首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PCR random mutagenesis in the cysE gene encoding Escherichia coli serine acetyltransferase was employed to isolate the mutant enzymes that, due to a much less feedback inhibition by L-cysteine, cause overproduction of L-cysteine and L-cystine in the recombinant strains. The L-cysteine auxotrophic and non-utilizing E. coli strain was transformed with plasmids having the altered cysE genes. Then, several transformants overproducing L-cysteine were selected by detecting the halo formation of the L-cysteine auxotroph. The production test of amino acids and analysis of the catalytic property on the mutant enzymes suggest that the carboxy-terminal region of serine acetyltransferase plays an important role in the desensitization to feedback inhibition and the high level production of L-cysteine and L-cystine.  相似文献   

2.
Serine acetyltransferase (SAT) from Escherichia coli is subject to feedback inhibition by L-cysteine. A mutant was isolated which excretes L-cysteine because of a lesion in cysE, the structural gene for SAT, rendering the enzyme less feedback sensitive. To analyse the structural basis for this mutation the cysE genes both from wild-type E. coli and the mutant strain were cloned and their nucleotide sequences determined. The cysE gene contained an open reading frame consisting of 819 bp, equivalent to a protein of 273 amino acids. The mutant gene showed a single base change in position 767 resulting in a methionine to isoleucine substitution. A causal connection between this SAT sequence alteration, feedback insensitivity and L-cysteine excretion was demonstrated. The SAT from the wild-type strain was purified. It was composed of a single polypeptide chain migrating in SDS gels according to an Mr of 34,000. As in Salmonella typhimurium, the enzyme was associated in a bifunctional complex with O-acetylserine (thiol)-lyase.  相似文献   

3.
The complete sequencing of bacterial genomes has revealed a large number of drug transporter genes. In Escherichia coli, there are 37 open reading frames (ORFs) assumed to be drug transporter genes on the basis of sequence similarities, although the transport capabilities of most of them have not been established yet. We cloned all 37 putative drug transporter genes in E. coli and investigated their drug resistance phenotypes using an E. coli drug-sensitive mutant as a host. E. coli cells transformed with a plasmid carrying one of 20 ORFs, i.e., fsr, mdfA, yceE, yceL, bcr, emrKY, emrAB, emrD, yidY, yjiO, ydhE, acrAB, cusA (formerly ybdE), yegMNO, acrD, acrEF, yhiUV, emrE, ydgFE, and ybjYZ, exhibited increased resistance to some of the 26 representative antimicrobial agents and chemical compounds tested in this study. Of these 20 ORFs, cusA, yegMNO, ydgFE, yceE, yceL, yidY, and ybjYZ are novel drug resistance genes. The fsr, bcr, yjiO, ydhE, acrD, and yhiUV genes gave broader resistance spectra than previously reported.  相似文献   

4.
The bacitracin resistance of Bacillus licheniformis, a producer of bacitracin, is mediated by the ABC transporter Bcr. Bacillus subtilis cells carrying bcr genes on high-copy number plasmids developed collateral detergent sensitivity, as did human cells with overexpressed multidrug resistance P-glycoprotein. Resistance against bacitracin and sensitivity of resistant cells to detergents were shown to be inseparable phenomena associated with the membrane part of Bcr transporter, namely protein BcrC. A fused protein, consisting of ATP-binding protein BcrA and membrane component BcrC was constructed. It resembled a half molecule of P-glycoprotein and was capable of providing a significant degree of antibiotic resistance and detergent sensitivity.  相似文献   

5.
DL-2-amino-Delta(2)-thiazolin-4-carbonic acid (DL-ATC) is a substrate for cysteine synthesis in some bacteria, and this bioconversion has been utilized for cysteine production in industry. We cloned a DNA fragment containing the genes involved in the conversion of L-ATC to L-cysteine from Pseudomonas sp. strain BS. The introduction of this DNA fragment into Escherichia coli cells enabled them to convert L-ATC to cysteine via N-carbamyl-L-cysteine (L-NCC) as an intermediate. The smallest recombinant plasmid, designated pTK10, contained a 2.6-kb insert DNA fragment that has L-cysteine synthetic activity. The nucleotide sequence of the insert DNA revealed that two open reading frames (ORFs) encoding proteins with molecular masses of 19.5 and 44.7 kDa were involved in the L-cysteine synthesis from DL-ATC. These ORFs were designated atcB and atcC, respectively, and their gene products were identified by overproduction of proteins encoded in each ORF and by the maxicell method. The functions of these gene products were examined using extracts of E. coli cells carrying deletion derivatives of pTK10. The results indicate that atcB and atcC are involved in the conversion of L-ATC to L-NCC and the conversion of L-NCC to cysteine, respectively. atcB was first identified as a gene encoding an enzyme that catalyzes thiazolin ring opening. AtcC is highly homologous with L-N-carbamoylases. Since both enzymes can only catalyze the L-specific conversion from L-ATC to L-NCC or L-NCC to L-cysteine, it is thought that atcB and atcC encode L-ATC hydrolase and N-carbamyl-L-cysteine amidohydrolase, respectively.  相似文献   

6.
The efficient export of proteins through the cytoplasmic membrane of Escherichia coli requires chaperones to maintain protein precursors in a translocation-competent conformation. In addition to SecB, the major chaperone facilitating export of particular precursors, heat shock-induced chaperones DnaK-DnaJ and GroEL-GroES are also involved in this process. By use of secB'-lacZ gene fusions and immunoprecipitation experiments, SecB production was studied in E. coli strains containing conditional lethal mutations in chaperone or sec genes. While the loss of heat shock chaperones resulted in an increased production of SecB, mutations in sec genes showed only minor effects on SecB synthesis. Neither the plasmid-mediated overexpression of precursors of exoproteins nor the overexpression of secB altered the synthesis of SecB. These results suggest that under conditions where chaperones become depleted, E. coli responds by raising the expression of secB. These data confirm the supposed synergy of different chaperones involved in protein export.  相似文献   

7.
8.
In Escherichia coli, the enzyme called cysteine desulfhydrase (CD), which is responsible for L-cysteine degradation, was investigated by native-PAGE and CD activity staining of crude cell extracts. Analyses with gene-disrupted mutants showed that CD activity resulted from two enzymes: tryptophanase (TNase) encoded by tnaA and cystathionine beta-lyase (CBL) encoded by metC. It was also found that TNase synthesis was induced by the presence of L-cysteine. The tnaA and metC mutants transformed with the plasmid containing the gene for feedback-insensitive serine acetyltransferase exhibited higher L-cysteine productivity than the wild-type strain carrying the same plasmid. These results indicated that TNase and CBL did act on L-cysteine degradation in E. coli cells.  相似文献   

9.
A specialized lambda transducing phage carrying the cysE and gpsA genes of E. coli K-12 has been isolated. The transducing phage has been separated from the helper phage on equilibrium gradients and has been shown to be defective. Evidence is presented that the phage kil gene is not expressed.  相似文献   

10.
The previously constructed plasmid pILRV8 that induces endonuclease EcoRV gene overexpression kills cells of some E. coli strains under the induction of this enzyme synthesis. Cell transformation by natural plasmid pLG13 carrying genes of the EcoRV restriction--modification system was found to appreciably enhance cell viability ("survival") under endonuclease overproduction. A plasmid pLG13 region located in immediate proximity to the methylase gene was shown to be responsible for the above effect. This region was also capable for autonomous replication. The analysis of the DNA primary structure in the found replicator region allowed to refer the pLG13 to ColE1 family plasmids. Perturbations in the region lead to loss of the "survival" effect and change of the plasmid replicative properties. A relationship between the replicon elements, the EcoRV genes region and "survival" effect is discussed. Based on the replicon found multicopy vector molecules have been constructed.  相似文献   

11.
secD, a new gene involved in protein export in Escherichia coli.   总被引:47,自引:26,他引:21       下载免费PDF全文
New mutants of Escherichia coli altered in protein export were identified in phoA-lacZ and lamB-lacZ gene fusion strains by searching for mutants that showed an altered lactose phenotype. Several mutations mapped in a new gene, secD. These mutants were, in general, cold sensitive for growth, and the mutations led to an accumulation of precursor of exported proteins. The secD gene is closely linked to tsx on the E. coli chromosome, but separable from another gene proposed to be involved in export, ssaD, which maps nearby. A plasmid carrying secD+ was identified and used to show that the mutations are recessive. The secD gene may code for a component of the cellular export machinery.  相似文献   

12.
13.
Apoptosis was studied in parental and mdr-1 expressing U937, HL60 and K562 myeloid leukemic cell lines using mdr unrelated inducers of apoptosis such as Ara-C, cycloheximide, serum deprivation, ceramide, monensin and UV irradiation. Apoptosis was efficiently induced by all these treatments in U937 and HL60 cells while K562 cells exhibited an apoptosis-resistant phenotype except with UV and monensin. The pattern of apoptosis resistance in mdr-1 expressing U937 (U937-DR) and HL60 (HL60-DR100) was similar to that presented by K562. This apoptosis-resistant phenotype of mdr cells was not overcome by concentrations of verapamil inhibiting the P-gp 170 pump. The acquisition of this phenotype was posterior to the mdr-1 expressing phenotype since a HL60-DR5 variant, selected at the beginning of the induction of resistance, presented a low level of mdr-1 expression without resistance to apoptosis. The variations observed in the Fas (CD95) expression between sensitive and resistant cells were not sufficient to account for apoptosis resistance. However, a high expression in Abl antigen was found in all the apoptosis-resistant cells. RT-PCR and Western blot analysis showed that this increase in Abl antigen content was accompanied by the expression in U937-DR and HL60-DR100 cells of a hybrid bcr/abl mRNA and a 210 kD Bcr/Abl protein which was constitutive in K562. This expression was due to the translocation of abl and the amplification of the bcr-abl translocated gene. These results are in agreement with the role of Bcr/Abl tyrosine protein kinase as an inhibitor of apoptosis independently of the mdr-1 expression. They also suggest that translocation of the abl gene in the bcr region is a highly probable rearrangement in the mdr-1 expressing myeloid cells and that Bcr/Abl tyrosine kinase effect on apoptosis needs the regulation of intracellular pH and is inactive against UV-induced apoptosis.  相似文献   

14.
The alanine transporter (alanine carrier protein, ACP) gene of thermophilic bacterium PS3 was previously cloned and expressed in a functionally active form in Escherichia coli cells. To achieve controlled overproduction of the ACP protein, we designed a plasmid encoding a fusion protein comprising ACP joined to the carboxyl terminus of the maltose binding protein (MBP-ACP). Upon transduction of the plasmid into E. coli RM1 cells defective in alanine/glycine transport, the transport activity was expressed even before induction with 1-thio-beta-D-galacto-pyranoside (IPTG), and increased slightly on induction with IPTG at low concentrations. However, overexpression of the MBP-ACP gene, induced by higher concentrations of IPTG, resulted in death of the host cells. Hence we screened other host cells and found that the MBP-ACP fusion protein was produced in a large quantity in E. coli TB1 cells 3 h after IPTG induction. The MBP-ACP fusion protein was accumulated in cytoplasmic membranes in an amount reaching more than 20% of the total membrane protein. The affinity-purified MBP-ACP exhibited very low transport activity when reconstituted into proteoliposomes.  相似文献   

15.
The Escherichia coli Tat system mediates Sec-independent export of protein precursors bearing twin arginine signal peptides. Genes known to be involved in this process include tatA, tatB, and tatC that form an operon with a fourth gene, tatD. The tatD gene product has two homologues in E. coli coded by the unlinked ycfH and yjjV genes. An E. coli strain with in-frame chromosomal deletions in all three of tatD, ycfH, and yjjV exhibits no significant defect in the cellular location of five cofactor-containing enzymes that are synthesized with twin arginine signal peptides. Neither these mutations nor overproduction of the TatD protein cause any discernible effect on the export kinetics of an additional E. coli Tat pathway substrate. It is concluded that proteins of the TatD family have no obligate involvement in protein export by the Tat system. TatD is shown to be a cytoplasmic protein. TatD binds to immobilized Ni(2+) or Zn(2+) affinity columns and exhibits magnesium-dependent DNase activity. Features of the tatA operon that may control TatD expression are discussed.  相似文献   

16.
杆菌肽是一种主要由芽胞杆菌产生的广谱性抗生素,目前作为兽药广泛应用于畜禽养殖领域.前体氨基酸供应不足可能是限制微生物发酵高产杆菌肽的重要因素.文中以杆菌肽工业生产菌株——地衣芽胞杆菌Bacillus licheniformis DW2为出发菌株,研究L-半胱氨酸供给模块强化对杆菌肽合成的影响.首先,构建了L-半胱氨酸合...  相似文献   

17.
18.
L-cysteine desulthydrase (CD) plays an important role in L-cysteine decomposition.To identify the CD gene in Pseudomonas sp.TS 1138 and investigate its effect on the L-cysteine biosynthetic pathway,the CD gene was cloned from Pseudomonas sp.TS 1138 by polymerase chain reaction (PCR) method.The nucleotide sequence of CD gene was determined to be 1,215 bp,and its homology with other sequences encoding CD was analyzed.Then the CD gene was subcloned into pET-21a(+) vector and expressed in Escherichia coli (E.coli) by isopropyl-β-D-thiogalactopyranoside (IPTG) inducement.The recombinant CD was purified by Ni-NTA His-Bind resin,and its activity was identified by the CD activity staining.The enzymatic properties of the recombinant CD were characterized and its critical role involved in the L-cysteine biosynthetic pathway was also discussed.  相似文献   

19.
Some strains of Saccharomyces cerevisiae have detectable activities of L-serine O-acetyltransferase (SATase) and O-acetyl-L-serine/O-acetyl-L-homoserine sulfhydrylase (OAS/OAH-SHLase), but synthesize L-cysteine exclusively via cystathionine by cystathionine beta-synthase and cystathionine gamma-lyase. To untangle this peculiar feature in sulfur metabolism, we introduced Escherichia coli genes encoding SATase and OAS-SHLase into S. cerevisiae L-cysteine auxotrophs. While the cells expressing SATase grew on medium lacking L-cysteine, those expressing OAS-SHLase did not grow at all. The cells expressing both enzymes grew very well without L-cysteine. These results indicate that S. cerevisiae SATase cannot support L-cysteine biosynthesis and that S. cerevisiae OAS/OAH-SHLase produces L-cysteine if enough OAS is provided by E. coli SATase. It appears as if S. cerevisiae SATase does not possess a metabolic role in vivo either because of very low activity or localization. For example, S. cerevisiae SATase may be localized in the nucleus, thus controlling the level of OAS required for regulation of sulfate assimilation, but playing no role in the direct synthesis of L-cysteine.  相似文献   

20.
Abstract During exponential growth, Erwinia chrysanthemi (EC16) exports 99% of the protease (PRT) into the growth medium. By screening an EC16 genomic library in Escherichia coli HB101, several Prt+ clones were identified. A 16-kb Eco RI fragment, carrying the prt gene, was subcloned into pBR322 (pAKC326). E. coli HB101[pAKC326] cells exported PRT into the growth medium during exponential growth. PRT export was not accompanied by periplasmic leakage. E. coli HB101 carrying EC16 prt and pel genes (encoding pectate lyase) exported PRT but retained PEL in the periplasm. These findings indicate the occurrence of a PRT-specific export system in EC16, which is also functional in an E. coli strain carrying the prt + DNA segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号