首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of head-down tilt on respiration and diaphragmal and parasternal muscles activity was investigated in 11 healthy subjects. The short-time (30 min) head-down tilt posture (-30 degrees relatively horizont) increased the inspiratory time (P < 0.05), decreased breathing frequency (P < 0.05), inspiratory and expiratory flow rate (P < 0.05) and increased the airway resistance (P < 0.05) compared with values in vertical posture. There were no significant changes in tidal volume and minute ventilation. Constant values of tidal volume and minute ventilation during head-down tilt were provided by increasing in EMG activity of parasternal muscles more then twice. It was established that the contribution of chest wall inspiratory muscles increased while the diaphragm's contribution decreased during head-down spontaneous breathing. Maximal inspiratory effort (Muller's maneuver) during head-down tilt evoked the opposite EMG-activity pattern: the contribution of inspiratory thoracic muscles was decreased and diaphragm's EMG-activity was increased compared with vertical posture. These results suggest that coordinate modulations in inspiratory muscles activity allows to preserve the functional possibility of human inspiratory muscles during short-time head-down tilt.  相似文献   

2.
In nine anesthetized supine spontaneously breathing dogs, we compared moving average electromyograms (EMGs) of the costal diaphragm and the third parasternal intercostal muscles with their respective respiratory changes in length (measured by sonomicrometry). During resting O2 breathing the pattern of diaphragm and intercostal muscle inspiratory shortening paralleled the gradually incrementing pattern of their moving average EMGs. Progressive hypercapnia caused progressive increases in the amount and velocity of respiratory muscle inspiratory shortening. For both muscles there were linear relationships during the course of CO2 rebreathing between their peak moving average EMGs and total inspiratory shortening and between tidal volume and total inspiratory shortening. During single-breath airway occlusions, the electrical activity of both the diaphragm and intercostal muscles increased, but there were decreases in their tidal shortening. The extent of muscle shortening during occluded breaths was increased by hypercapnia, so that both muscles shortened more during occluded breaths under hypercapnic conditions (PCO2 up to 90 Torr) than during unoccluded breaths under normocapnic conditions. These results suggest that for the costal diaphragm and parasternal intercostal muscles there is a close relationship between their electrical and mechanical behavior during CO2 rebreathing, this relationship is substantially altered by occluding the airway for a single breath, and thoracic respiratory muscles do not contract quasi-isometrically during occluded breaths.  相似文献   

3.
Ventilation and electromyogram (EMG) activities of the right hemidiaphragm, parasternal intercostal, triangularis sterni, transversus abdominis, genioglossus, and alae nasi muscles were measured before and during central stimulation of the left thoracic phrenic nerve in 10 alpha-chloralose anesthetized vagotomized dogs. Pressure in the carotid sinuses was fixed to maintain baroreflex activity constant. The nerve was stimulated for 1 min with a frequency of 40 Hz and stimulus duration of 1 ms at voltages of 5, 10, 20, and 30 times twitch threshold (TT). At five times TT, no change in ventilation or EMG activity occurred. At 10 times TT, neither tidal volume nor breathing frequency increased sufficiently to reach statistical significance, although the change in their product (minute ventilation) was significant (P less than 0.05). At 20 and 30 times TT, increases in both breathing frequency and tidal volume were significant. At these stimulus intensities, the increases in ventilation were accompanied by approximately equal increases in the activity of the diaphragm, parasternal, and alae nasi muscles. The increase in genioglossus activity was much greater than that of the other inspiratory muscles. Phrenic nerve stimulation also elicited inhomogeneous activation of the expiratory muscles. The transversus abdominis activity increased significantly at intensities from 10 to 30 times TT, whereas the activity of the triangularis sterni remained unchanged. The high stimulation intensities required suggest that the activation of afferent fiber groups III and IV is involved in the response. We conclude that thin-fiber phrenic afferent activation exerts a nonuniform effect on the upper airway, rib cage, and abdominal muscles and may play a role in the control of respiratory muscle recruitment.  相似文献   

4.
Ascites, a complicating feature of many diseases of the liver and peritoneum, commonly causes dyspnea. The mechanism of this symptom, however, is uncertain. In the present study, progressively increasing ascites was induced in anesthetized dogs, and the hypothesis was initially tested that ascites increases the impedance on the diaphragm and, so, adversely affects the lung-expanding action of the muscle. Ascites produced a gradual increase in abdominal elastance and an expansion of the lower rib cage. Concomitantly, the caudal displacement of the diaphragm and the fall in airway opening pressure during isolated stimulation of the phrenic nerves decreased markedly; transdiaphragmatic pressure during phrenic stimulation also decreased. To assess the adaptation to ascites of the respiratory system overall, we subsequently measured the changes in lung volume, the arterial blood gases, and the electromyogram of the parasternal intercostal muscles during spontaneous breathing. Tidal volume and minute ventilation decreased progressively as ascites increased, leading to an increase in arterial PCO2 and parasternal intercostal inspiratory activity. It is concluded that 1) ascites, acting through an increase in abdominal elastance and an expansion of the lower rib cage, impairs the lung-expanding action of the diaphragm; 2) this impairment elicits a compensatory increase in neural drive to the inspiratory muscles, but the compensation is not sufficient to maintain ventilation; and 3) dyspnea in this setting results in part from the dissociation between increased neural drive and decreased ventilation.  相似文献   

5.
The purpose of the present study was to assess the effects of bronchoconstriction on respiratory changes in length of the costal diaphragm and the parasternal intercostal muscles. Ten dogs were anesthetized with pentobarbital sodium and tracheostomized. Respiratory changes in muscle length were measured using sonomicrometry, and electromyograms were recorded with bipolar fine-wire electrodes. Administration of histamine aerosols increased pulmonary resistance from 6.4 to 14.5 cmH2O X l-1 X s, caused reductions in inspiratory and expiratory times, and decreased tidal volume. The peak and rate of rise of respiratory muscle electromyogram (EMG) activity increased significantly after histamine administration. Despite these increases, bronchoconstriction reduced diaphragm inspiratory shortening in 9 of 10 dogs and reduced intercostal muscle inspiratory shortening in 7 of 10 animals. The decreases in respiratory muscle tidal shortening were less than the reductions in tidal volume. The mean velocity of diaphragm and intercostal muscle inspiratory shortening increased after histamine administration but to a smaller extent than the rate of rise of EMG activity. This resulted in significant reductions in the ratio of respiratory muscle velocity of shortening to the rate of rise of EMG activity after bronchoconstriction for both the costal diaphragm and the parasternal intercostal muscles. Bronchoconstriction changed muscle end-expiratory length in most animals, but for the group of animals this was statistically significant only for the diaphragm. These results suggest that impairments of diaphragm and parasternal intercostal inspiratory shortening occur after bronchoconstriction; the mechanisms involved include an increased load, a shortening of inspiratory time, and for the diaphragm possibly a reduction in resting length.  相似文献   

6.
We have tested the possibility that the electromyographic (EMG) activity present in the parasternal intercostal muscles during quiet inspiration was reflexive, rather than agonistic, in nature. Using concentric needle electrodes we measured parasternal EMG activity in four normal subjects during various inspiratory maneuvers. We found that 1) phasic inspiratory activity was invariably present in the parasternal intercostals during quiet breathing, 2) the parasternal EMG activity was generally increased during attempts to perform the tidal breathing maneuver with the diaphragm alone, 3) parasternal EMG activity was markedly decreased or suppressed in the presence of rib cage distortion during diaphragmatic isovolume maneuvers, and 4) that EMG activity could not be voluntarily suppressed during breathing unless the inspired volume was trivial. We conclude that the parasternal EMG activity detected during quiet inspiration in the normal subjects depends on a central involuntary mechanism and is not related to activation of intercostal mechanoreceptors.  相似文献   

7.
It is established that during tidal breathing the rib cage expands more than the abdomen in the upright posture, whereas the reverse is usually true in the supine posture. To explore the reasons for this, we studied nine normal subjects in the supine, standing, and sitting postures, measuring thoracoabdominal movement with magnetometers and respiratory muscle activity via integrated electromyograms. In eight of the subjects, gastric and esophageal pressures and diaphragmatic electromyograms via esophageal electrodes were also measured. In the upright postures, there was generally more phasic and tonic activity in the scalene, sternocleidomastoid, and parasternal intercostal muscles. The diaphragm showed more phasic (but not more tonic) activity in the upright postures, and the abdominal oblique muscle showed more tonic (but not phasic) activity in the standing posture. Relative to the esophageal pressure change with inspiration, the inspiratory gastric pressure change was greater in the upright than in the supine posture. We conclude that the increased rib cage motion characteristic of the upright posture owes to a combination of increased activation of rib cage inspiratory muscles plus greater activation of the diaphragm that, together with a stiffened abdomen, acts to move the rib cage more effectively.  相似文献   

8.
In an attempt to understand the role of the parasternal intercostals in respiration, we measured the changes in length of these muscles during a variety of static and dynamic respiratory maneuvers. Studies were performed on 39 intercostal spaces from 10 anesthetized dogs, and changes in parasternal intercostal length were assessed with pairs of piezoelectric crystals (sonomicrometry). During static maneuvers (passive inflation-deflation, isovolume maneuvers, changes in body position), the parasternal intercostals shortened whenever the rib cage inflated, and they lengthened whenever the rib cage contracted. The changes in parasternal intercostal length, however, were much smaller than the changes in diaphragmatic length, averaging 9.2% of the resting length during inflation from residual volume to total lung capacity and 1.3% during tilting from supine to upright. During quiet breathing the parasternal intercostals always shortened during inspiration and lengthened during expiration. In the intact animals the inspiratory parasternal shortening was close to that seen for the same increase in lung volume during passive inflation and averaged 3.5%. After bilateral phrenicotomy, however, the parasternal intercostal shortening during inspiration markedly increased, whereas tidal volume diminished. These results indicate that 1) the parasternal intercostals in the dog are real agonists (as opposed to fixators) and actively contribute to expand the rib cage and the lung during quiet inspiration, 2) the relationship between lung volume and parasternal length is not unique but depends on the relative contribution of the various inspiratory muscles to tidal volume, and 3) the physiological range of operating length of the parasternal intercostals is considerably smaller than that of the diaphragm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Neural drive to inspiratory pump muscles is increased under many pathological conditions. This study determined for the first time how neural drive is distributed to five different human inspiratory pump muscles during tidal breathing. The discharge of single motor units (n = 280) from five healthy subjects in the diaphragm, scalene, second parasternal intercostal, third dorsal external intercostal, and fifth dorsal external intercostal was recorded with needle electrodes. All units increased their discharge during inspiration, but 41 (15%) discharged tonically throughout expiration. Motor unit populations from each muscle differed in the timing of their activation and in the discharge rates of their motor units. Relative to the onset of inspiratory flow, the earliest recruited muscles were the diaphragm and third dorsal external intercostal (mean onset for the population after 26 and 29% of inspiratory time). The fifth dorsal external intercostal muscle was recruited later (43% of inspiratory time; P < 0.05). Compared with the other inspiratory muscles, units in the diaphragm and third dorsal external intercostal had the highest onset (7.7 and 7.1 Hz, respectively) and peak firing frequencies (12.6 and 11.9 Hz, respectively; both P < 0.05). There was a unimodal distribution of recruitment times of motor units in all muscles. Neural drive to human inspiratory pump muscles differs in timing, strength, and distribution, presumably to achieve efficient ventilation.  相似文献   

10.
Our prior studies indicated that postural fainting relates to splanchnic hypervolemia and thoracic hypovolemia during orthostasis. We hypothesized that thoracic hypovolemia causes excessive sympathetic activation, increased respiratory tidal volume, and fainting involving the pulmonary stretch reflex. We studied 18 patients 13-21 yr old, 11 who fainted within 10 min of upright tilt (fainters) and 7 healthy control subjects. We measured continuous blood pressure and heart rate, respiration by inductance plethysmography, end-tidal carbon dioxide (ET(CO(2))) by capnography, and regional blood flows and blood volumes using impedance plethysmography, and we calculated arterial resistance with patients supine and during 70 degrees upright tilt. Splanchnic resistance decreased until faint in fainters (44 +/- 8 to 21 +/- 2 mmHg.l(-1).min(-1)) but increased in control subjects (47 +/- 5 to 53 +/- 4 mmHg.l(-1).min(-1)). Percent change in splanchnic blood volume increased (7.5 +/- 1.0 vs. 3.0 +/- 11.5%, P < 0.05) after the onset of tilt. Upright tilt initially significantly increased thoracic, pelvic, and leg resistance in fainters, which subsequently decreased until faint. In fainters but not control subjects, normalized tidal volume (1 +/- 0.1 to 2.6 +/- 0.2, P < 0.05) and normalized minute ventilation increased throughout tilt (1 +/- 0.2 to 2.1 +/- 0.5, P < 0.05), whereas respiratory rate decreased (19 +/- 1 to 15 +/- 1 breaths/min, P < 0.05). Maximum tidal volume occurred just before fainting. The increase in minute ventilation was inversely proportionate to the decrease in ET(CO(2)). Our data suggest that excessive splanchnic pooling and thoracic hypovolemia result in increased peripheral resistance and hyperpnea in simple postural faint. Hyperpnea and pulmonary stretch may contribute to the sympathoinhibition that occurs at the time of faint.  相似文献   

11.
The role of lung receptors in respiratory control during acute head-down tilt (AHDT, -30 degrees) was investigated in anesthetized, tracheostomized rats. The results show that AHDT increased the mechanical respiratory load, slowed inspiratory flow, reduced the end expiratory lung volume, tidal volume and minute ventilation. On the other hand, during AHDT a significant rise in inspiratory swings of oesophageal pressure was recorded indicated a compensatory increase in inspiratory muscle contraction force. These effects were reduced after transaction of the vagus nerve. It was also shown that respiratory response on added mechanical load was reduced during AHDT as compared with the value in horizontal position. This deference disappeared after vagotomy. The data obtained suggested that afferent information from lung receptors take part in compensation of respiratory effects of AHDT. The cause of reduction in respiratory response to loading during AHDT involves weakness of lung reflexes evoked by volume changes.  相似文献   

12.
We studied the effect of microgravity (0 Gz) on the anteroposterior diameters of the upper (URC-AP) and lower (LRC-AP) rib cage, the transverse diameter of the lower rib cage (LRC-TR), and the xiphipubic distance and on the electromyographic (EMG) activity of the scalene and parasternal intercostal muscles in five normal subjects breathing quietly in the seated posture. Gastric pressure was also recorded in four subjects. At 0 Gz, end-expiratory LRC-AP and xiphipubic distance increased but LRC-TR invariably decreased, as did end-expiratory gastric pressure. No consistent effect was observed on tidal LRC-TR and xiphipubic displacements, but tidal changes in URC-AP and LRC-AP were reduced. Although scalene and parasternal phasic inspiratory EMG activity tended to decrease at 0 Gz, both muscle groups demonstrated an increase in tonic activity. We conclude that during brief periods of weightlessness 1) the rib cage at end expiration is displaced in the cranial direction and adopts a more circular shape, 2) the tidal expansion of the ventral rib cage is reduced, particularly in its upper portion, and 3) the scalenes and parasternal intercostals generally show a decrease in phasic inspiratory EMG activity and an increase in tonic activity.  相似文献   

13.
The effect of non-rapid-eye-movement (NREM) sleep on total pulmonary resistance (RL) and respiratory muscle function was determined in four snorers and four nonsnorers. RL at peak flow increased progressively from wakefulness through the stages of NREM sleep in all snorers (3.7 +/- 0.4 vs. 13.0 +/- 4.0 cmH2O X 0.1(-1) X s) and nonsnorers (4.8 +/- 0.4 vs. 7.5 +/- 1.1 cmH2O X 1(-1) X s). Snorers developed inspiratory flow limitation and progressive increase in RL within a breath. The increased RL placed an increased resistive load on the inspiratory muscles, increasing the pressure-time product for the diaphragm between wakefulness and NREM sleep. Tidal volume and minute ventilation decreased in all subjects. The three snorers who showed the greatest increase in within-breath RL demonstrated an increase in the contribution of the lateral rib cage to tidal volume, a contraction of the abdominal muscles during a substantial part of expiration, and an abrupt relaxation of abdominal muscles at the onset of inspiration. We concluded that the magnitude of increase in RL leads to dynamic compression of the upper airway during inspiration, marked distortion of the rib cage, recruitment of the intercostal muscles, and an increased contribution of expiratory muscles to inspiration. This increased RL acts as an internal resistive load that probably contributes to hypoventilation and CO2 retention in NREM sleep.  相似文献   

14.
We measured the electromyographic (EMG) activity in four chest wall and trunk (CWT) muscles, the erector spinae, latissimus dorsi, pectoralis major, and trapezius, together with the parasternal, in four normal subjects during graded inspiratory efforts against an occlusion in both upright and seated postures. We also measured CWT EMGs in six seated subjects during inspiratory resistive loading at high and low tidal volumes [1,280 +/- 80 (SE) and 920 +/- 60 ml, respectively]. With one exception, CWT EMG increased as a function of inspiratory pressure generated (Pmus) at all lung volumes in both postures, with no systematic difference in recruitment between CWT and parasternal muscles as a function of Pmus. At any given lung volume there was no consistent difference in CWT EMG at a given Pmus between the two postures (P > 0.09). However, at a given Pmus during both graded inspiratory efforts and inspiratory resistive loading, EMGs of all muscles increased with lung volume, with greater volume dependence in the upright posture (P < 0.02). The results suggest that during inspiratory efforts, CWT muscles contribute to the generation of inspiratory pressure. The CWT muscles may act as fixators opposing deflationary forces transmitted to the vertebral column by rib cage articulations, a function that may be less effective at high lung volumes if the direction of the muscular insertions is altered disadvantageously.  相似文献   

15.
The effect of methacholine-induced bronchoconstriction on the electrical activity of respiratory muscles during expiration was studied in 12 anesthetized spontaneously breathing dogs. Before and after aerosols of methacholine, diaphragm, parasternal intercostal, internal intercostal, and external oblique electromyograms were recorded during 100% O2 breathing and CO2 rebreathing. While breathing 100% O2, five dogs showed prolonged electrical activity of the diaphragm and parasternal intercostals in early expiration, postinspiratory inspiratory activity (PIIA). Aerosols of methacholine increased pulmonary resistance, decreased tidal volume, and elevated arterial PCO2. During bronchoconstriction, when PCO2 was varied by CO2 rebreathing, PIIA was shorter at low levels of PCO2, and external oblique and internal intercostal were higher at all levels of PCO2. Vagotomy shortened PIIA in dogs with prolonged PIIA. After vagotomy, methacholine had no effects on PIIA but continued to increase external oblique and internal intercostal activity at all levels of PCO2. These findings indicate that bronchoconstriction influences PIIA through a vagal reflex but augments expiratory activity, at least in part, by extravagal mechanisms.  相似文献   

16.
Inflation induces a marked decrease in the lung-expanding ability of the diaphragm, but its effect on the parasternal intercostal muscles is uncertain. To assess this effect, the phrenic nerves and the external intercostals were severed in anesthetized, vagotomized dogs, such that the parasternal intercostals were the only muscles active during inspiration, and the endotracheal tube was occluded at different lung volumes. Although the inspiratory electromyographic activity recorded from the muscles was constant, the change in airway opening pressure decreased with inflation from -7.2+/-0.6 cmH2O at functional residual capacity to -2.2+/-0.2 cmH2O at 20-cmH2O transrespiratory pressure (P<0.001). The inspiratory cranial displacement of the ribs remained virtually unchanged, and the inspiratory caudal displacement of the sternum decreased moderately. However, the inspiratory outward rib displacement decreased markedly and continuously; at 20 cmH2O, this displacement was only 23+/-2% of the value at functional residual capacity. Calculations based on this alteration yielded substantial decreases in the change in airway opening pressure. It is concluded that, in the dog, 1) inflation affects adversely the lung-expanding actions of both the parasternal intercostals and the diaphragm; and 2) the adverse effect of inflation on the parasternal intercostals is primarily related to the alteration in the kinematics of the ribs. As a corollary, it is likely that hyperinflation also has a negative impact on the parasternal intercostals in patients with chronic obstructive pulmonary disease.  相似文献   

17.
The distribution of motor drive to the costal and crural diaphragm and parasternal intercostal muscles was evaluated during progressive isocapnic hypoxia in anesthetized dogs. Bipolar stainless steel wire electrodes were placed unilaterally into the costal and crural portions of the diaphragm and into the parasternal intercostal muscle in the second or third intercostal space. Both peak and rate of rise of electromyographic activity of each chest wall muscle increased in curvilinear fashion in response to progressive hypoxia. Both crural and parasternal intercostal responses, however, were greater than those of the costal diaphragm. The onset of crural activation preceded that of the costal portion of the diaphragm and parasternal intercostal muscle activation. Despite differences in the degree of activation among the various chest wall muscles, the rate of increase in activation for any given muscle was linearly related to the rate of increases for the other two. This suggests that respiratory drive during progressive hypoxia increases in fixed proportion to the different chest wall inspiratory muscles. Our findings lend further support to the concept that the costal and crural diaphragm are governed by separate neural control mechanisms and, therefore, may be considered separate muscles.  相似文献   

18.
Changes in posture can affect the resting length of the diaphragm, requiring alterations in the activity of both the abdominal muscles and the diaphragm to maintain stable ventilation. To determine the role of the vestibular system in regulating respiratory muscle discharges during postural changes, spontaneous diaphragm and rectus abdominis activity and modulation of the firing of these muscles during nose-up and ear-down tilt were compared before and after removal of labyrinthine inputs in awake cats. In vestibular-intact animals, nose-up and ear-down tilts from the prone position altered rectus abdominis firing, whereas the effects of body rotation on diaphragm activity were not statistically significant. After peripheral vestibular lesions, spontaneous diaphragm and rectus abdominis discharges increased significantly (by approximately 170%), and augmentation of rectus abdominis activity during nose-up body rotation was diminished. However, spontaneous muscle activity and responses to tilt began to recover after a few days after the lesions, presumably because of plasticity in the central vestibular system. These data suggest that the vestibular system provides tonic inhibitory influences on rectus abdominis and the diaphragm and in addition contributes to eliciting increases in abdominal muscle activity during some changes in body orientation.  相似文献   

19.
Both nasal obstruction and nasal anesthesia result in disordered breathing during sleep in humans, and bypassing the nasal route during tidal breathing in experimental animals produces decreased electromyographic activity of upper airway (UA) dilating muscles. To investigate UA responses to breathing route in normal awake humans, we studied eight healthy males (ages 21-38 yr) during successive trials of voluntary nose breathing (N), voluntary mouth breathing (M), and mouth breathing with nose occluded (MO). We measured genioglossus electromyographic activity (EMGgg) with perorally inserted bipolar electrodes, alae nasi (EMGan) and diaphragm EMG activity (EMGdi) with surface electrodes, and minute ventilation (VE) with a pneumotachograph. Mean phasic inspiratory EMG activity of both UA muscles was significantly greater during N than during M or MO, even when a 2.5-cmH2O.l-1.s inspiratory resistance was added to MO (P less than 0.01). In contrast, neither EMGdi nor VE was consistently affected by breathing route. EMGgg during N was significantly decreased after selective topical nasal anesthesia (P less than 0.002); a decrease in EMGan did not achieve statistical significance. These data suggest that peak UA dilating muscle activity may be modulated by superficial receptors in the nasal mucosa sensitive to airflow.  相似文献   

20.
Previous studies have shown in awake dogs that activity in the crural diaphragm, but not in the costal diaphragm, usually persists after the end of inspiratory airflow. It has been suggested that this difference in postinspiratory activity results from greater muscle spindle content in the crural diaphragm. To evaluate the relationship between muscle spindles and postinspiratory activity, we have studied the pattern of activation of the parasternal and external intercostal muscles in the second to fourth interspaces in eight chronically implanted animals. Recordings were made on 2 or 3 successive days with the animals breathing quietly in the lateral decubitus position. The two muscles discharged in phase with inspiration, but parasternal intercostal activity usually terminated with the cessation of inspiratory flow, whereas external intercostal activity persisted for 24.7 +/- 12.3% of inspiratory time (P < 0.05). Forelimb elevation in six animals did not affect postinspiratory activity in the parasternal but prolonged postinspiratory activity in the external intercostal to 45.4 +/- 16.3% of inspiratory time (P < 0.05); in two animals, activity was still present at the onset of the next inspiratory burst. These observations support the concept that muscle spindles are an important determinant of postinspiratory activity. The absence of such activity in the parasternal intercostals and costal diaphragm also suggests that the mechanical impact of postinspiratory activity on the respiratory system is smaller than conventionally thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号