首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
A mathematical model of cell population growth introduced by J. L. Lebowitz and S. I. Rubinow is analyzed. Individual cells are distinguished by age and cell cycle length. The cell cycle length is viewed as an inherited property determined at birth. The density of the population satisfies a first order linear partial differential equation with initial and boundary conditions. The boundary condition models the process of cell division of mother cells and the inheritance of cycle length by daughter cells. The mathematical analysis of the model employs the theory of operator semigroups and the spectral theory of linear operators. It is proved that the solutions exhibit the property of asynchronous exponential growth.  相似文献   

3.
4.
Numerical methods are presented for simulating stochastic-in-time current pulses for an electrodiffusion model of the biological channel, with a fixed applied voltage across the channel. The electrodiffusion model consists of the parabolic advection-diffusion equation coupled either to Gauss' law or Poisson's equation, depending on the choice of boundary conditions. The TRBDF2 method is employed for the advection-diffusion equation. The rectangular wave shape of previously simulated traveling wave current pulses is preserved by the full set of partial differential equations for electrodiffusion.  相似文献   

5.
人口动力学中非线性发展方程解的爆破现象   总被引:1,自引:0,他引:1  
讨论描述人口发展规律的一类非线性发展方程具有第三类非线性边界条件的混合问题.在已知函数满足某些假设条件下,证明了其解在有限时间内爆破.  相似文献   

6.
The exact general solution is obtained to a linear second order ordinary differential equation which has quite general coefficients depending on an arbitrary function of the independent variable. From this, the exact fundamental solution is derived for the corresponding linear parabolic partial differential equation with coefficients depending on the single space coordinate. In a special case this latter equation reduces to one of the Fokker-Planck type. These coefficients are then generalised and the appropriate fundamental solution is obtained. Extensions are given to linear parabolic equations in two andn space dimensions. The paper provides a collection of basic examples which illustrate and develop the theory for the generation of the exact fundamental solutions. Reduction to, and the corresponding fundamental solutions of the Fokker-Planck equations is presented, where appropriate.  相似文献   

7.
We consider two numerical methods for the solution of a physiologically structured population (PSP) model with multiple life stages and discrete event reproduction. The model describes the dynamic behaviour of a predator-prey system consisting of rotifers predating on algae. The nitrate limited algal prey population is modelled unstructured and described by an ordinary differential equation (ODE). The formulation of the rotifer dynamics is based on a simple physiological model for their two life stages, the egg and the adult stage. An egg is produced when an energy buffer reaches a threshold value. The governing equations are coupled partial differential equations (PDE) with initial and boundary conditions. The population models together with the equation for the dynamics of the nutrient result in a chemostat model. Experimental data are used to estimate the model parameters. The results obtained with the explicit finite difference (FD) technique compare well with those of the Escalator Boxcar Train (EBT) method. This justifies the use of the fast FD method for the parameter estimation, a procedure which involves repeated solution of the model equations.  相似文献   

8.
本文利用微分不等式技巧研究了某一类Volterra型二阶积分微分差分方程非线性边值问题,在上下解存在的条件下,得到了解的存在性和唯一性定理.结果表明:这种技巧为其它边值问题的研究提出了崭新的思路.  相似文献   

9.
10.
A forward diffusion equation describing the evolution of the allele frequency spectrum is presented. The influx of mutations is accounted for by imposing a suitable boundary condition. For a Wright-Fisher diffusion with or without selection and varying population size, the boundary condition is lim(x downward arrow0)xf(x,t)=thetarho(t), where f(.,t) is the frequency spectrum of derived alleles at independent loci at time t and rho(t) is the relative population size at time t. When population size and selection intensity are independent of time, the forward equation is equivalent to the backwards diffusion usually used to derive the frequency spectrum, but this approach allows computation of the time dependence of the spectrum both before an equilibrium is attained and when population size and selection intensity vary with time. From the diffusion equation, a set of ordinary differential equations for the moments of f(.,t) is derived and the expected spectrum of a finite sample is expressed in terms of those moments. The use of the forward equation is illustrated by considering neutral and selected alleles in a highly simplified model of human history. For example, it is shown that approximately 30% of the expected total heterozygosity of neutral loci is attributable to mutations that arose since the onset of population growth in roughly the last 150,000 years.  相似文献   

11.
川西泡沙参种群地上生物量生长发育的研究   总被引:2,自引:1,他引:1  
对川西泡沙参种群地上各器官,茎、叶、花-果的生物量生长发育过程进行了系统的研究,结果表明:(1)泡沙参种群(总和)个体地上总生物量和各器官的生长发育在1-5年生生长缓慢,5-15年生随年龄增长,年生物量增幅较大,此后,生长速度开始下降,直到死亡年龄,泡沙参种群(总和)地上生物量生长发育过程可程可用方程y=a0 a1x a2x^2表示。(2)不同海拔区间的泡沙参种群个体地上总生物量和各器官生物量生长发育与种群(总和)地上总生物量生长发育的趋势基本一致。生物量生长在幼年和老年时较低,大约在15年生时达到高峰。(3)不同海拔区域综合生境条件与种群的地上生物量生长,生长模式,生物量最高峰出现的年龄区段等有着密切联系。在较为适生的环境条件下,外界干扰少,水热条件适宜,种群各器官的生物量和个体总生物量可达到较高水平,在低海拔地区,外界干扰严重,或高海拔地区,低温条件来酷,个体总生物量和各器官生物量均较低。  相似文献   

12.
A model for the growth of a size-structured cell population reproducing by fission into two identical daughters is formulated and analysed. The model takes the form of a linear first order partial differential equation (balance law) in which one term has a transformed argument. Using semigroup theory and compactness arguments we establish the existence of a stable size distribution under a certain condition on the growth rate of the individuals. An example shows that one cannot dispense with this condition.  相似文献   

13.
The cytoskeleton is a dynamic three-dimensional structure mainly located in the cytoplasm. It is involved in many cell functions such as mechanical signal transduction and maintenance of cell integrity. Among the three cytoskeletal components, intermediate filaments (the cytokeratin in epithelial cells) are the best candidates for this mechanical role. A model of the establishment of the cytokeratin network of an epithelial cell is proposed to study the dependence of its structural organization on extracellular mechanical environment. To implicitly describe the latter and its effects on the intracellular domain, we use mechanically regulated protein synthesis. Our model is a hybrid of a partial differential equation of parabolic type, governing the evolution of the concentration of cytokeratin, and a set of stochastic differential equations describing the dynamics of filaments. Each filament is described by a stochastic differential equation that reflects both the local interactions with the environment and the non-local interactions via the past history of the filament. A three-dimensional simulation model is derived from this mathematical model. This simulation model is then used to obtain examples of cytokeratin network architectures under given mechanical conditions, and to study the influence of several parameters.  相似文献   

14.
Part III attempts to develop a diffusion controlled model of caries in the intact enamel employing the kinetic results of the previous two parts. A model of the enamel as a granular bed with a diffusible organic matrix filling the interstices is considered. The basic equations of diffusion and simultaneous reaction are developed under the assumption that all the reactions are so rapid as compared with the diffusion rate, that they are in a quasi-equilibrium state. The resultant system of seven coupled, non-linear parabolic partial differential equations is of such complexity that only numerical solutions could be attempted. Stability restrictions inherent in the problem dictated the use of the DuFort-Frankel numerical solution for parabolic boundary problems. Numerical solutions giving the concentration of all reactants, the rate of mineral loss, and the enamel porosity were obtained for a variety of boundary conditions. It is found that departure from the equilibrium condition expressed in part II is necessary for the occurrence of an attack on the enamel. The rate and pattern of penetration is then determined primarily by the concentrations of undissociated buffer, and salts, together with the rate of diffusion in the surrounding medium. The possibility of a relatively intact surface layer persisting over a demineralized subsurface region due solely to the composition of the demineralizing medium is noted. Remineralization behavior in portions of the carious lesion occurs in the model under certain boundary conditions.  相似文献   

15.
16.
This paper gives a method for calculating the covariance of gene frequencies at any two points of a habitat which is a finite 1-dimensional interval. Selectively neutral genes are considered migrating according to a continuous parameter analogue of the stepping stone model. The method is to solve a partial differential equation for the covariance, together with boundary conditions of zero normal derivative (or reflecting barrier) type.  相似文献   

17.
含扩散和时滞的偏微分方程解的振动性   总被引:4,自引:1,他引:3  
研究一类含扩散和时滞的偏微分方程解的振动性,利用平均法,通过使用偏泛函微分方程上、下解思想和泛函微分方程振动性理论,获得了其解的非负性和关于正平衡态振动的充分条件.  相似文献   

18.
P. B. M. Walker (1954) and H. C. Longuet-Higgins (quoted by Walker), as well as O. Scherbaum and G. Rasch (1957), made the first attempts towards a mathematical study of the age distribution in a cellular population. It was H. Von Foerster (1959), however, who derived the complete differential equation for the age density function,n(t, a). His equation is obtained from an analysis of the infinitesimal changes occurring during a time elementdt in a group of cells with ages betweena anda+da. The behavior of the population is determined by a quantity λ which we call the loss function. In this paper a rigorous discussion of the Von Foerster equation is presented, and a solution is given for the special case when λ depends, ont (time) anda (age) but not on other variables (such asn itself). It is also shown that the age density,n(t, a), is completely known only if the birth rate,α(t), and the initial age distribution, β(a), are given as boundary conditions. In Section II the steady state solution and some plausible forms of intrinsic loss functions (depending ona only) are discussed in view of later applications. This work was performed under the auspices of the U.S. Atomic Energy Commission.  相似文献   

19.
The purpose of this note is to give a necessary and sufficient condition for the coexistence of positive solutions to a rather general type of elliptic predator-prey system of the Dirichlet problem on the bounded domain omega when omega is a subset of Rn is large. The result is that the partial differential equation system possesses positive coexistence if and only if the corresponding ordinary differential equation system has positive equilibrium, the positive constant states. This result thus yields an algebraically computable criterion for the positive coexistence of predator and prey in many biological models.  相似文献   

20.
Inert gas exchange in tissue has been almost exclusively modelled by using an ordinary differential equation. The mathematical model that is used to derive this ordinary differential equation assumes that the partial pressure of an inert gas (which is proportional to the content of that gas) is a function only of time. This mathematical model does not allow for spatial variations in inert gas partial pressure. This model is also dependent only on the ratio of blood flow to tissue volume, and so does not take account of the shape of the body compartment or of the density of the capillaries that supply blood to this tissue. The partial pressure of a given inert gas in mixed-venous blood flowing back to the lungs is calculated from this ordinary differential equation. In this study, we write down the partial differential equations that allow for spatial as well as temporal variations in inert gas partial pressure in tissue. We then solve these partial differential equations and compare them to the solution of the ordinary differential equations described above. It is found that the solution of the ordinary differential equation is very different from the solution of the partial differential equation, and so the ordinary differential equation should not be used if an accurate calculation of inert gas transport to tissue is required. Further, the solution of the PDE is dependent on the shape of the body compartment and on the density of the capillaries that supply blood to this tissue. As a result, techniques that are based on the ordinary differential equation to calculate the mixed-venous blood partial pressure may be in error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号