首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An RNA-dependent RNA polymerase (replicase) extract from brome mosaic virus-infected barley leaves has been shown to initiate synthesis of (-) sense RNA from (+) sense virion RNA. Initiation occurred de novo, as demonstrated by the incorporation of [gamma-32P]GTP into the product. Sequencing using cordycepin triphosphate to terminate (-) strands during their synthesis by the replicase generated sequence ladders that confirmed that copying was accurate, and that initiation occurred very close to the 3' end. The precise site of initiation was further defined by testing the replicase template activity after stepwise removal of 3'-terminal nucleotides. Whereas removal of the terminal A did not decrease template activity, removal of the next nucleotide (C-2) did. Thus, initiation almost certainly occurs opposite the penultimate 3'-nucleotide (C-2) in vitro. The structure of the double-stranded replicative form of RNA isolated from brome mosaic virus-infected leaves was consistent with such a mechanism occurring in vivo, in that it lacked the 3'-terminal A found on virion RNAs. The specific site of (-) strand initiation and normal template activity were retained for RNAs with as many as 15 to 30 A residues added to the 3' end. However, only limited oligonucleotide 3' extensions can be present on active templates. In order to assess the 5' extent of sequences required for an active template, a 134-nucleotide-long fragment of brome mosaic virus RNA, corresponding to the tRNA-like structure, was generated. This RNA had high template activity, but a shorter 3' (85-nucleotide) fragment was inactive. RNAs with various heterologous sequences 5' to position 134 also showed high template activity. Thus, the 3'-terminal tRNA-like structure common to all four brome mosaic virus virion RNAs contains all of the signals required for initiation of replication, and sequences 5' to it do not play a role in template selection.  相似文献   

3.
Qβ replicase (RNA-directed RNA polymerase of bacteriophage Qβ) exponentially amplifies certain RNAs in vitro. Previous studies have shown that Qβ replicase can initiate and elongate on a variety of RNAs; however, only a minute fraction of them are recognized as ‘legitimate’ templates. Guanosine 5′-triphosphate (GTP)-dependent initiation on a legitimate template generates a stable replicative complex capable of elongation in the presence of aurintricarboxylic acid, a powerful inhibitor of RNA-protein interactions. On the contrary, initiation on an illegitimate template is GTP independent and does not result in the aurintricarboxylic-acid-resistant replicative complex. This article demonstrates that the 3′ and 5′ termini of a legitimate template cooperate during and after the initiation step. Breach of the cooperation by dividing the template into fragments or by introducing point mutations at the 5′ terminus reduces the rate and the yield of initiation, increases the GTP requirement, decreases the overall rate of template copying, and destabilizes the postinitiation replicative complex. These results revive the old idea of a functional circularity of legitimate Qβ replicase templates and complement the increasing body of evidence that functional circularity may be a common property of RNA templates directing the synthesis of either RNA or protein molecules.  相似文献   

4.
5.
Localization of the Q beta replicase recognition site in MDV-1 RNA   总被引:4,自引:0,他引:4  
Fragments of MDV-1 RNA (a small, naturally occurring template for Q beta replicase) that were missing nucleotides at either their 5' end or their 3' end were still able to form a complex with Q beta replicase. By assaying the binding ability of fragments of different length, it was established that the binding site for Q beta replicase is determined by nucleotide sequences that are located near the middle of MDV-1 RNA. Fragments missing nucleotides at their 5' end were able to serve as templates for the synthesis of complementary strands, but fragments missing nucleotides at their 3' end were inactive, indicating that the 3'-terminal region of the template is required for the initiation of RNA synthesis. The nucleotide sequences of both the 3' terminus and the central binding region of MDV-1 (+) RNA are almost identical to sequences at the 3' terminus and at an internal region of Q beta (-) RNA.  相似文献   

6.
7.
Terminal adenylation in the synthesis of RNA by Q beta replicase   总被引:10,自引:0,他引:10  
We investigated the apparent requirement that Q beta replicase must add a nontemplated adenosine to the 3' end of newly synthesized RNA strands. We used abbreviated MDV-1 (+)-RNA templates that lacked either 62 or 63 nucleotides at their 5' end in Q beta replicase reactions. The MDV-1 (-)-RNA strands synthesized from these abbreviated (+)-strand templates were released from the replication complex, yet they did not possess a nontemplated 3'-terminal adenosine. These results imply that, despite observations that all naturally occurring RNAs synthesized by Q beta replicase possess a nontemplated 3'-adenosine, the addition of an extra adenosine is not an obligate step for the release of completed strands. Since the abbreviated templates lacked a normal 5' end, it is probable that a particular sequence at the 5' end of the template is required for terminal adenylation to occur.  相似文献   

8.
The crystal structure of the recombinant hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) revealed extensive interactions between the fingers and the thumb subdomains, resulting in a closed conformation with an established template channel that should specifically accept single-stranded templates. We made circularized RNA templates and found that they were efficiently used by the HCV RdRp to synthesize product RNAs that are significantly longer than the template, suggesting that RdRp could exist in an open conformation prior to template binding. RNA synthesis using circular RNA templates had properties similar to those previously documented for linear RNA, including a need for higher GTP concentration for initiation, usage of GTP analogs, sensitivity to salt, and involvement of active-site residues for product formation. Some products were resistant to challenge with the template competitor heparin, indicating that the elongation complexes remain bound to template and are competent for RNA synthesis. Other products were not elongated in the presence of heparin, indicating that the elongation complex was terminated. Lastly, recombinant RdRps from two other flaviviruses and from the Pseudomonas phage phi6 also could use circular RNA templates for RNA-dependent RNA synthesis, although the phi6 RdRp could only use circular RNAs made from the 3'-terminal sequence of the phi6 genome.  相似文献   

9.
As a component of bacteriophage Qbeta replicase, S1 is required both for initiation of Qbeta minus strand RNA synthesis and for translational repression, which has been traced to the ability of the enzyme to bind to an internal site in the Qbeta RNA molecule. Previously, Senear and Steitz (Senear, A. W., and Steitz, J. A. (1976) J. Biol. Chem. 251, 1902-1912) found that isolated S1 protein binds specifically to an oligonucleotide spanning residues -38 to -63 from the 3' terminus of Qbeta RNA. Here we report that S1 also interacts strongly with a second oligonucleotide in Qbeta RNA, which is derived from the region recognized by replicase just 5' to the Qbeta coat protein cistron. Both sequences exhibit pyrimidine-rich regions.  相似文献   

10.
K R Hill  M Hajjou  J Y Hu    R Raju 《Journal of virology》1997,71(4):2693-2704
Sindbis virus (SIN), a mosquito-transmitted animal RNA virus, carries a 11.7-kb positive-sense RNA genome which is capped and polyadenylated. We recently reported that the SIN RNA-dependent RNA polymerase (RdRp) could initiate negative-strand RNA synthesis from a 0.3-kb 3'-coterminal SIN RNA fragment and undergo template switching in vivo (M. Hajjou, K. R. Hill, S. V. Subramaniam, J. Y. Hu, and R. Raju, J. Virol. 70:5153-5164, 1996). To identify and characterize the viral and nonviral sequences which regulate SIN RNA synthesis and recombination, a series of SIN RNAs carrying altered 3' ends were tested for the ability to produce infectious virus or to support recombination in BHK cells. The major findings of this report are as follows: (i) the 3'-terminal 20-nucleotides (nt) sequence along with the abutting poly(A) tail of the SIN genome fully supports negative-strand synthesis, genome replication, and template switching; (ii) a full-length SIN RNA carrying the 3'-terminal 24 nt but lacking the poly(A) tail is noninfectious; (iii) SIN RNAs which carry 3' 64 nt or more without the poly(A) tail are infectious and regain their poly(A) tail in vivo; (iv) donor templates lacking the poly(A) tail do not support template switching; (v) full-length SIN RNAs lacking the poly(A) tail but carrying 3' nonviral extensions, although debilitated to begin with, evolve into rapidly growing poly(A)-carrying mutants; (vi) poly(A) or poly(U) motifs positioned internally within the acceptor templates, in the absence of other promoter elements within the vicinity, do not induce the jumping polymerase to reinitiate at these sites; and (vii) the junction site selection on donor templates occurs independently of the sequences around the acceptor sites. In addition to furthering our understanding of RNA recombination, these studies give interesting clues as to how the alphavirus polymerase interacts with its 3' promoter elements of genomic RNA and nonreplicative RNAs. This is the first report that an in vitro-synthesized alphavirus RNA lacking a poly(A) tail can initiate infection and produce 3' polyadenylated viral genome in vivo.  相似文献   

11.
12.
Shim JH  Larson G  Wu JZ  Hong Z 《Journal of virology》2002,76(14):7030-7039
De novo RNA synthesis by hepatitis C virus (HCV) nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase has been investigated using short RNA templates. Various templates including those derived from the HCV genome were evaluated by examining the early steps of de novo RNA synthesis. NS5B was shown to be able to produce an initiation dinucleotide product from templates as short as 4-mer and from the 3'-terminal sequences of both plus and minus strands of the HCV RNA genome. GMP, GDP, and guanosine were able to act as an initiating nucleotide in de novo RNA synthesis, indicating that the triphosphate moiety is not absolutely required by an initiating nucleotide. Significant amounts of the initiation product accumulated in de novo synthesis, and elongation from the dinucleotide was observed when large amounts of dinucleotide were available. This result suggests that NS5B, a template, and incoming nucleotides are able to form an initiation complex that aborts frequently by releasing the dinucleotide product before transition to an elongation complex. The transition is rate limiting. Furthermore, we discovered that the secondary structure of a template was not essential for de novo initiation and that 3'-terminal bases of a template conferred specificity in selection of an initiation site. Initiation can occur at the +1, +2, or +3 position numbered from the 3' end of a template depending on base composition. Pyrimidine bases at any of the three positions are able to serve as an initiation site, while purine bases at the +2 and +3 positions do not support initiation. This result implies that HCV possesses an intrinsic ability to ensure that de novo synthesis is initiated from the +1 position and to maintain the integrity of the 3' end of its genome. This assay system should be an important tool for investigating the detailed mechanism of de novo initiation by HCV NS5B as well as other viral RNA polymerases.  相似文献   

13.
C K Biebricher  R Luce 《The EMBO journal》1992,11(13):5129-5135
SV-11 is a short-chain [115 nucleotides (nt)] RNA species that is replicated by Q beta replicase. It is reproducibly selected when MNV-11, another 87 nt RNA species, is extensively amplified by Q beta replicase at high ionic strength and long incubation times. Comparing the sequences of the two species reveals that SV-11 contains an inverse duplication of the high-melting domain of MNV-11. SV-11 is thus a recombinant between the plus and minus strands of MNV-11 resulting in a nearly palindromic sequence. During chain elongation in replication, the chain folds consecutively to a metastable secondary structure of the RNA, which can rearrange spontaneously to a more stable hairpin-form RNA. While the metastable form is an excellent template for Q beta replicase, the stable RNA is unable to serve as template. When initiation of a new chain is suppressed by replacing GTP in the replication mixture by ITP, Q beta replicase adds nucleotides to the 3' terminus of RNA. The replicase uses parts of the RNA sequence, preferentially the 3' terminal part for copying, thereby creating an interior duplication. This reaction is about five orders of magnitude slower than normal template-instructed synthesis. The reaction also adds nucleotides to the 3' terminus of some RNA molecules that are unable to serve as templates for Q beta replicase.  相似文献   

14.
Positive strand viral replicases are membrane-bound complexes of viral and host proteins. The mechanism of viral replication and the role of host proteins are not well understood. To understand this mechanism, a viral replicase assay that utilizes extracts from dengue virus-infected mosquito (C6/36) cells and exogenous viral RNA templates is reported in this study. The 5'- and 3'-terminal regions (TR) of the template RNAs contain the conserved elements including the complementary (cyclization) motifs and stem-loop structures. RNA synthesis in vitro requires both 5'- and 3'-TR present in the same template molecule or when the 5'-TR RNA was added in trans to the 3'-untranslated region (UTR) RNA. However, the 3'-UTR RNA alone is not active. RNA synthesis occurs by elongation of the 3'-end of the template RNA to yield predominantly a double-stranded hairpin-like RNA product, twice the size of the template RNA. These results suggest that an interaction between 5'- and 3'-TR of the viral RNA that modulates the 3'-UTR RNA structure is required for RNA synthesis by the viral replicase. The complementary cyclization motifs of the viral genome also seem to play an important role in this interaction.  相似文献   

15.
16.
HeLa cells were transfected with several plasmids that encoded all poliovirus (PV) nonstructural proteins. Viral RNAs were transcribed by T7 RNA polymerase expressed from recombinant vaccinia virus. All plasmids produced similar amounts of viral proteins that were processed identically; however, RNAs were designed either to serve as templates for replication or to contain mutations predicted to prevent RNA replication. The mutations included substitution of the entire PV 5' noncoding region (NCR) with the encephalomyocarditis virus (EMCV) internal ribosomal entry site, thereby deleting the 5'-terminal cloverleaf-like structure, or insertion of three nucleotides in the 3Dpol coding sequence. Production of viral proteins was sufficient to induce the characteristic reorganization of intracellular membranes into heterogeneous-sized vesicles, independent of RNA replication. The vesicles were stably associated with viral RNA only when RNA replication could occur. Nonreplicating RNAs localized to distinct, nonoverlapping regions in the cell, excluded from the viral protein-membrane complexes. The absence of accumulation of positive-strand RNA from both mutated RNAs in transfected cells was documented. In addition, no minus-strand RNA was produced from the EMCV chimeric template RNA in vitro. These data show that the 5'-terminal sequences of PV RNA are essential for initiation of minus-strand RNA synthesis at its 3' end.  相似文献   

17.
(1) The RNA replicase induced by bacteriophage Qbeta consists of four non-identical subunits designated as alpha (mol. wt. 74000), beta (mol. wt. 64000), gamma (mol. wt. 47000) and delta (mol. wt. 33000), only one (subunit beta) of which is specified by the phage genome. (2) Subunit alpha (30 S ribosomal protein "S1" as well as translational interference factor "i") is required only for (+) strand-directed RNA synthesis in the presence of the host factor. (3) Qbeta replicase lacking subunit alpha (R-alpha) is capable of replicating templates other than (+) strand, such as (--), "6S" RNA, poly(C) etc., in the absence of the host factor. (4) Subunit beta is suggested to be the nucleotide-polymerizing enzyme, but is unable to initiate RNA synthesis by itself. (5) Subunits gamma and delta are identical to the protein synthesis elongation factors, EF-Tu and EF-Ts, respectively, and are required only for initiation of RNA synthesis, but not for elongation. (6) A model of Qbeta replicase is presented in order to discuss observed template-enzyme interactions.  相似文献   

18.
The genome of the positive strand RNA bacteriophage Qbeta folds into a number of structural domains, defined by long-distance interactions. The RNA within each domain is ordered in arrays of three- and four-way junctions that confer rigidity to the chain. One such domain, RD2, is about 1,000-nt long and covers most of the replicase gene. Its downstream border is the 3' untranslated region, whereas upstream the major binding site for Qbeta replicase, the M-site, is located. Replication of Qbeta RNA has always been puzzling because the binding site for the enzyme lies some 1,500-nt away from the 3' terminus. We present evidence that the long-range interaction defining RD2 exists and positions the 3' terminus in the vicinity of the replicase binding site. The model is based on several observations. First, mutations destabilizing the long-range interaction are virtually lethal to the phage, whereas base pair substitutions have little effect. Secondly, in vitro analysis shows that destabilizing the long-range pairing abolishes replication of the plus strand. Thirdly, passaging of nearly inactive mutant phages results in the selection of second-site suppressor mutations that restore both long-range base pairing and replication. The data are interpreted to mean that the 3D organization of this part of Qbeta RNA is essential to its replication. We propose that, when replicase is bound to the internal recognition site, the 3' terminus of the template is juxtaposed to the enzyme's active site.  相似文献   

19.
20.
A puzzling aspect of replication of bacteriophage Qbeta RNA has always been that replicase binds at an internal segment, the M-site, some 1450 nt away from the 3' end. Here, we report on the existence of a long-range pseudoknot, base-pairing eight nt in the loop of the 3' terminal hairpin to a single-stranded interdomain sequence located about 1200 nt upstream, close to the internal replicase binding site. Introduction of a single mismatch into this pseudoknot is sufficient to abolish replication, but the inhibition is fully reversed by a second-site substitution that restores the pairing. The pseudoknot is part of an elaborate structure that seems to hold the 3' end in a fixed position vis a vis the replicase binding site. Our results imply that the shape of the RNA confers the functonality. We discuss the possible relevance of our findings for replication of other viral RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号