首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Taurine transport was investigated in brush border membrane vesicles isolated from renal tubules of the winter flounder (Pseudopleuronectes americanus). Taurine uptake by the vesicles was greater in the presence of NaCl as compared to uptake in KCl. The Na+-dependent taurine transport was electrogenic and demonstrated tracer replacement and inhibition by -alanine and HgCl2, indicating the presence of Na+-dependent, carrier-mediated taurine transport. In contrast to Na+-dependent taurine transport across the basolateral membrane, there was not a specific Cl dependency for transport in the brush border membrane. No evidence was obtained for Na+-independent carrier-mediated taurine transport. The possible involvement of the brush border Na+-dependent transport system in the net secretion of taurine from blood to tubular lumen in vivo (Schrock et al. 1982) is discussed.  相似文献   

2.
Summary Ion dependence and electrogenicity of taurine uptake were studied in rabbit renal outer cortical brush-border membrane vesicles isolated by differential precipitation. Na+-d-glucose cotransport was followed in parallel to monitor changes in the membrane potential. Concentrative taurine flux was dependent on a chemical and/or an electrical Na+ gradient (K+ diffusion potential) and could be completely inhibited by other -amino acids. It displayed a specific anion requirement (ClBrSCN>I>NO 3 ). At chemical Na+ equilibrium, Cl gradients, depending on their orientation, stimulated or inhibited taurine uptake more than could be attributed solely to electrical anion effects, although a Cl gradient alone could not energize an overshoot. Furthermore, taurine tracer exchange was significantly stimulated by Cl as well as Br. The Cl stoichiometry was found to be one, whereas taurine transport, in the presence of Cl, was sigmoidally related to the Na+ concentration, resulting in a coupling ratio of 2 to 3 Na+: 1 taurine. Upon Cl replacement with gluconate, taurine uptake showed a reduced potential sensitivity and was no longer detectably affected by the Na+ concentration (up to 150mm). These results suggest a 2 to 3 Na+:1 Cl:1 taurine cotransport mechanism driven mainly by the Na+ gradient, which is sensitive to the membrane potential due to a negatively charged empty carrier. Cl appears to stimulate taurine flux primarily by facilitating the formation of the translocated solute-carrier complex.  相似文献   

3.
It has been reported that estrogen receptor-positive MCF-7 cells express TauT, a Na+-dependent taurine transporter. However, there is a paucity of information relating to the characteristics of taurine transport in this human breast cancer cell line. Therefore, we have examined the characteristics and regulation of taurine uptake by MCF-7 cells. Taurine uptake by MCF-7 cells showed an absolute dependence upon extracellular Na+. Although taurine uptake was reduced in Cl- free medium a significant portion of taurine uptake persisted in the presence of NO3 -. Taurine uptake by MCF-7 cells was inhibited by extracellular β-alanine but not by L-alanine or L-leucine. 17β-estadiol increased taurine uptake by MCF-7 cells: the Vmax of influx was increased without affecting the Km. The effect of 17β-estradiol on taurine uptake by MCF-7 cells was dependent upon the presence of extracellular Na+. In contrast, 17β-estradiol had no significant effect on the kinetic parameters of taurine uptake by estrogen receptor-negative MDA-MB-231 cells. It appears that estrogen regulates taurine uptake by MCF-7 cells via TauT. In addition, Na+-dependent taurine uptake may not be strictly dependent upon extracellular Cl-.  相似文献   

4.
Summary Renal brush border membrane vesicles (bbmv) from the aglomerular toadfish (Opsanus tau), isolated by differential precipitation, were tested for their ability to actively translocate (i) taurine, known to be secreted by the kidney of several marine teleosts, and (ii)l-alanine,l-glutamic acid, andd-glucose, solutes that are normally reabsorbed in the filtering nephron. Vesicular taurine uptake displayed a Na+ dependence. Transport was greatest under conditions of an inward-directed Na+ gradient, but a significant stimulation by Na+ over K+ could also be observed in the absence of a salt gradient. At high extravesicular K+, the addition of valinomycin reduced taurine uptake. Na+-dependent3H-taurine flux was almost completely inhibited by non-labeled taurine (tracer replacement) or -alanine, but was unaffected byl-alanine. Replacement of medium chloride by SCN or NO 3 in the presence of Na+ resulted in significantly lower uptake rates under both anion gradient and anion equilibrium conditions, whereas Br could almost fully substitute for the stimulatory Cl action. These results indicate the presence of an electrogenic Na+-cotransport mechanism with specificity for -amino acids in the toadfish renal brush border. Whether the system under physiological conditions mediates reabsorption or secretion of taurine remains to be determined. Toadfish bbmv also translocatedl-alanine andl-glutamic acid in a Na+-dependent manner. Possible roles for these most likely reabsorptive transport systems in a non-filtering kidney are discussed.d-glucose uptake, however, appeared to occur via Na+-independent pathways, since it was not affected by phlorizin in the presence of Na+, or by Na+ replacement.Abbreviation bbmv brush border membrane vesicles  相似文献   

5.
The effects of ions on taurine and -alanine uptake were studied in astrocytes during cellular differentiation in primary cultures. The uptakes were strictly Na+-dependent and also inhibited by the omission of K+ and in the presence of ouabain suggesting that their transport is fuelled mainly by these cation gradients. Two sodium ions were associated in the transport of one taurine and -alanine molecule across cell membranes. A reduction in Cl concentration also markedly inhibited the uptake of both amino acids, indicating that this anion is of importance in the transport processes. The similar ion dependency profiles of taurine and -alanine uptake corroborate the assumption that the uptake of these amino acids in astrocytes is mediated by the same carrier. In Na+- and K+-free media both taurine and -alanine uptakes were reduced significantly more in 14-day-old or older than in 7-day-old cultures. No significant changes occurred in the coupling ratio between Na+ and taurine or -alanine as a function of spontaneous cellular differentiation or upon dBcAMP treatment. These results suggest that the uptake systems of these structurally related amino acids in astrocytes have reached a relatively high degree of functional maturity by two weeks in culture.  相似文献   

6.
Summary Tetrahymena pyriformis cultivated in the presence of 1 mM taurine prior to transfer of the cells to non-nutrient medium express an enhanced capacity for concentrative taurine uptake and for taurine diffusion compared to cells grown without added taurine. The unidirectional taurine influx in taurine-grown cells comprises a saturable component with Km -257M, Vmax = 21 n-moles · g dry wt–1 sd min–1, and a diffusion component with a diffusion constant of 0.20 ml · g dry wt–1 · min–1. At extracellular taurine concentrations <30M, 20% of the influx is via the saturable system and 80% is via the diffusion system. 19% of the influx in Na+-dependent, Cl-independent, and not inhibitable with structural analogues to taurine, suggesting that the transport system responsible for the saturable component in Tetrahymena is different from the Na+- and Cl-dependent taurine translocating system (the-system) described in vertebrate cells. The unidirectional taurine influx is reduced by 80% by 1mM DIDS (inhibitor of anion exchange and anion channels) and by 1 mM MK196 (indachrinone, inhibitor of anion channels) indicating that taurine diffusion inTetrahymena is via a channel, which is permanently active and which resembles the swelling-induced taurine channel seen in mammalian cells. Taurine influx is stimulated by the forskolin analogue 1,9-dideoxyforskolin and by arachidonic acid, and this stimulation is in both cases sensitive to DIDS and MK196.Abbreviations DDF dideoxyforskolin - DIDS 4,4-diisothiocyano-2,2-stilbene disulfonic acid - GABA gamma amino butyric acid - HEPES N(2-hydroxyethyl)piperazine-N-(2-ethane sulfonic acid) - MK196 indachrinone - MOPS 3-(N-morpholino)propane sulfonic acid - NMDG n-methyl-dglucamonium - OPA ortho-phtalaldehyde - PCA perchloric acid - TES N-tris(hydroxy methyl)-methyl-2-amino ethane sulfonic acid - TRIS tris(hydroxy methyl)amino methane  相似文献   

7.
Summary The Ehrlich tumor cell possesses and anion-cation cotransport system which operates as a bidirectional exchanger during the physiological steady state. This cotransport system, like that associated with the volume regulatory mechanism (i.e. coupled net uptake of Cl+Na+ and/or K+) is Cl-selective and furosemide-sensitive, suggesting the same mechanism operating in two different modes. Since Na+ has an important function in the volume regulatory response, its role in steady-state cotransport was investigated. In the absence of Na+, ouabain-insensitive K+ and DIDS-insensitive Cl transport (KCl cotransport) are low and equivalent to that found in 150mm Na+ medium containing furosemide. Increasing the [Na+] results in parallel increases in K+ and Cl transport. The maximum rate of each (18 to 20 meq/(kg dry wt)·min) is reached at about 20mm Na+ and is maintained up to 55mm. Thus, over the range 1 to 55mm Na+ the stoichiometry of KCl cotransport is 11. In contrast to K+ and Cl, furosemide-sensitive Na+ transport is undetectable until the [Na+] exceeds 50mm. From 50 to 150mm Na+, it progressively rises to 7 meq/(kg dry wt)·min, while K+ and Cl transport decrease to 9 and 16 meq/(kg dry wt)·min, respectively. Thus, at 150mm Na+ the stoichiometric relationship between Cl, Na+ and K+ is 211. These results are consistent with the proposal that the Cl-dependent cation cotransport system when operating during the steady state mediates the exchange of KCl for KCl or NaCl for NaCl; the relative proportion of each determined by the extracellular [Na+].  相似文献   

8.
Summary The Na+ requirement for active, electrogenic Cl absorption byAmphiuma small intestine was studied by tracer techniques and double-barreled Cl-sensitive microelectrodes. Addition of Cl to a Cl-free medium bathingin vitro intestinal segments produced a saturable (K m =5.4mm) increase in shortcircuit current (I sc) which was inhibitable by 1mm SITS. The selectivity sequence for the anion-evoked current was Cl=Br>SCN>NO 3 >F=I. Current evoked by Cl reached a maximum with increasing medium Na concentration (K m =12.4mm). Addition of Na+, as Na gluconate (10mm), to mucosal and serosal Na+-free media stimulated the Cl current and simultaneously increased the absorptive Cl flux (J ms Cl ) and net flux (J net Cl ) without changing the secretory Cl flux (J sm Cl ). Addition of Na+ only to the serosal fluid stimulatedJ ms Cl much more than Na+ addition only to the mucosal fluid in paired tissues. Serosal DIDS (1mm) blocked the stimulation. Serosal 10mm Tris gluconate or choline gluconate failed to stimulateJ ms Cl . Intracellular Cl activity (a Cl i ) in villus epithelial cells was above electrochemical equilibrium indicating active Cl uptake. Ouabain (1mm) eliminated Cl accumulation and reduced the mucosal membrane potential m over 2 to 3 hr. In contrast, SITS had no effect on Cl accumulation and hyperpolarized the mucosal membrane. Replacement of serosal Na+ with choline eliminated Cl accumulation while replacement of mucosal Na+ had no effect. In conclusion by two independent methods active electrogenic Cl absorption depends on serosal rather than mucosal Na+. It is concluded that Cl enters the cell via a primary (rheogenic) transport mechanism. At the serosal membrane the Na+ gradient most likely energizes H+ export and regulates mucosal Cl accumulation perhaps by influencing cell pH or HCO 3 concentration.  相似文献   

9.
The Cl/HCO 3 exchange mechanism usually postulated to occur in gastric mucosa cannot account for the Na+-dependent electrogenic serosal to mucosal Cl transport often observed. It was recently suggested that an additional Cl transport mechanism driven by the Na+ electrochemical potential gradient may be present on the serosal side of the tissue. To verify this, we have studied Cl transport in guinea pig gastric mucosa. Inhibiting the (Na+, K+) ATPase either by serosal addition of ouabain or by establishing K+-free mucosal and serosal conditions abolished net Cl transport. Depolarizing the cell membrane potential with triphenylmethylphosphonium (a lipid-soluble cation), and hence reducing both the Na+ and Cl electrochemical potential gradients, resulted in inhibition of net Cl flux. Reduction of short-circuit current on replacing Na+ by choline in the serosal bathing solution was shown to be due to inhibition of Cl transport. Serosal addition of diisothiocyanodisulfonic acid stilbene (an inhibitor of anion transport systems) abolished net Cl flux but not net Na+ flux. These results are compatible with the proposed model of a Cl/Na+ cotransport mechanism governing serosal Cl entry into the secreting cells. We suggest that the same mechanism may well facilitate both coupled Cl/Na+ entry and coupled HCO 3 /Na+ exit on the serosal side of the tissue.  相似文献   

10.
Summary The amino acid pool of MDCK cells was essentially constituted by alanine, glycine, glutamic acid, serine, taurine, lysine, -alanine and glutamine. Upon reductions in osmolarity, free amino acids were rapidly mobilized. In 50% hyposmotic solutions, the intracellular content of free amino acids decreased from 69 to 25mm. Glutamic acid, taurine and -alanine were the most sensitive to hyposmolarity, followed by glycine, alanine and serine, whereas isoleucine, phenylalanine and valine were only weakly reactive. The properties of this osmolarity-sensitive release of amino acids were examined using3H-taurine. Decreasing osmolarity to 85, 75 or 50% increased taurine efflux from 0.6% per min to 1.6, 3.5 and 5.06 per min, respectively. The time course of3H-taurine release closely follows that of the regulatory volume decrease in MDCK cells. Taurine release was unaffected by removal of Na+, Cl or Ca2+, or by treating cells with colchicine or cytochalasin. It was temperature dependent and decreased at low pH. Taurine release was unaffected by bumetanide (an inhibitor of the Na+/K+/2Cl carrier); it was inhibited 16 and 67 by TEA and quinidine (inhibitors of K+ conductances), unaffected by gadolinium or diphenylamine-2-carboxylate (inhibitors of Cl channels) and inhibited 50% by DIDS. The inhibitory effects of DIDS and quinidine were additive. Quinidine but not DIDS inhibited taurine uptake by MDCK cells.  相似文献   

11.
Summary The volume regulatory response of the Ehrlich ascites tumor was studied in KCl-depleted, Na+-enriched cells. Subsequent incubation in K+-containing NaCl medium results in the reaccumulation of K+, Cl, water and the extrusion of Na+. The establishment of the physiological steady state is due primarily to the activity of 2 transport systems. One is the Na/K pump (K M for K 0 + =3.5mm;J max=30.1 mEq/kg dry min), which in these experiments was coupled 1K+/1 Na+. The second is the Cl-dependent (Na++K+) cotransport system (K M for K 0 + =6.8mm;J max=20.8 mEq/kg dry min) which mediates, in addition to net ion uptake in the ratio of 1K+1Na+2Cl, the exchange of K i + for K 0 + . The net passive driving force on the cotransport system is initially inwardly directed but does not decrease to zero at the steady state. This raises the possibility of the involvement of an additional source of energy. Although cell volume increases concomitant with net ion uptake, this change does not appear to be a major factor regulating the activity of the cotransport system.  相似文献   

12.
Summary The bumetanide-sensitive uptake of Na+, K(Rb) and Cl has been measured at 21°C in ferrent red cells treated with (SITS+DIDS) to minimize anion flux via capnophorin (Band 3). During the time course of the influx experiments tracer uptake was a first-order rate process. At normal levels of external Na+ (150mm) the bumetanide-sensitive uptake of K+ was dependent on Cl and represented almost all of the K+ uptake, the residual flux demonstrating linear concentration dependence. The uptake of Na+ and Cl was only partially inhibited by bumetanide indicating that pathways other than (Na+K+Cl) cotransport participate in these fluxes. The diuretic-sensitive uptake of Na+ or Cl was, however, abolished by the removal of K+ or the complementary ion indicating that bumetanide-sensitive fluxes of Na+, K+ and Cl are closely coupled. At very low levels of [Na] o (<5mm) K+ influx demonstrated complex kinetics, and there was evidence of the unmasking of a bumetanide-sensitive Na+-independent K+ transport pathway. The stoichiometry of bumetanide-sensitive tracer uptake was 2Na1K3Cl both in cells suspended in a low and a high K+-containing medium. The bumetanide-sensitive flux was markedly reduced by ATP depletion. We conclude that a bumetanide-sensitive cotransport of (2Na1K3Cl) occurs as an electroneutral complex across the ferret red cell membrane.  相似文献   

13.
Volume-sensitive taurine transport in fish erythrocytes   总被引:5,自引:0,他引:5  
Summary Taurine plays an important role in cell volume regulation in both vertebrates and invertebrates. Erythrocytes from two euryhaline fish species, the eel (Anguilla japonica) and the starry flounder (Platichthys stellatus) were found to contain high intracellular concentrations of this amino acid ( 30 mmol per liter of cell water). Kinetic studies established that the cells possessed a saturable high-affinity Na+-dependent -amino-acid transport system which also required Cl for activity (apparentK m (taurine) 75 and 80 m;V max 0.85 and 0.29 mol/g Hb per hr for eel (20°C) and flounder cells (10°C), respectively. This -system operated with an apparent Na+/Cl/taurine coupling ratio of 211. A reduction in extracellular osmolarity, leading to an increase in cell volume, reversibly decreased the activity of the transporter. In contrast, low medium osmolarity stimulated the activity of a Na+-independent nonsaturable transport route selective for taurine, -amino-n-butyric acid and small neutral amino acids, producing a net efflux of taurine from the cells. Neither component of taurine transport was detected in human erythrocytes. It is suggested that these functionally distinct transport routes participate in the osmotic regulation of intracellular taurine levels and hence contribute to the homeostatic regulation of cell volume. Volume-induced increases in Na+-independent taurine transport activity were suppressed by noradrenaline and 8-bromoadenosine-3, 5-cyclic monophosphate, but unaffected by the anticalmodulin drug, pimozide.  相似文献   

14.
Summary Simultaneous measurements of net ion and water fluxes were made in the stripped intestine of the seawater eel, and the relationship between Na+, K+, Cl and water transport were examined in the presence of mucosal KCl and serosal NaCl Ringer (standard condition). When Cl was removed from both sides of the intestine, net K+ flux from mucosa to serosa was reduced, accompanied by complete blockage of water absorption. Since it has been shown that net Cl and water fluxes depend on K+ transport under the standard condition (Ando 1983), the interdependence of K+ and Cl transport suggests the existence of a coupled KCl transport system, while the parallelism between the net Cl and water fluxes suggests that water absorption is linked to the coupled KCl transport. The coupled KCl and water transport were inhibited by treatment with ouabain or with Na+-free Ringer solutions, suggesting the existence of a Na+-dependent KCl transport system and linkage of water absorption to the coupled Na+–K+–Cl transport. Since ouabain blocked the active Na+–K+–Cl transport almost completely, the permeability coefficients for K+ and Na+ through the paracellular shunt pathway were estimated as PK=0.076 and PNa=0.058 cm/h, and PCl was calculated as 0.005 cm/h. Although Na+-independent K+ and Cltt- fluxes were observed again in the present study, these fluxes were not inhibited by CN, ouabain or diuretics, and evoked even after blocking the Na+–K+–Cl transport completely with ouabain. These results indicate that the Na+-independent K+ and Cl fluxes are distinct from the active Na+–K+–Cl transport and are not themselves active.  相似文献   

15.
Summary Bicarbonate presence in the bathing media doubles Na+ and fluid transepithelial transport and in parallel significantly increases Na+ and Cl intracellular concentrations and contents, decreases K+ cell concentration without changing its amount, and causes a large cell swelling. Na+ and Cl lumen-to-cell influxes are significantly enhanced, Na+ more so than Cl. The stimulation does not raise any immediate change in luminal membrane potential and cannot be due to a HCO 3 -ATPase in the brush border. The stimulation goes together with a large increase in a Na+-dependent H+ secretion into the lumen. All of these data suggests that HCO 3 both activates Na+–Cl cotransport and H+–Na+ countertransport at the luminal barrier.Thiocyanate inhibits Na+ and fluid transepithelial transport without affecting H+ secretion and HCO 3 -dependent Na+ influx. It reduces Na+ and Cl concentrations and contents, increases the same parameters for K+, causes a cell shrinking, and abolishes the lumen-to-cell Cl influx. It enters the cell and is accumulated in the cytoplasm with a process which is Na+-dependent and HCO 3 -activated. Thus, SCN is likely to compete for the Cl site on the cotransport carrier and to be slowly transferred by the cotransport system itself.  相似文献   

16.
Summary Bidirectional transepithelial K+ flux measurements across high-resistance epithelial monolayers of MDCK cells grown upon millipore filters show no significant net K+ flux.Measurements of influx and efflux across the basal-lateral and apical cell membranes demonstrate that the apical membranes are effectively impermeable to K+.K+ influx across the basal-lateral cell membranes consists of an ouabain-sensitive component, an ouabain-insensitive component, an ouabain-insensitive but furosemide-sensitive component, and an ouabain-and furosemide-insensitive component.The action of furosemide upon K+ influx is independent of (Na+–K+)-pump inhibition. The furosemide-sensitive component is markedly dependent upon the medium K+, Na+ and Cl content. Acetate and nitrate are ineffective substitutes for Cl, whereas Br is partially effective. Partial Cl replacement by NO3 gives a roughly linear increase in the furosemide-sensitive component. Na+ replacement by choline abolishes the furosemide-sensitive component, whereas Li+ is a partially effective replacement. Partial Na+ replacement with choline gives an apparent affinity of 7mm Na, whereas variation of the external K+ content gives an affinity of the furosemide-sensitive component of 1.0mm.Furosemide inhibition is of high affinity (K 1/2=3 m). Piretanide, ethacrynic acid, and phloretin inhibit the same component of passive K+ influx as furosemide; amiloride, 4,-aminopyridine, and 2,4,6-triaminopyrimidine partially so. SITS was ineffective.Externally applied furosemide and Cl replacement by NO 3 inhibit K+ efflux across the basal-lateral membranes indicating that the furosemide-sensitive component consists primarily of KK exchange.  相似文献   

17.
Milk taurine plays a critical role in neonatal development. Taurine uptake in lactating sow mammary tissue has not been characterized previously. The kinetic properties, ion dependence and substrate specificity of taurine uptake were characterized in mammary tissue collected from lactating sows at slaughter. Tissue explants were incubated in an isosmotic physiologic buffer with [3H]taurine tracer to measure taurine uptake. Taurine uptake was dependent upon the presence of extracellular sodium and chloride ions, which is consistent with the co-transport of sodium and chloride with taurine. Uptake was not dependent upon ion exchange mechanisms or upon furosemide-sensitive ion co-transport. Taurine uptake was saturable and exhibited an apparent Km of 20 μM and a Vmax of 386 μmol/kg cell water/30 min. Substrate specificity studies indicated a strong interaction of β-amino acids with the taurine transport system. Taurine transport in lactating sow mammary tissue is therefore a high affinity, sodium-dependent mechanism specific for β-amino acids, and is analogous to sodium-dependent taurine uptake in other tissues. The high affinity and high specificity of the taurine uptake system allows for concentration of taurine within the mammary cell and is ultimately responsible for provision of taurine required for neonatal development.  相似文献   

18.
Summary Loop diuretic-sensitive (Na+,K+,Cl)-cotransport activity was found to be present in basolateral membrane vesicles of surface and crypt cells of rabbit distal colon epithelium. The presence of grandients of all three ions was essential for optimal transport activity (Na+,K+) gradien-driven36Cl fluxes weree half-maximally inhibited by 0.14 m bumetanide and 44 m furosimide. While86Rb uptake rates showed hyperbolic dependencies on Na+ and K+ concentrations with Hill coefficients of 0.8 and 0.9, respectively, uptakes were sigmoidally related to the Cl concentration, Hill coefficient 1.8, indicating a 1 Na+: 1 K+:2 Cl stoichiometry of ion transport.The interaction of putative (Na+, K+, Cl)-cotransport proteins with loop diuretics was studied from equilibrium-binding experiments using [3H]-bumetanide. The requirement for the simulataneous presence of Na+,K+, and Cl, saturability, reversibility, and specificity for diuretics suggest specific binding to the (Na+, K+, Cl)-cotransporter. [3H]-bumetanide recognizes a minimum of two classes of diuretic receptors sites. high-affinity (K D1=0.13 m;B max1 =6.4 pmol/mg of protein) and low-affinity (K D2=34 m;B max2=153 pmol/mg of protein) sites. The specific binding to the high-affinity receptor was found to be linearly competitive with Cl (K 1=60mm), whereas low-affinity sites seem to be unaffected by Cl. We have shown that only high-affinity [3H]-bumetanide binding correlates with transport inhibition raising questions on the physiological significance of diuretic receptor site heterogeneity observed in rabbit distal colon epithelium.  相似文献   

19.
Summary Sodium (22Na) transport was studied in a basolateral membrane vesicle preparation from rabbit parotid. Sodium uptake was markedly dependent on the presence of both K+ and Cl in the extravesicular medium, being reduced 5 times when K+ was replaced by a nonphysiologic cation and 10 times when Cl was replaced by a nonphysiologic anion. Sodium uptake was stimulated by gradients of either K+ or Cl (relative to nongradient conditions) and could be driven against a sodium concentration gradient by a KCl gradient. No effect of membrane potentials on KCl-dependent sodium flux could be detected, indicating that this is an electroneutral process. A KCl-dependent component of sodium flux could also be demonstrated under equuilibrium exchange conditions, indicating a direct effect of K+ and Cl on the sodium transport pathway. KCl-dependent sodium uptake exhibited a hyperbolic dependence on sodium concentration consistent with the existence of a single-transport system withK m =3.2mm at 80mm KCl and 23°C. Furosemide inhibited this transporter withK 0.5=2×10–4 m (23°C). When sodium uptake was measured as a function of potassium and chloride concentrations a hyperbolic dependence on [K] (Hill coefficient =1.31±0.07) were observed, consistent with a Na/K/Cl stoichiometry of 112. Taken together these data provide strong evidence for the electroneutral coupling of sodium and KCl movements in this preparation and strongly support the hypothesis that a Na+/K+/Cl cotransport system thought to be associated with transepithelial chloride and water movements in many exocrine glands is present in the parotid acinar basolateral membrane.  相似文献   

20.
The effects of spontaneous and evoked [3H]taurine release from a P2 fraction prepared from rat retinas were studied. The P2 fraction was preloaded with [3H]taurine under conditions of high-affinity uptake and then examined for [3H]taurine efflux utilizing superfusion techniques. Exposure of the P2 fraction to high K+ (56 mM) evoked a Ca2+-independent release of [3H]taurine. Li+ (56 mM) and veratridine (100 M) had significantly less effect (8–15% and 15–30%, respectively) on releasing [3H]taurine compared to the K+-evoked release. 4-Aminopyridine (1 mM) had no effect on the release of [3H]taurine. The spontaneous release of [3H]taurine was also Ca2+-independent. When Na+ was omitted from the incubation medium K+-evoked [3H]taurine release was inhibited by approximately 40% at the first 5 minute depolarization period but was not affected at a second subsequent 5 minute depolarization period. The spontaneous release of [3H]taurine was inhibited by 60% in the absence of Na+. Substitution of Br for Cl had no effect on the release of either spontaneous or K+-evoked [3H]taurine release. However, substitution of the Cl with acetate, isethionate, or gluconate decreased K+-evoked [3H]taurine release. Addition of taurine to the superfusion medium (homoexchange) resulted in no significant increase in [3H]taurine efflux. The taurine-transport inhibitor guanidinoethanesulfonic acid increased the spontaneous release of [3H]taurine by approximately 40%. These results suggest that the taurine release of [3H]taurine is not simply a reversal of the carrier-mediated uptake system. It also appears that taurine is not released from vesicles within the synaptosomes but does not rule out the possibility that taurine is a neurotransmitter. The data involving chloride substitution with permeant and impermeant anions support the concept that the major portion of [3H]taurine release is due to an osmoregulatory action of taurine while depolarization accounts for only a small portion of [3H]taurine release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号