首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meinhard M  Rodriguez PL  Grill E 《Planta》2002,214(5):775-782
ABI1 and ABI2 are two protein serine/threonine phosphatases of type 2C (EC 3.1.3.16) that act as key regulators in the responses of Arabidopsis thaliana (L.) Heynh. to abscisic acid (ABA). They are involved in the control of ABA-mediated seed dormancy, stomatal closure and vegetative growth inhibition. Analysis of the enzymatic properties of ABI2 revealed high sensitivities towards protons and unsaturated fatty acids. Furthermore, the protein phosphatase activity of ABI2 is very sensitive to H2O2, which has recently emerged as a secondary messenger of ABA signalling. Upon H2O2 challenge, ABI2 is rapidly inactivated with an IC50 value of 50 microM in the presence of reduced glutathione. Inhibitor studies with phenylarsine oxide and manipulation of the redox status of ABI2 in vitro indicate that oxidation of critical cysteine residue(s) is responsible for inactivation. The levels of the major cellular thiol compounds cysteine and glutathione in leaves and seedlings of A. thaliana are compatible with a physiological role of H2O2 in regulating ABI2 activity. ABI2 is considered to exert negative regulation on ABA action. Thus, transient inactivation of this protein phosphatase by H2O2 would allow or enhance the ABA-dependent signalling process. In conclusion, ABI2 represents a likely target for redox-regulation of a hormonal signalling pathway in higher plants.  相似文献   

2.
The Arabidopsis ABI1 and ABI2 genes encode two protein serine/threonine phosphatases 2C (PP2C). These genes have been originally identified by the dominant mutations abi1--1 and abi2--1, which reduce the plant's responsiveness to the hormone abscisic acid (ABA). However, recessive mutants of ABI1 were recently shown to be supersensitive to ABA, which demonstrated that the ABI1 phosphatase is a negative regulator of ABA signalling. We report here the isolation and characterisation of the first reduction-of-function allele of ABI2, abi2--1R1. The in vitro phosphatase activity of the abi2--1R1 protein is approximately 100-fold lower than that of the wild-type ABI2 protein. Abi2--1R1 plants displayed a wild-type ABA sensitivity. However, doubly mutant plants combining the abi2--1R1 allele and a loss-of-function allele at the ABI1 locus were more responsive to ABA than each of the parental single mutants. These data indicate that the wild-type ABI2 phosphatase is a negative regulator of ABA signalling, and that the ABI1 and ABI2 phosphatases have overlapping roles in controlling ABA action. Measurements of PP2C activity in plant extracts showed that the phosphatase activity of ABI1 and ABI2 increases in response to ABA. These results suggest that ABI1 and ABI2 act in a negative feedback regulatory loop of the ABA signalling pathway.  相似文献   

3.
4.
5.
Protein phosphatase 2C (PP2C) function in higher plants   总被引:18,自引:0,他引:18  
In the past few years, molecular cloning studies have revealed the primary structure of plant protein serine/threonine phosphatases. Two structurally distinct families, the PP1/PP2A family and the PP2C family, are present in plants as well as in animals. This review will focus on the plant PP2C family of protein phosphatases. Biochemical and molecular genetic studies in Arabidopsis have identified PP2C enzymes as key players in plant signal transduction processes. For instance, the ABI1/ABI2 PP2Cs are central components in abscisic acid (ABA) signal transduction. Arabidopsis mutants containing a single amino acid exchange in ABI1 or ABI2 show a reduced response to ABA. Another member of the PP2C family, kinase-associated protein phosphatase (KAPP), appears to be an important element in some receptor-like kinase (RLK) signalling pathways. Finally, an alfalfa PP2C acts as a negative regulator of a plant mitogen-activated protein kinase (MAPK) pathway. Thus, the plant PP2Cs function as regulators of various signal transduction pathways.  相似文献   

6.
The plant hormone abscisic acid (ABA) is a key regulator of seed maturation and germination and mediates adaptive responses to environmental stress. In Arabidopsis, the ABI1 gene encodes a member of the 2C class of protein serine/threonine phosphatases (PP2C), and the abi1-1 mutation markedly reduces ABA responsiveness in both seeds and vegetative tissues. However, this mutation is dominant and has been the only mutant allele available for the ABI1 gene. Hence, it remained unclear whether ABI1 contributes to ABA signaling, and in case ABI1 does regulate ABA responsiveness, whether it is a positive or negative regulator of ABA action. In this study, we isolated seven novel alleles of the ABI1 gene as intragenic revertants of the abi1-1 mutant. In contrast to the ABA-resistant abi1-1 mutant, these revertants were more sensitive than the wild type to the inhibition of seed germination and seedling root growth by applied ABA. They also displayed increases in seed dormancy and drought adaptive responses that are indicative of a higher responsiveness to endogenous ABA. The revertant alleles were recessive to the wild-type ABI1 allele in enhancing ABA sensitivity, indicating that this ABA-supersensitive phenotype results from a loss of function in ABI1. The seven suppressor mutations are missense mutations in conserved regions of the PP2C domain of ABI1, and each of the corresponding revertant alleles encodes an ABI1 protein that lacked any detectable PP2C activity in an in vitro enzymatic assay. These results indicate that a loss of ABI1 PP2C activity leads to an enhanced responsiveness to ABA. Thus, the wild-type ABI1 phosphatase is a negative regulator of ABA responses.  相似文献   

7.
Abscisic acid (ABA) plays a key role in plant responses to abiotic stress, particularly drought stress. A wide number of ABA-hypersensitive mutants is known, however, only a few of them resist/avoid drought stress. In this work we have generated ABA-hypersensitive drought-avoidant mutants by simultaneous inactivation of two negative regulators of ABA signaling, i.e. the protein phosphatases type 2C (PP2Cs) ABA-INSENSITIVE1 (ABI1) and HYPERSENSITIVE TO ABA1 (HAB1). Two new recessive loss-of-function alleles of ABI1, abi1-2 and abi1-3, were identified in an Arabidopsis (Arabidopsis thaliana) T-DNA collection. These mutants showed enhanced responses to ABA both in seed and vegetative tissues, but only a limited effect on plant drought avoidance. In contrast, generation of double hab1-1 abi1-2 and hab1-1 abi1-3 mutants strongly increased plant responsiveness to ABA. Thus, both hab1-1 abi1-2 and hab1-1 abi1-3 were particularly sensitive to ABA-mediated inhibition of seed germination. Additionally, vegetative responses to ABA were reinforced in the double mutants, which showed a strong hypersensitivity to ABA in growth assays, stomatal closure, and induction of ABA-responsive genes. Transpirational water loss under drought conditions was noticeably reduced in the double mutants as compared to single parental mutants, which resulted in reduced water consumption of whole plants. Taken together, these results reveal cooperative negative regulation of ABA signaling by ABI1 and HAB1 and suggest that fine tuning of ABA signaling can be attained through combined action of PP2Cs. Finally, these results suggest that combined inactivation of specific PP2Cs involved in ABA signaling could provide an approach for improving crop performance under drought stress conditions.  相似文献   

8.
The phytohormone abscisic acid (ABA) plays a central role in many developmental processes and in responses to several abiotic stresses. Identification of the ABA receptor is a first step towards understanding ABA signalling. In this study, using homology analysis, we cloned three genes, named VvPYL1, VvPYL2 and VvPYL3, from Vitis vinifera. An isothermal titration calorimetry assay suggested that VvPYL1 could bind to ABA. A phosphatase activity assay demonstrated that VvPYL1 inhibits phosphatase activity of ABI1, a negative regulator of ABA signalling, in the presence of ABA. Subcellular localisation demonstrates that VvPYL1 is distributed in both the nucleus and cytosol, which is similar to the subcellular localisation of ABA receptors in Arabidopsis. We therefore conclude that VvPYL1 is an ABA receptor that modulates ABA signalling by inhibiting type 2C protein phosphatases (PP2Cs).  相似文献   

9.
It is known that the clade A protein phosphatase 2Cs (PP2Cs), including ABI1 and ABI2 and other PP2C members, are key players that function directly downstream of the PYR/PYL/RCAR abscisic acid (ABA) receptors. Here, identification of a crucial site for function of ABI2 protein phosphatase in ABA signalling is reported. It was observed that a calcium-dependent protein kinase (CDPK) phosphorylation site-like motif (CPL) in the ABI2 molecule is required for the interactions of ABI2 with the two members of the ABA receptors PYL5 and PYL9 and with a downstream protein kinase SnRK2.6, and for the catalytic activity of ABI2 in vitro, as well as for the response of ABI2 to the ABA receptors PYL5/PYL9 in relation to the ABA receptor-induced inhibition of the ABI2 phosphatase activity. Further, genetic evidence was provided to demonstrate that this CPL is required for the function of ABI2 to mediate ABA signalling. These data reveal that this CPL is an important site necessary for both the phosphatase activity of ABI2 and the functional interaction between ABI2 and PYL5/9 ABA receptors, providing new information to understand primary events of ABA signal transduction.  相似文献   

10.
Abscisic acid (ABA) mediates resistance to abiotic stress and controls developmental processes in plants. The group‐A PP2Cs, of which ABI1 is the prototypical member, are protein phosphatases that play critical roles as negative regulators very early in ABA signal transduction. Because redundancy is thought to limit the genetic dissection of early ABA signalling, to identify redundant and early ABA signalling proteins, we pursued a proteomics approach. We generated YFP‐tagged ABI1 Arabidopsis expression lines and identified in vivo ABI1‐interacting proteins by mass‐spectrometric analyses of ABI1 complexes. Known ABA signalling components were isolated including SnRK2 protein kinases. We confirm previous studies in yeast and now show that ABI1 interacts with the ABA‐signalling kinases OST1, SnRK2.2 and SnRK2.3 in plants. Interestingly, the most robust in planta ABI1‐interacting proteins in all LC‐MS/MS experiments were nine of the 14 PYR/PYL/RCAR proteins, which were recently reported as ABA‐binding signal transduction proteins, providing evidence for in vivo PYR/PYL/RCAR interactions with ABI1 in Arabidopsis. ABI1–PYR1 interaction was stimulated within 5 min of ABA treatment in Arabidopsis. Interestingly, in contrast, PYR1 and SnRK2.3 co‐immunoprecipitated equally well in the presence and absence of ABA. To investigate the biological relevance of the PYR/PYLs, we analysed pyr1/pyl1/pyl2/pyl4 quadruple mutant plants and found strong insensitivities in ABA‐induced stomatal closure and ABA‐inhibition of stomatal opening. These findings demonstrate that ABI1 can interact with several PYR/PYL/RCAR family members in Arabidopsis, that PYR1–ABI1 interaction is rapidly stimulated by ABA in Arabidopsis and indicate new SnRK2 kinase‐PYR/PYL/RCAR interactions in an emerging model for PYR/PYL/RCAR‐mediated ABA signalling.  相似文献   

11.
We have found that a major target for effectors secreted by Pseudomonas syringae is the abscisic acid (ABA) signalling pathway. Microarray data identified a prominent group of effector-induced genes that were associated with ABA biosynthesis and also responses to this plant hormone. Genes upregulated by effector delivery share a 42% overlap with ABA-responsive genes and are also components of networks induced by osmotic stress and drought. Strongly induced were NCED3, encoding a key enzyme of ABA biosynthesis, and the abscisic acid insensitive 1 (ABI1) clade of genes encoding protein phosphatases type 2C (PP2Cs) involved in the regulation of ABA signalling. Modification of PP2C expression resulting in ABA insensitivity or hypersensitivity led to restriction or enhanced multiplication of bacteria, respectively. Levels of ABA increased rapidly during bacterial colonisation. Exogenous ABA application enhanced susceptibility, whereas colonisation was reduced in an ABA biosynthetic mutant. Expression of the bacterial effector AvrPtoB in planta modified host ABA signalling. Our data suggest that a major virulence strategy is effector-mediated manipulation of plant hormone homeostasis, which leads to the suppression of defence responses.  相似文献   

12.
? The drought hormone abscisic acid (ABA) is widely known to produce reductions in stomatal aperture in guard cells. The second messenger cyclic guanosine 3', 5'-monophosphate (cGMP) is thought to form part of the signalling pathway by which ABA induces stomatal closure. ? We have examined the signalling events during cGMP-dependent ABA-induced stomatal closure in wild-type Arabidopsis plants and plants of the ABA-insensitive Arabidopsis mutant abi1-1. ? We show that cGMP acts downstream of hydrogen peroxide (H(2) O(2) ) and nitric oxide (NO) in the signalling pathway by which ABA induces stomatal closure. H(2) O(2) - and NO-induced increases in the cytosolic free calcium concentration ([Ca(2+) ](cyt) ) were cGMP-dependent, positioning cGMP upstream of [Ca(2+) ](cyt) , and involved the action of the type 2C protein phosphatase ABI1. Increases in cGMP were mediated through the stimulation of guanylyl cyclase by H(2) O(2) and NO. We identify nucleoside diphosphate kinase as a new cGMP target protein in Arabidopsis. ? This study positions cGMP downstream of ABA-induced changes in H(2) O(2) and NO, and upstream of increases in [Ca(2+) ](cyt) in the signalling pathway leading to stomatal closure.  相似文献   

13.
14.
Two related protein phosphatases 2C, ABI1 and AtPP2CA have been implicated as negative regulators of ABA signalling. In this study we characterized the role of AtPP2CA in cold acclimation. The pattern of expression of AtPP2CA and ABI1 was studied in different tissues and in response to abiotic stresses. The expression of both AtPP2CA and ABI1 was induced by low temperature, drought, high salt and ABA. The cold and drought-induced expression of these genes was ABA-dependent, but divergent in various ABA signalling mutants. In addition, the two PP2C genes exhibited differences in their tissue-specific expression as well as in temporal induction in response to low temperature. To elucidate the function of AtPP2CA in cold acclimation further, the corresponding gene was silenced by antisense inhibition. Transgenic antisense plants exhibited clearly accelerated development of freezing tolerance. Both exposure to low temperature and application of ABA resulted in enhanced freezing tolerance in antisense plants. These plants displayed increased sensitivity to ABA both during development of frost tolerance and during seed germination, but not in their drought responses. Furthermore, the expression of cold-and ABA-induced genes was enhanced in transgenic antisense plants. Our results suggest that AtPP2CA is a negative regulator of ABA responses during cold acclimation.  相似文献   

15.
The phytohormone abscisic acid (ABA) regulates physiologically important developmental processes and stress responses. Previously, we reported on Arabidopsis (Arabidopsis thaliana) L. Heynh. ahg mutants, which are hypersensitive to ABA during germination and early growth. Among them, ABA-hypersensitive germination3 (ahg3) showed the strongest ABA hypersensitivity. In this study, we found that the AHG3 gene is identical to AtPP2CA, which encodes a protein phosphatase 2C (PP2C). Although AtPP2CA has been reported to be involved in the ABA response on the basis of results obtained by reverse-genetics approaches, its physiological relevance in the ABA response has not been clarified yet. We demonstrate in vitro and in vivo that the ahg3-1 missense mutation causes the loss of PP2C activity, providing concrete confirmation that this PP2C functions as a negative regulator in ABA signaling. Furthermore, we compared the effects of disruption mutations of eight structurally related PP2C genes of Arabidopsis, including ABI1, ABI2, HAB1, and HAB2, and found that the disruptant mutant of AHG3/AtPP2CA had the strongest ABA hypersensitivity during germination, but it did not display any significant phenotypes in adult plants. Northern-blot analysis clearly showed that AHG3/AtPP2CA is the most active among those PP2C genes in seeds. These results suggest that AHG3/AtPP2CA plays a major role among PP2Cs in the ABA response in seeds and that the functions of those PP2Cs overlap, but their unique tissue- or development-specific expression confers distinct and indispensable physiological functions in the ABA response.  相似文献   

16.
Cantharidin and its analogues have been of considerable interest as potent inhibitors of the serine/threonine protein phosphatases 1 and 2A (PP1 and PP2A). However, limited modifications to the parent compounds is tolerated. As part of an on-going study we have developed a new series of cantharidin analogues, the cantharimides. Inhibition studies indicate that cantharimides possessing a D- or L-histidine, are more potent inhibitors of PP1 and PP2A (PP1 IC(50)=3.22+/-0.7 microM; PP2A IC(50)=0.81+/-0.1 microM and PP1 IC(50)=2.82+/-0.6 microM; PP2A IC(50)=1.35+/-0.3 microM, respectively) than norcantharidin (PP1 IC(50)=5.31+/-0.76 microM; PP2A IC(50)=2.9+/-1.04 microM) and essentially equipotent with cantharidin (PP1 IC(50)=3.6+/-0.42 microM; PP2A IC(50)=0.36+/-0.08 microM). Cantharimides with non-polar or acidic amino acid residues are only poor inhibitors of PP1 and PP2A.  相似文献   

17.
In plants, clade A type 2C protein phosphatases (PP2CAs) have emerged as major players in abscisic acid (ABA)-regulated stress responses by inhibiting protein kinase activity. However, how different internal and external environmental signals modulate the activity of PP2CAs are not well known. The transmembrane kinase (TMK) protein 4 (TMK4), one member of a previously identified receptor kinase subfamily on the plasma membrane that plays vital roles in plant cell growth, directly interacts with PP2CAs member (ABA-Insensitive 2, ABI2). tmk4 mutant is hypersensitive to ABA in both ABA-inhibited seed germination and primary root growth, indicating that TMK4 is a negative regulator in ABA signaling pathway. Further analyses indicate that TMK4 phosphorylates ABI2 at three conserved Ser residues, thus enhancing the activity of ABI2. The phosphorylation-mimic ABI2S139DS140DS266D can complement but non-phosphorylated form ABI2S139AS140AS266A cannot complement ABA hypersensitive phenotype of the loss-of-function mutant abi1-2abi2-2. This study provides a previously unidentified mechanism for positively regulating ABI2 by a plasma membrane protein kinase.  相似文献   

18.
19.
The plant hormone abscisic acid (ABA) orchestrates plant adaptive responses to a variety of stresses, including drought. This signaling pathway is regulated by reversible protein phosphorylation, and genetic evidence demonstrated that several related protein phosphatases 2C (PP2Cs) are negative regulators of this pathway in Arabidopsis thaliana. Here, we developed a protein phosphatase profiling strategy to define the substrate preferences of the HAB1 PP2C implicated in ABA signaling and used these data to screen for putative substrates. Interestingly, this analysis designated the activation loop of the ABA activated kinase OST1, related to Snf1 and AMPK kinases, as a putative HAB1 substrate. We experimentally demonstrated that HAB1 dephosphorylates and deactivates OST1 in vitro. Furthermore, HAB1 and the related PP2Cs ABI1 and ABI2 interact with OST1 in vivo, and mutations in the corresponding genes strongly affect OST1 activation by ABA. Our results provide evidence that PP2Cs are directly implicated in the ABA-dependent activation of OST1 and further suggest that the activation mechanism of AMPK/Snf1-related kinases through the inhibition of regulating PP2Cs is conserved from plants to human.  相似文献   

20.
Plant hormone abscisic acid (ABA) is found in a wide range of land plants, from mosses to angiosperms. However, our knowledge concerning the function of ABA is limited to some angiosperm plant species. We have shown that the basal land plant Physcomitrella patens and the model plant Arabidopsis thaliana share a conserved abscisic acid (ABA) signaling pathway mediated through ABI1-related type 2C protein phosphatases (PP2Cs). Ectopic expression of Arabidopsis abi1-1, a dominant allele of ABI1 that functions as a negative regulator of ABA signaling, or targeted disruption of Physcomitrella ABI1-related gene (PpABI1A) resulted in altered ABA sensitivity and abiotic stress tolerance of Physcomitrella, as demonstrated by osmostress and freezing stress. Moreover, transgenic Physcomitrella overexpressing abi1-1 showed altered morphogenesis. These trangenic plants had longer stem lengths compared to the wild type, and continuous growth of archegonia (female organ) with few sporophytes under non-stress conditions. Our results suggest that PP2C-mediated ABA signaling is involved in both the abiotic stress responses and developmental regulation of Physcomitrella.Key words: ABA, ABI1, Physcomitrella patens, PP2C, signaling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号