concomitant better COD removal. Data also suggest that it may be preferable to scale-up vertically rather than horizontally in order to maximize the liquid velocity in the channels.  相似文献   

10.
Summary Neutralizing requirements for the anaerobic treatment of an acidic petrochemical effluent in a downflow anaerobic fixed bed reactor were examined. Neutralization (pH 6.0 with NaOH) of the effluent prior to digestion resulted in a Na+ concentration of over 3 g/l which was detrimental. Decreasing the Na+ concentration and subsequent replacement of NaOH by a mixture of Ca(OH)2, NaOH and KOH resulted in an increase in reactor performance. The addition of different alkalines resulted in the best loading rates thusfar applied in the anaerobic treatment of this petrochemical effluent. During the final stages of this study, the effluent (pH 3.95) was treated at a loading rate of 10.37 kg COD/m3. d (HRT=1.35 d) with more than 94% fatty acid removal.  相似文献   

11.
The C:N ratio of the pharmaceutical wastewaters is usually suitable for a combination of the anaerobic pretreatment with the high COD removal and aerobic posttreatment with the efficient biological N removal. This kind of anaerobic-aerobic process was tested in semipilot scale by using a UASB reactor and an activated sludge system with a predenitrification (total volume 100 1). It was found that at a total HRT of 2.3 days an average of 97.5% of COD and 73.5% of total N was removed. The UASB reactor was operated at 30°C with a volumetric loading rate of 8.7 kg.m-3.d-1, the efficiency of COD removal was 92.2%. The processes, which take part in the biological removal of nitrogen, especially the nitrification, were running with lower rates than usually observed in aerobic treatment systems.Abbreviations AAO anaerobic anoxic oxic configuration - AOO anaerobic oxic oxic configuration - B V volumetric organic loading rate (kg COD.m-3. d-1) - dB x specific COD removal rate (mg COD. g-1 VSS. d-1) - DNR denitrification rate (mg N–NO3. g-1 VSS. h-1) - ECOD efficiency of COD removal (%) - HRT hydraulic retention time (d) - NR nitrification rate (mg N–NO3. g-1 VSS. h-1) - R recirculation ratio (%) - SBP specific biogas production (m3.kg-1 removed COD) - SRT solids retention time; sludge age (d) - SS suspended solids (g.1-1) - UASB upflow anaerobic sludge blanket reactor - VSS volatile suspended solids (g.1-1)  相似文献   

12.
Ozonation pretreatment was applied to palm oil mill effluent (POME) prior to anaerobic digestion using the anaerobic sequencing batch reactor (ASBR). Ozonation increased BOD/COD by 37.9% with a COD loss of only 3.3%. At organic loads of 6.48-12.96 kg COD/m3/d, feeding with non-ozonated POME caused a system failure. The ozonated POME gave significantly higher TCOD removal at loadings 6.52 and 9.04 kg COD/m3/d but failed to sustain the operation at loading 11.67 kg COD/m3/d. Effects of cycle time (CT) and hydraulic retention time (HRT) were determined using quadratic regression model. The generated response surface and contour plot showed that at this high load conditions (6.52-11.67 kg COD/m3/d), longer HRT and shorter CT gave the ASBR higher organic removal efficiency and methane yield. The model was able to satisfactorily describe the relationship of these two key operating parameters.  相似文献   

13.
Leachate from a municipal waste landfill site was treated using an activated sludge bioreactor, a fluidized bed biofilm reactor and a packed-bed column reactor (trickling filter). The leachate contained high organic matter (2.0–2.6 g/l of COD), high ammonium (300–700 mg/l) and sulphide (200–800 mg/l) concentrations, as well as low metal concentrations. The continuously operating reactors were employed to study the effects of TOC loading on the removal of TOC as well as on the nitrification and denitrification processes. Among the three biological treatment technologies investigated, the fluidized bed biofilm reactor was best with respect to removing ammonia and TOC. More than 90% of TOC and 99% of ammonia were removed when TOC loading was less than 0.5 kg/m3 × d. At a TOC loading of 4 kg/m3 × d, the removal of TOC and ammonia was 80% and 99%, respectively. In contrast, the treatment of leachate with the packed-bed reactor was successful in TOC removing only at TOC loading less than 0.3 kg/m3 × d (TOC elimination decreased from 86% at 0.06 kg/m3 × d to 60% at 0.3 kg/m3 × d). However, the reactor was active in nitrification even at a higher TOC loading (more than a 98% ammonia elimination at a TOC loading of 0.5 kg/m3 × d). Leachate was processed in the activated sludge reactor when TOC loading was less than 0.5 kg/m3 × d (with a removal of TOC and ammonia up to 83% and 99%, respectively). The activated sludge reactor was also effective in TOC removal at a higher TOC loading (e.g. a 74% TOC removal at a TOC loading of 1 kg/m3 × d), but for ammonia elimination, the activity continuously decreased (less than 60% ammonia removal at a TOC loading of 1 kg/m3 × d). Overloading in the activated sludge system was indicated by a high concentration of ammonia and nitrite in the effluent. In the packed bed reactor, overloading was characterized by a progressively incomplete TOC removal. No significant overloading was found in the fluidized bed reactor up to a TOC loading of 4 kg/m3 × d.  相似文献   

14.

Background

A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses.

Results

The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate.

Conclusions

The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production.Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production.
  相似文献   

15.
In recent years considerable effort has been made in the Netherlands toward the development of a more sophisticated anaerobic treatment process, suitable for treating low a strength wastes and for applications at liquid detention times of 3–4 hr. The efforts have resulted in new type of upflow anaerobic sludge blanket (UASB) process, which in recent 6 m3 pilot-plant experiments has shown to be capable of handling organic space loads of 15–40 kg chemical oxygen demand (COD)·m?3/day at 3–8 hr liquid detention times. In the first 200 m3 full-scale plant of the UASB concept, organic space loadings of up to 16 kg COD·m?3/day could be treated satisfactorily at a detention times of 4 hr, using sugar beet waste as feed. The main results obtained with the process in the laboratory as well as in 6 m3 pilot plant and 200 m3 full-scale experiments are presented and evaluated in this paper. Special attention is given to the main operating characteristics of the UASB reactor concept. Moreover, some preliminary results are presented of laboratory experiments concerning the use of the USB reactor concept for denitrification as well as for the acid formation step in anaerobic treatment. For both purposes the process looks feasible because very satisfactory results with respect to denitrification and acid formation can be achieved at very high hydraulic loads (12 day?1) and high organic loading rates, i.e., 20 kg COD·m?3/day in the denitrification and 60–80 kg COD·m?3/day in the acid formation experiments.  相似文献   

16.
《Anaerobe》2001,7(1):25-35
This paper describes the thermophilic anaerobic biodegradation of wine distillery wastewater (vinasses) in a laboratory fluidised bed reactor (AFB) with a porous support medium. The experimental protocol was defined to examine the effect of increasing organic loading rate on the efficiency of AFB and to report on its steady-state performance. Moreover, in order to evaluate treatment efficiency and to investigate fermentation kinetics in an AFB reactor, experimental data were used to estimate the ‘active biomass’ concentration using an autocatalytic kinetic model proposed in this paper, since viable biomass in AFB reactors is very difficult to measure experimentally. The AFB reactor was subjected to a program of steady-state operation over a range of hydraulic retention time (HRTs) of 2.5–0.37 days and organic loading rate (OLRs) up to 5.88 kgCOD/m3/day in order to evaluate its treatment capacity. The AFB reactor was initially operated with organic loading rate of 5.88 kgCOD/m3/day and HRT of 2.5 days. The chemical oxygen demand (COD) removal efficiency was found to be 96.5% in the reactor while the methane content of biogas produced in the digester reached 1.08 m3/m3digester/day. Over 94 days operating period, an OLR of 32 kgCOD/m3/day at a food-to-micro-organisms (F:M) ratio of 0.55 kgCOD/kgVSatt/day was achieved with 81.5% COD removal efficiency in the experimental AFB reactor. At this moment, the methane content of biogas produced in the digester reached 9.0 m3/m3digester/day. The proposed kinetic model is able to estimate kinetic constants of the biodegradation process: non-biodegradable substrate (Snb) and active adhered biomass concentration (Xa). The parameters of the model were obtained by the curve-fitting method to the proposed kinetic model using the COD as substrate of the anaerobic process and assuming a maximum specific μmax: 0.72 per day. The comparison of the measured concentration of volatile attached solids (VSatt) with the estimated ‘active’ biomass concentration indicated that extremely high ‘active biomass’ concentrations can be maintained in the system because biofilm thickness is limited by the liquid flow rate applied. This is due to the fact that the anaerobic fluidised bed system retains the growth support medium in suspension by drag forces exerted by upflowing wastewater, and the distribution of biomass holdup (in the form of a biofilm) is thus relatively uniform.  相似文献   

17.
Treatment of simulated acid azo dye (C.I. Acid black 210) wastewater was studied in periodic discontinuous batch mode operation employing sequencing batch reactor (SBR) with suspended growth configuration under anoxic–aerobic–anoxic microenvironment. The performance of the reactor was evaluated at two organic loading rates (0.56 kg COD/m3-day and 0.75 kg COD/m3-day) with a total cycle period of 24 h [fill phase: 30 min; react phase: 23 h; settle phase: 15 min; decant phase: 15 min] at room temperature. The performance of SBR was assessed by monitoring both COD and colour (OD-617 nm) concentrations. Periodic discontinuous batch mode operation feasibility for dye colour removal along with simultaneous substrate (COD) removal. The performance efficiency of the system was found to depend on the operating organic loading rate. Induced anoxic microenvironment during cycle operation and persistent anoxic microenvironment in the internal layer of suspended biomass may be probable reasons for dye mineralization/reduction. Rapid startup period and non-inhibited performance at higher loading rate are some of the advantages observed in the SBR operation.  相似文献   

18.
This paper describes the thermophilic (55 °C) anaerobic biodegradation of a mixed feed composed of vinasses and cutting oil wastewater (COW) in a laboratory upflow anaerobic fixed-film reactor (UAFF) with a porous support medium. The experimental protocol was defined to examine the effect of increasing the percentage of cutting oil wastewater in the feed.The UAFF reactor was initially started-up with vinasses as the only carbon source at an organic loading rate of 22.3 kg COD/m3 day and HRT of 0.8 days using porous particles as the support (SIRAN). The percentage of organic matter composed of vinasses was subsequently reduced while increasing the amount of cutting oil until 100% of cutting oil wastewater was added in the feed. Four stages were considered in the study (0, 42.4, 66.6 and 100% COW). HRT was adjusted in order to maintain an approximately constant organic loading rate applied to the system. Under theses conditions, the UAFF reactor was subjected to a programme of steady-state operation with hydraulic retention times (HRT) in the range 0.8–0.15 days and organic loading rates (OLR) between 22.3 and 14.9 kg COD/m3 day in order to evaluate the treatment capacity of the system.The COD removal efficiency was found to be 87% COD and 94.6% TOC in the reactor when treating vinasses at 22.3 kg COD/m3 day. The volumetric methane level produced in the digester reached 0.45 m3/m3 day. After an operating period of 120 days, the reactor was fed with cutting oil wastewater (COW) as the only source of carbon. An OLR of 16.7 kg COD/m3 day was achieved with 85.8% COD removal efficiency (58.1%TOC) in the experimental UAFF reactor. Under these conditions the volumetric methane produced in the digester was negligible.Hence, COW can be removed, if not degraded, by anaerobic treatment in the presence of a biodegradable co-substrate. Wine vinasses degradation creates conditions for non-biological removal of COW constituents. More studies are necessary in order to test the mechanisms of organic removal when biodegradation apparently had ceased. Also, toxicity assays of COW are necessary to evaluate the toxicity to the methanogenic community.  相似文献   

19.
Summary Brewery effluent with high organic content was treated anaerobically in a 1.17 m3 reactor over five months. At 26°C, and with a HRT of 13.3 hrs and a loading rate of 4.9 kg COD/m3d, the process reduced over 89% of COD and 92% of BOD5 from the brewery effluent; both reductions could be further improved by more effective removal of suspended solids.  相似文献   

20.
Ye J  Mu Y  Cheng X  Sun D 《Bioresource technology》2011,102(9):5498-5503
Treatment of a fresh leachate with high-strength organics and calcium from municipal solid waste (MSW) incineration plant by an up-flow anaerobic sludge blanket (UASB) reactor was investigated under mesophilic conditions, emphasizing the influence of organic loading rate (OLR). When the reactor was fed with the raw leachate (COD as high as 70,390-75,480 mg/L) at an OLR of 12.5 kg COD/(m3 d), up to ∼82.4% of COD was removed suggesting the feasibility of UASB process for treating fresh leachates from incineration plants. The ratio of volatile solids/total solids (VS/TS) of the anaerobic sludge in the UASB decreased significantly after a long-term operation due to the precipitation of calcium carbonate in the granules. Scanning electron microscopy (SEM) observation shows that Methanosaeta-like species were in abundance, accompanied by a variety of other species. The result was further confirmed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号