首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ionotropic glutamate receptors (GluRs) are ligand-gated ion channels with a modular structure. The ion channel itself shares structural similarity, albeit an inverted membrane topology, with P-loop channels. Like P-loop channels, prokaryotic GluR subunits (e.g. GluR0) have two transmembrane segments. In contrast, eukaryotic GluRs have an additional transmembrane segment (M4), located C-terminal to the ion channel core. However, the structural/functional significance of this additional transmembrane segment is poorly defined. Although topologically similar to GluR0, mammalian AMPA receptor (GluA1) subunits lacking the M4 segment do not display surface expression. This lack of expression is not due to the M4 segment serving as an anchor to the ligand-binding domain because insertion of an artificial polyleucine transmembrane segment does not rescue surface expression. Specific interactions between M4 and the ligand-binding domain are also unlikely because insertion of polyglycines into the linker connecting them has no deleterious effects on function or surface expression. However, tryptophan and cysteine scanning mutagenesis of the M4 segment, as well as recovery of function in the polyleucine background, defined a unique face of the M4 helix that is required for GluR surface expression. In the AMPA receptor structure, this face forms intersubunit contacts with the transmembrane helices of the ion channel core (M1 and M3) from another subunit within the homotetramer. Thus, our experiments show that a highly specific interaction of the M4 segment with an adjacent subunit is required for surface expression of AMPA receptors. This interaction may represent a mechanism for regulating AMPA receptor biogenesis.  相似文献   

2.
ATP-sensitive potassium (KATP) channels are formed by the coassembly of four Kir6.2 subunits and four sulfonylurea receptor subunits (SUR). The cytoplasmic domains of Kir6.2 mediate channel gating by ATP, which closes the channel, and membrane phosphoinositides, which stabilize the open channel. Little is known, however, about the tertiary or quaternary structures of the domains that are responsible for these interactions. Here, we report that an ion pair between glutamate 229 and arginine 314 in the intracellular COOH terminus of Kir6.2 is critical for maintaining channel activity. Mutation of either residue to alanine induces inactivation, whereas charge reversal at positions 229 and 314 (E229R/R314E) abolishes inactivation and restores the wild-type channel phenotype. The close proximity of these two residues is demonstrated by disulfide bond formation between cysteine residues introduced at the two positions (E229C/R314C); disulfide bond formation abolishes inactivation and stabilizes the current. Using Kir6.2 tandem dimer constructs, we provide evidence that the ion pair likely forms by residues from two adjacent Kir6.2 subunits. We propose that the E229/R314 intersubunit ion pairs may contribute to a structural framework that facilitates the ability of other positively charged residues to interact with membrane phosphoinositides. Glutamate and arginine residues are found at homologous positions in many inward rectifier subunits, including the G-protein-activated inwardly rectifying potassium channel (GIRK), whose cytoplasmic domain structure has recently been solved. In the GIRK structure, the E229- and R314-corresponding residues are oriented in opposite directions in a single subunit such that in the tetramer model, the E229 equivalent residue from one subunit is in close proximity of the R314 equivalent residue from the adjacent subunit. The structure lends support to our findings in Kir6.2, and raises the possibility that a homologous ion pair may be involved in the gating of GIRKs.  相似文献   

3.
N Nakanishi  N A Shneider  R Axel 《Neuron》1990,5(5):569-581
We have isolated two cDNA clones (GluR-K2 and GluR-K3) that share considerable sequence identity with the previously described glutamate receptor subunit, GluR-K1. The three glutamate receptor subunits show significant sequence conservation with the glutamine binding component of the glutamine permease of E. coli. Each of these clones encodes a channel responsive to both kainate and AMPA. The coexpression of GluR-K2 with either GluR-K3 or GluR-K1 results in the formation of channels whose current-voltage relationships differ from those of the individual subunits alone and more closely approximate the properties of kainate receptors in neurons. These observations indicate that the kainate/quisqualate receptors are encoded by a family of genes and are likely to be composed of hetero-oligomers of at least two distinct subunits.  相似文献   

4.
In ionotropic glutamate receptors, many channel properties (e.g., selectivity, ion permeation, and ion block) depend on the residue (glutamine, arginine, or asparagine) located at the tip of the pore loop (the Q/R/N site). We substituted a cysteine for the asparagine present at that position in both NR1 and NR2 N-methyl-D-aspartate (NMDA) receptor subunits. Under control conditions, receptors containing mutated NR1 and NR2 subunits show much smaller glutamate responses than wild-type receptors. However, this difference disappears upon addition of heavy metal chelators in the extracellular bath. The presence of cysteines at the Q/R/N site in both subunits of NR1/NR2C receptors results in a 220,000-fold increase in sensitivity of the inhibition by extracellular Zn. In contrast with the high-affinity Zn inhibition of wild-type NR1/NR2A receptors, the high-affinity Zn inhibition of mutated NR1/NR2C receptors shows a voltage dependence, which resembles very much that of the block by extracellular Mg. This indicates that the Zn inhibition of the mutated receptors results from a channel block involving Zn binding to the thiol groups introduced into the selectivity filter. Taking advantage of the slow kinetics of the Zn block, we show that both blocking and unblocking reactions require prior opening of the channel.  相似文献   

5.
The pore of the catfish olfactory cyclic nucleotide-gated (CNG) channel contains four conserved glutamate residues, one from each subunit, that form a high-affinity binding site for extracellular divalent cations. Previous work showed that these residues form two independent and equivalent high-pKa (approximately 7.6) proton binding sites, giving rise to three pH-dependent conductance states, and it was suggested that the sites were formed by pairing of the glutamates into two independent carboxyl-carboxylates. To test further this physical picture, wild-type CNG subunits were coexpressed in Xenopus oocytes with subunits lacking the critical glutamate residue, and single channel currents through hybrid CNG channels containing one to three wild-type (WT) subunits were recorded. One of these hybrid channels had two pH-dependent conductance states whose occupancy was controlled by a single high-pKa protonation site. Expression of dimers of concatenated CNG channel subunits confirmed that this hybrid contained two WT and two mutant subunits, supporting the idea that a single protonation site is made from two glutamates (dimer expression also implied the subunit makeup of the other hybrid channels). Thus, the proton binding sites in the WT channel occur as a result of the pairing of two glutamate residues. This conclusion places these residues in close proximity to one another in the pore and implies that at any instant in time detailed fourfold symmetry is disrupted.  相似文献   

6.
A large cytoplasmic domain accounts for approximately one-third of the entire protein of one superfamily of ligand-gated membrane ion channels, which includes nicotinic acetylcholine (nACh), gamma-aminobutyric acid type A (GABA(A)), serotonin type 3 (5-HT3), and glycine receptors. Desensitization is one functional feature shared by these receptors. Because most molecular studies of receptor desensitization have focused on the agonist binding and channel pore domains, relatively little is known about the role of the large cytoplasmic domain (LCD) in this process. To address this issue, we sequentially deleted segments of the LCD of the 5-HT3A receptor and examined the function of the mutant receptors. Deletion of a small segment that contains three amino acid residues (425-427) significantly slowed the desensitization kinetics of the 5-HT3A receptor. Both deletion and point mutation of arginine 427 altered desensitization kinetics in a manner similar to that of the (425-427) deletion without significantly changing the apparent agonist affinity. The extent of receptor desensitization was positively correlated with the polarity of the amino acid residue at 427: the desensitization accelerates with increasing polarity. Whereas the R427L mutation produced the slowest desensitization, it did not significantly alter single channel conductance of 5-HT3A receptor. Thus, the arginine 427 residue in the LCD contributes to 5-HT3A receptor desensitization, possibly through forming an electrostatic interaction with its neighboring residues. Because the polarity of the amino acid residue at 427 is highly conserved, such a desensitization mechanism may occur in other members of the Cys-loop family of ligand-gated ion channels.  相似文献   

7.
GluR1 and GluR2 are two highly homologous subunits of the glutamate AMPA receptor but with different functional properties. In ligand gated channels the transmembrane domain II is thought to form the wall of the ionic pore and determine the electrical properties. A chimeric AMPA receptor subunit was constructed by replacing the region comprising transmembrane domains I and II in GluR1 by the corresponding region of GluR2. Alone or forming an heteromer with GluR1, the resulting chimera has the properties of GluR2. Sequence comparison suggests that an arginine at position 600 in the chimera instead of a glutamine in GluR1 is responsible for these properties.  相似文献   

8.
Abstract: RNA editing plays an important role in determining physiological characteristics of certain glutamate-gated receptor (GluR) channels such as Ca2+ permeability and desensitization kinetics. In one case, the editing changes a gene-encoded glutamine (Q) to an arginine (R) codon located in the channel-forming domain of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunit GluR-B and also the kainate receptor subunits GluR5 and GluR6. Another case of RNA editing alters an arginine (R) to a glycine (G) codon at a position termed the "R/G" site of AMPA subunits GluR-B, C, and D. Double-stranded RNA-specific adenosine deaminases (DRADA) have been implicated as agents involved in the editing. By using a human teratocarcinoma cell line, NT2, we investigated the change of the RNA editing of GluR subunits in conjunction with the expression of two DRADA members, DRADA1 and DRADA2 genes, during neuronal differentiation. Whereas Q/R and R/G site RNA editing both become progressively activated in differentiating NT2 cells, the expression of the two DRADA genes can already be detected even in the undifferentiated NT2 cells. Development of the editing machinery appears to require, in addition to DRADA enzymes, a currently unidentified mechanism(s) that may become activated during neuronal differentiation.  相似文献   

9.
Excitatory synaptic transmission in the central nervous system (CNS) is mediated by three major classes of glutamate receptors, namely the ionotropic NMDA (N-Methyl-D-Aspartate) and KA/AMPA (kainate/alpha-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid) receptors and the metabotropic receptor type. Among the ionotropic receptors, NMDA receptors are thought to mediate their physiological response mainly through the influx of extracellular calcium, while KA/AMPA receptor channels are mainly thought to carry the influx of monovalent cations. Recently, we have challenged this view by showing that cloned KA/AMPA receptor subunits GluR1 and GluR3 form ion channels which are permeable to calcium. We now directly demonstrate large increases in intracellular calcium concentrations induced by calcium fluxes through KA/AMPA receptor channels in solutions with physiological calcium concentrations. Calcium fluxes were observed through glutamate receptor channels composed of the subunits GluR1 and GluR3, which are both abundantly present in various types of central neurones. The calcium influx was fluorometrically monitored in Xenopus oocytes injected with the calcium indicator dye fura-2. Bath application of the membrane permeable analogue of adenosine cyclic monophosphate (cAMP) potentiated the current and also the flux of calcium through open KA/AMPA receptor channels. Further pharmacological experiments suggested that this effect was mediated by the activation of protein kinase A. Our results provide a molecular interpretation for the function of calcium permeable KA/AMPA receptor channels in neurones and identify two of the subunits of the KA/AMPA receptor channel which are regulated by the cAMP dependent second messenger system.  相似文献   

10.
11.
RNA editing at the Q/R site in the GluR5 and GluR6 subunits of neuronal kainate receptors regulates channel inhibition by lipid-derived modulators including the cis-unsaturated fatty acids arachidonic acid and docosahexaenoic acid. Kainate receptor channels in which all of the subunits are in the edited (R) form exhibit strong inhibition by these compounds, whereas wild-type receptors that include a glutamine (Q) at the Q/R site in one or more subunits are resistant to inhibition. In the present study, we have performed an arginine scan of residues in the pore loop of the GluR6(Q) subunit. Amino acids within the range from -19 to +7 of the Q/R site of GluR6(Q) were individually mutated to arginine and the mutant cDNAs were expressed as homomeric channels in HEK 293 cells. All but one of the single arginine substitution mutants yielded functional channels. Only weak inhibition, typical of wild-type GluR6(Q) channels, was observed for substitutions +1 to +6 downstream of the Q/R site. However, arginine substitution at several locations upstream of the Q/R site resulted in homomeric channels exhibiting strong inhibition by fatty acids, which is characteristic of homomeric GluR6(R) channels. Based on homology with the pore loop of potassium channels, locations at which R substitution induces susceptibility to fatty acid inhibition face away from the cytoplasm toward the M1 and M3 helices and surrounding lipids.  相似文献   

12.
13.
Two full-length glutamate-gated chloride channel (GluCl) cDNAs, encoding GluClalpha3 and GluClbeta subunits, were cloned from ivermectin-susceptible (IVS) and -resistant (IVR) Cooperia oncophora adult worms. The IVS and IVR GluClalpha3 subunits differ at three amino acid positions, while the IVS and IVR GluClbeta subunits differ at two amino acid positions. The aim of this study was to determine whether mutations in the IVR subunits affect agonist sensitivity. The subunits were expressed singly and in combination in Xenopus laevis oocytes. Electrophysiological whole-cell voltage-clamp recordings showed that mutations in the IVR GluClalpha3 caused a modest but significant threefold loss of sensitivity to glutamate, the natural ligand for GluCl receptors. As well, a significant decrease in sensitivity to the anthelmintics ivermectin and moxidectin was observed in the IVR GluClalpha3 receptor. Mutations in the IVR GluClbeta subunit abolished glutamate sensitivity. Co-expressing the IVS GluClalpha3 and GluClbeta subunits resulted in heteromeric channels that were more sensitive to glutamate than the respective homomeric channels, demonstrating co-assembly of the subunits. In contrast, the heteromeric IVR channels were less sensitive to glutamate than the homomeric IVR GluClalpha3 channels. The heteromeric IVS channels were significantly more sensitive to glutamate than the heteromeric IVR channels. Of the three amino acids distinguishing the IVS and IVR GluClalpha3 subunits, only one of them, L256F, accounted for the differences in response between the IVS and IVR GluClalpha3 homomeric channels.  相似文献   

14.
Kumar J  Schuck P  Mayer ML 《Neuron》2011,71(2):319-331
Native glutamate receptor ion channels are tetrameric assemblies containing two or more different subunits. NMDA receptors are obligate heteromers formed by coassembly of two or three divergent gene families. While some AMPA and kainate receptors can form functional homomeric ion channels, the KA1 and KA2 subunits are obligate heteromers which?function only in combination with GluR5-7. The mechanisms controlling glutamate receptor assembly involve an initial step in which the amino terminal domains (ATD) assemble as dimers. Here, we establish by sedimentation velocity that the ATDs of GluR6 and KA2 coassemble as a heterodimer of K(d) 11?nM, 32,000-fold lower than the K(d) for homodimer formation by KA2; we solve crystal structures for the GluR6/KA2 ATD heterodimer and heterotetramer assemblies. Using these structures as a guide, we perform a mutant cycle analysis to probe the energetics of assembly and show that high-affinity ATD interactions are required for biosynthesis of functional heteromeric receptors.  相似文献   

15.
16.
Four residues in the carboxy-terminal domain of human epidermal growth factor (hEGF), glutamate 40, glutamine 43, arginine 45, and aspartate 46 were targeted for site-directed mutagenesis to evaluate their potential role in epidermal growth factor (EGF) receptor-ligand interaction. One or more mutations were generated at each of these sites and the altered recombinant hEGF gene products were purified and evaluated by radioreceptor competition binding assay. Charge-conservative replacement of glutamate 40 with aspartate resulted in a decrease in receptor binding affinity to 30% relative to wild-type hEGF. On the other hand, removal of the electrostatic charge by substitution of glutamate 40 with glutamine or alanine resulted in only a slightly greater decrease in receptor binding to 25% relative receptor affinity. The introduction of a positive charge upon substitution of glutamine 43 with lysine had no effect on receptor binding. The substitution of arginine 45 with lysine also showed no effect on receptor binding, unlike the absolute requirement observed for the arginine side-chain at position 41 [Engler DA, Campion SR, Hauser MR, Cook JS, Niyogi, SK: J Biol Chem 267:2274-2281, 1992]. Subsequent elimination of the positive charge of lysine 45 by reaction with potassium cyanate showed that the electrostatic property of the residue at this site, as well as that at lysine 28 and lysine 48, was not required for receptor-ligand association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Glutamate receptors are not only abundant and important mediators of fast excitatory synaptic transmission in vertebrates, but they also serve a similar function in invertebrates such as Drosophila and the nematode Caenorhabditis elegans. In C. elegans, an animal with only 302 neurons, 10 different glutamate receptor subunits have been identified and cloned. To study the ion channel properties of these receptor subunits, we recorded glutamate-gated currents from Xenopus oocytes that expressed either C. elegans glutamate receptor subunits or chimeric rat/C. elegans glutamate receptor subunits. The chimeras were constructed between the C. elegans glutamate receptor pore domains and either the rat kainate receptor subunit GluR6, the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunit GluR1, or the N-methyl-d-aspartate (NMDA) receptor subunit NMDAR1-1a. Although native subunits were nonfunctional, 9 of 10 ion pores were found to conduct current upon transplantation into rat receptor subunits. A provisional classification of the C. elegans glutamate receptor subunits was attempted based on functionality of the chimeras. C. elegans glutamate receptor ion pores, at a position homologous to a highly conserved site critical for ion permeation properties in vertebrate glutamate receptor pores, contain amino acids not found in vertebrate glutamate receptors. We show that the pore-constricting Q/R site, which in vertebrate receptors determines calcium permeability and rectification properties of the ion channel, in C. elegans can be occupied by other amino acids, including, surprisingly, lysine and proline, without loss of these properties.  相似文献   

18.
The molecular basis for divalent cationic permeability in transient receptor potential melastatin subtype (TRPM) channels is not fully understood. Here we studied the roles of all eight acidic residues, glutamate or aspartate, and also the glutamine residue between pore helix and selectivity filter in the pore of TRPM2 channel. Mutants with alanine substitution in each of the acidic residues, except Glu-960 and Asp-987, formed functional channels. These channels exhibited similar Ca(2+) and Mg(2+) permeability to wild type channel, with the exception of the E1022A mutant, which displayed increased Mg(2+) permeability. More conservative E960Q, E960D, and D987N mutations also led to loss of function. The D987E mutant was functional and showed greater Ca(2+) permeability along with concentration-dependent inhibition of Na(+)-carrying currents by Ca(2+). Incorporation of negative charge in place of Gln-981 between the pore helix and selectivity filter by changing it to glutamate, which is present in the more Ca(2+)-permeable TRPM channels, substantially increased Ca(2+) permeability. Expression of concatemers linking wild type and E960D mutant subunits resulted in functional channels that exhibited reduced Ca(2+) permeability. These data taken together suggest that Glu-960, Gln-981, Asp-987, and Glu-1022 residues are engaged in determining divalent cationic permeation properties of the TRPM2 channel.  相似文献   

19.
Phosphatidylinositol polyphosphates (PIPs) are potent modulators of Kir channels. Previous studies have implicated basic residues in the C terminus of Kir6.2 channels as interaction sites for the PIPs. Here we examined the role of the N terminus and identified an arginine (Arg-54) as a major determinant for PIP(2) modulation of ATP sensitivity in K(ATP) channels. Mutation of Arg-54 to the neutral glutamine (R54Q) and, in particular, to the negatively charged glutamate (R54E) impaired PIP(2) modulation of ATP inhibition, while mutation to lysine (R54K) had no effect. These data suggest that electrostatic interactions between PIP(2) and Arg-54 are an essential step for the modulation of ATP sensitivity. This N-terminal PIP(2) site is highly conserved in Kir channels with the exception of the pH-gated channels Kir1.1, Kir4.1, and Kir5.1 that contain a neutral residue at the corresponding positions. Introduction of an arginine at this position in Kir1.1 channels rendered the N-terminal PIP(2) site functional largely increasing the PIP(2) affinity. Moreover, Kir1.1 channels lose the ability to respond to physiological changes of the intracellular pH. These results explain the need of a silent N-terminal PIP(2) site in pH-gated channels and highlight the N terminus as an important region for PIP(2) modulation of Kir channel gating.  相似文献   

20.
Vitamin D-dependent rickets type II is a hereditary disease resulting from a defective vitamin D receptor. In three Japanese patients with vitamin D-dependent rickets type II whose fibroblasts displayed normal cytosol binding and impaired nuclear uptake of 1,25-dihydroxyvitamin D3, western, Southern, and northern analyses failed to disclose any abnormalities in vitamin D3 receptor protein and its gene. Exons 2 and 3 of the vitamin D receptor cDNA, which encode the DNA-binding domain consisting of two zinc fingers, were amplified by PCR and sequenced to identify the specific mutations in the vitamin D receptor gene. In the three patients and one normal control a T-to-C transition was found in the putative initiation codon, while this transition was not observed in another normal control. This finding suggested that an original initiation codon was located at positions 10-12 in the human vitamin D receptor cDNA sequence reported previously. In contrast, a unique G-to-A transition at position 140 in exon 3, resulting in substitution of arginine by glutamine at residue 47, was revealed only in these three patients. The arginine at 47 is located between two zinc fingers and is conserved within all steroid hormone receptors. Therefore, it is highly conceivable that this amino acid substitution is responsible for the defect of the vitamin D receptor in the patients. Single-strand conformation polymorphism analysis of amplified DNA confirmed that all patients were homozygous and that parents from one family were heterozygous carriers for this mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号