首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sarcoplasmic reticulum vesicles were separated into heavy (derived from terminal cisternae) and light (derived from longitudinal tubules) fractions, according to Meissner [Biochim. Biophys. Acta, 389, 51-68 (1975)]. The similar Ca2+ sensitivities of phosphoprotein formation, ATPase activity and calcium uptake, and the similar phosphoprotein turnover rates (ATPase/phosphoprotein formation) of both fractions indicate that the same ATPase enzyme is present in the terminal cisternae and longitudinal sarcoplaxmic reticulum. The higher V for Ca2+-activated ATPase activity and calcium uptake in the light fraction correlated with the higher concentration of ATPase enzyme per mg of membrane protein in this fraction. In both the presence and absence of calcium-precipitating anions, the light fraction stored more calcium than the heavy. The Ca2+ dependence of calcium release after addition of EGTA appeared similar in both fractions, but the rate of calcium release was more rapid in the light fraction. These findings suggest that calcium release may occur more rapidly from longitudinal than terminal cisternae portions of the sarcoplasmic reticulum and that calcium release, like calcium uptake, may be mediated by the ATPase enzyme in the sarcoplasmic reticulum membrane. Although the activation energies for Ca2+-activated ATPase activity above and below the transition temperature were significantly different for the heavy and light fractions, their transition temperatures were similar. Partial purification of the ATpase enzyme by deoxycholate treatment modified the activation energies of the light but not the heavy fraction and caused the activation energies to become similar. The phosphoprotein levels of heavy and light vesicles did not become similar after deoxycholate treatment, although gel electrophoretograms indicated both samples contained > 90% ATPase protein. These results indicate the protein-lipid associations in these two fractions may be different.  相似文献   

2.
A Chu  P Volpe  B Costello  S Fleischer 《Biochemistry》1986,25(25):8315-8324
Junctional terminal cisternae are a recently isolated sarcoplasmic reticulum fraction containing two types of membranes, the junctional face membrane with morphologically intact "feet" structures and the calcium pump membrane [Saito, A., Seiler, S., Chu, A., & Fleischer, S. (1984) J. Cell Biol. 99, 875-885]. In this study, the Ca2+ fluxes of junctional terminal cisternae are characterized and compared with three other well-defined fractions derived from the sarcotubular system of fast-twitch skeletal muscle, including light and heavy sarcoplasmic reticulum, corresponding to longitudinal and terminal cisternae regions of the sarcoplasmic reticulum, and isolated triads. Functionally, junctional terminal cisternae have low net energized Ca2+ transport measured in the presence or absence of a Ca2+-trapping anion, as compared to light and heavy sarcoplasmic reticulum and triads. Ca2+ transport and Ca2+ pumping efficiency can be restored to values similar to those of light sarcoplasmic reticulum with ruthenium red or high [Mg2+]. In contrast to junctional terminal cisternae, heavy sarcoplasmic reticulum and triads have higher Ca2+ transport and are stimulated less by ruthenium red. Heavy sarcoplasmic reticulum appears to be derived from the nonjunctional portion of the terminal cisternae. Our studies indicate that the decreased Ca2+ transport is referable to the enhanced permeability to Ca2+, reflecting the predominant localization of Ca2+ release channels in junctional terminal cisternae. This conclusion is based on the following observations: The Ca2+, -Mg2+ -dependent ATPase activity of junctional terminal cisternae in the presence of a Ca2+ ionophore is comparable to that of light sarcoplasmic reticulum when normalized for the calcium pump protein content; i.e., the enhanced Ca2+ transport cannot be explained by a faster turnover of the pump. Ruthenium red or elevated [Mg2+] enhances energized Ca2+ transport and Ca2+ pumping efficiency in junctional terminal cisternae so that values approaching those of light sarcoplasmic reticulum are obtained. Rapid Ca2+ efflux in junctional terminal cisternae can be directly measured and is blocked by ruthenium red or high [Mg2+]. Ryanodine at pharmacologically significant concentrations blocks the ruthenium red stimulation of Ca2+ loading. Ryanodine binding in junctional terminal cisternae, which appears to titrate Ca2+ release channels, is 2 orders of magnitude lower than the concentration of the calcium pump protein. By contrast, light sarcoplasmic reticulum has a high Ca2+ loading rate and slow Ca2+ efflux that are not modulated by ruthenium red, ryanodine, or Mg2+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The rate of calcium transport by sarcoplasmic reticulum vesicles from dog heart assayed at 25 degrees C, pH 7.0, in the presence of oxalate and a low free Ca2+ concentration (approx. 0.5 microM) was increased from 0.091 to 0.162 mumol . mg-1 . min-1 with 100 nM calmodulin, when the calcium-, calmodulin-dependent phosphorylation was carried out prior to the determination of calcium uptake in the presence of a higher concentration of free Ca2+ (preincubation with magnesium, ATP and 100 microM CaCl2; approx. 75 microM free Ca2+). Half-maximal activation of calcium uptake occurs under these conditions at 10-20 nM calmodulin. The rate of calcium-activated ATP hydrolysis by the Ca2+-, Mg2+-dependent transport ATPase of sarcoplasmic reticulum was increased by 100 nM calmodulin in parallel with the increase in calcium transport; calcium-independent ATP splitting was unaffected. The calcium-, calmodulin-dependent phosphorylation of sarcoplasmic reticulum, preincubated with approx. 75 microM Ca2+ and assayed at approx. 10 microM Ca2+ approaches maximally 3 nmol/mg protein, with a half-maximal activation at about 8 nM calmodulin; it is abolished by 0.5 mM trifluperazine. More than 90% of the incorporated [32P]phosphate is confined to a 9-11 kDa protein, which is also phosphorylated by the catalytic subunit of the cAMP-dependent protein kinase and most probably represents a subunit of phospholamban. The stimulatory effect of 100 nM calmodulin on the rate of calcium uptake assayed at 0.5 microM Ca2+ was smaller following preincubation of sarcoplasmic reticulum vesicles with calmodulin in the presence of approx. 75 microM Ca2+, but in the absence of ATP, and was associated with a significant degree of calmodulin-dependent phosphorylation. However, the stimulatory effect on calcium uptake and that on calmodulin-dependent phosphorylation were both absent after preincubation with calmodulin, without calcium and ATP, suggestive of a causal relationship between these processes.  相似文献   

4.
Subfractionation of sarcoplasmic reticulum from fast-twitch and slow-twitch rabbit skeletal muscles was performed on a sucrose density gradient. Vesicle fractions were characterized by: measurement of (Ca2+,Mg2+)-dependent (extra) ATPase, Mg2+-dependent (basal) ATPase, Ca2+ uptake characteristics, polypeptide patterns in sodium dodecylsulphate polyacrylamide gel electrophoreses, phosphoprotein formation and electronmicroscopy of negatively stained samples. In fast-twitch muscle, low and high density vesicles were separated. The latter showed high activity of (Ca2+,Mg2+)-dependent ATPase, negligible activity of Mg2+-dependent ATPase, high initial rate and high capacity of Ca2+ uptake, high amount of phosphorylated 115000-Mr polypeptide, and appeared morphologically as thin-walled vesicles covered with particles of 4 nm in diameter. Low density vesicles had little (Ca2+,Mg2+)-dependent ATPase but high Mg2+-dependent ATPase. Although the initial rate of Ca2+ uptake was markedly lower, the total capacity of uptake was comparable with that of high density vesicles. Phosphorylated 115000-Mr polypeptide was detectable at low concentrations. Instead, 57000 and 47000-Mr polypeptides were characterized as forming stable phosphoproteins in the presence of ATP and Mg2+. Negatively stained, these vesicles appeared to have smooth surfaces. It is suggested that low density vesicles represent a Ca2+ sequestering system different from that of high density vesicles and that Mg2+-dependent (basal) ATPase as well as the 57000 and 47000-Mr polypeptides are part of the Ca2+ transport system within the low density vesicles. According to the results from slow-twitch muscle, Ca2+ sequestration by the sarcoplasmic reticulum functions in this muscle type only through the low density vesicles.  相似文献   

5.
To further define the possible involvement of sarcoplasmic reticulum calcium accumulation and release in the skeletal muscle disorder malignant hyperthermia (MH), we have examined various properties of sarcoplasmic reticulum fractions isolated from normal and MH-susceptible pig muscle. A sarcoplasmic reticulum preparation enriched in vesicles derived from the terminal cisternae, was further fractionated on discontinuous sucrose density gradients (Meissner, G. (1984) J. Biol. Chem. 259, 2365-2374). The resultant MH-susceptible and normal sarcoplasmic reticulum fractions, designated F0-F4, did not differ in yield, cholesterol and phospholipid content, or nitrendipine binding capacity. Calcium accumulation (0.27 mumol Ca/mg per min at 22 degrees C), Ca2+-ATPase activity (0.98 mumol Pi/mg per min at 22 degrees C), and calsequestrin content were also similar for MH-susceptible and normal sarcoplasmic reticulum fraction F3. To examine sarcoplasmic reticulum calcium release, fraction F3 vesicles were passively loaded with 45Ca (approx. 40 nmol Ca/mg), and rapidly diluted into a medium of defined Ca2+ concentration. Upon dilution into 1 microM Ca2+, the extent of Ca2+-dependent calcium release measured after 5 s was significantly greater for MH-susceptible than for normal sarcoplasmic reticulum, 65.9 +/- 2.8% vs. 47.7 +/- 3.9% of the loaded calcium, respectively. The C1/2 for Ca2+ stimulation of this calcium release (5 s value) from MH-susceptible sarcoplasmic reticulum also appeared to be shifted towards a higher Ca2+-sensitivity when compared to normal sarcoplasmic reticulum. Dantrolene had no effect on calcium release from fraction F3, however, halothane (0.1-0.5 mM) increased the extent of calcium release (5 s) similarly in both MH-susceptible and normal sarcoplasmic reticulum. Furthermore, Mg2+ was less effective at inhibiting, while ATP and caffeine were more effective in stimulating, this Ca2+-dependent release of calcium from MH-susceptible, when compared to normal sarcoplasmic reticulum. Our results demonstrate that while sarcoplasmic reticulum calcium-accumulation appears unaffected in MH, aspect(s) of the sarcoplasmic reticulum Ca2+-induced calcium release mechanism are altered. Although the role of the Ca2+-induced calcium release mechanism of sarcoplasmic reticulum in situ is not yet clear, our results suggest that an abnormality in the regulation of sarcoplasmic reticulum calcium release may play an important role in the MH syndrome.  相似文献   

6.
Isolated sarcoplasmic reticulum vesicles from rabbit white muscle were separated into a light (15--20% of total microsomes) and a heavy (80--85%) fraction by density gradient centifugation. The ultrastructure, chemical composition, enzymic activities and localization of membrane components in the vesicles of both fractions were investigated. From the following results it was concluded that both fractions are derived from the membranes of the sarcoplasmic reticulum system of the muscle: (i) The protein pattern of both fractions is essentially the same, except for different ratios of acidic, Ca2+-binding proteins. (ii) The 105000 dalton protein of the light fraction cross-reacts immunologically with the Ca2+-dependent ATPase of the heavy fraction. (iii) Ca2+-dependent ATPase, although of different specific activity, is found in both fractions. After rendering the vesicles leaky, specific activities in both fractions reach the same value. The light fraction was found to consist of "inside-out" vesicles by the following criteria: (i) No Ca2+ accumulation can be measured and the Ca2+-dependent ATPase activity is low and variable. (ii) The rate of trypsin digestion is lower and, compared to the heavy microsomes, a different ratio of degradation products is obtained. (iii) The sarcoplasmic reticulum membrane has a highly asymmetrical lipid distribution. This distribution of aminophospholipids is opposite to that in vesicles of heavy fraction. The light sarcoplasmic reticulum fraction has a higher phospholipid to protein ratio than the heavy one. This is consistent with the possibility that the two fractions derive from different parts of the sarcoplasmic reticulum system.  相似文献   

7.
Sarcoplasmic reticulum (SR) serves a central role in calcium uptake and release, thereby regulating muscle relaxation and contraction, respectively. Recently, we have isolated fractions referable to longitudinal tubules (R2) and terminal cisternae (R4), the two major types of sarcoplasmic reticulum (A. Saito et al. (1984) J. Cell Biol. 99, 875-885). The terminal cisternae contain two types of membranes, the calcium pump membrane and the junctional face membrane. The terminal cisternae are filled with electron-opaque contents which serve as a Ca2+ reservoir. The longitudinal tubules consist mainly of the calcium pump membrane. In this study, we describe a new longitudinal tubule fraction (F2) and characterize it together with the R2 and R4 SR fractions. The calcium pump membrane of the longitudinal tubules is a highly specialized membrane consisting of about 90% calcium pump protein as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Extensive changes in morphology can be observed in the SR fractions referable to osmotic differences during the fixation conditions using either glutaraldehyde-tannic acid or osmium tetroxide fixatives. The changes include swelling or shrinkage and aggregation of the compartmental contents when the fixative contains calcium ions. The two types of SR have different osmotic permeability to the same medium, as indicated by differential swelling or shrinkage. Both longitudinal tubule and terminal cisternae vesicles of SR appear larger and are spherical vesicles when the glutaraldehyde-tannic acid fixative is isotonic as compared with the "standard" fixation method. We have previously reported that the ruthenium red-sensitive calcium release channels are localized to the terminal cisternae. The terminal cisternae as isolated are leaky to Ca2+ since these channels are in the "open state" (S. Fleischer et al. (1985) Proc. Natl. Acad. Sci USA 82, 7256-7259). Thus, the Ca2+, Mg2+-dependent ATPase (Ca2+ ATPase) rate is only slightly enhanced in the presence of a Ca2+ ionophore, which dissipates the Ca2+ gradient across the SR membrane. We now find that preincubation with ruthenium red restores the tight coupling of the Ca2+ ATPase activity to Ca2+ transport. That is to say, ATPase activity is reduced and the addition of ionophore stimulates the Ca2+ ATPase activity 4- to 7-fold. The Ca2+ ATPase activity in longitudinal tubules is already tightly coupled. It is minimal after a Ca2+ gradient has been generated, but can be stimulated 9- to 20-fold when the Ca2+ gradient is dissipated with ionophore. This finding suggests that the Ca2+ ATPase activity in SR is tightly coupled to Ca2+ transport in situ.  相似文献   

8.
A severalfold activation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity by micromolar concentrations of calmodulin was observed in sarcoplasmic reticulum vesicles obtained from canine ventricles. This activation was seen in the presence of 120 mM KCl. The ratio of moles of calcium transported per mol of ATP hydrolyzed remained at about 0.75 when calcium transport and (Ca2+ + Mg2+)-activated ATPase activity were measured in the presence and absence of calmodulin. Thus, the efficiency of the calcium transport process did not change. Stimulation of calcium transport by calmodulin involves the phosphorylation of one or more proteins. The major 32P-labeled protein, as determined by sodium dodecyl sulfate slab gel electrophoresis, was the 22,000-dalton protein called phospholamban. The Ca2+ concentration dependency of calmodulin-stimulated microsomal phosphorylation corresponded to that of calmodulin-stimulated (Ca2+ + Mg2+)-activated ATPase activity. Proteins of 11,000 and 6,000 daltons and other proteins were labeled to a lesser extent. A similar phosphorylation pattern was obtained when microsomes were incubated with cAMP-dependent protein kinase and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Phosphorylation produced by added cAMP-dependent protein kinase and calmodulin was additive. These studies provided further evidence for Ca2+-dependent regulation of calcium transport by calmodulin in sarcoplasmic reticulum that could play a role in the beat-to-beat regulation of cardiac relaxation in the intact heart.  相似文献   

9.
Two types of divalent cation conducting channels from rabbit skeletal muscle sarcoplasmic reticulum (SR) were incorporated into planar lipid bilayers. A high conductance (100 pS in 53 mM trans Ca2+) Ca2+ channel was incorporated from heavy density SR fractions. The 100-pS channel was activated by adenine nucleotides and Ca2+ and inhibited by Mg2+ and ruthenium red. A 10-pS calcium and barium conducting channel could be incorporated into planar lipid bilayers from light, intermediate, and heavy density SR vesicles. 10-pS channel activity in bilayers was not dependent on cis Ca2+ and was only weakly dependent on adenine nucleotides. Ruthenium red at concentrations up to 1 mM had no effect and Mg2+ was only marginally effective in inhibiting macroscopic Ba2+ currents from this channel. Calcium releasing activity in intermediate and heavy density SR fractions was assayed according to a rapid quench protocol and compared with the results obtained in the bilayer. Results from this comparison indicate that the 10-pS channel is probably not involved in rapid Ca2+- and adenine nucleotide-induced Ca2+ release from isolated SR vesicles.  相似文献   

10.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

11.
T3 administration to rats exerts quite different effects on enzyme activities associated to liver microsomal membranes such as G-6-Pase, Mg ATPase and Ca2(+)-dependent ATPase: in fact G-6-Pase activity is significantly enhanced, Mg ATPase is not affected whereas Ca2(+)-dependent ATPase is drastically inhibited. The T3 induced decrease in Ca2(+)-dependent ATPase activity is associated with a net reduction (to about 50% with respect to controls) of the Ca2+ sequestration in liver microsomal vesicles. The enhanced level of inorganic phosphate in the endoplasmic reticulum due to the stimulation of G-6-Pase activity does not significantly affect the uptake of calcium in microsomal vesicles. The decreased Ca2(+)-dependent ATPase activity is associated to an enhanced level of the enzyme in the phosphorylated form (E-P). This suggests that in liver preparations from T3 treated rats the turnover of ATP and cleavage of E-P is reduced, thus resulting in the accumulation of the phosphorylated intermediate. The accumulation of E-P is in agreement with the inhibition of the calcium sequestration since the active transport of this cation in microsomal membranes requires the hydrolysis of the E-P complex.  相似文献   

12.
1. Calcium transport and ATPase activities were determined in microsomal vesicles from pancreatic tissue enriched in endoplasmic reticulum membranes. 2. Calcium transport and ATPase share the following properties: (i) magnesium was required with a K0.5 of 0.7 mM and maximal pumping ATPase activity at 5 mM Mg-ATP; (ii) at saturating magnesium concentrations, calcium increased ATP splitting activity up to three times with an apparent K0.5 close to 0.3 microM calcium; (iii) potassium stimulated the high calcium affinity Mg2+-dependent ATPase and calcium transport. 3.The properties of the calcium pumping system fulfil the cationic and substrate requirements from a physiological point of view.  相似文献   

13.
Ionomycin, a recently discovered calcium ionophore, inhibits the ATP-dependent active Ca2+ transport of rabbit sarcoplasmic reticulum vesicles at concentrations as low as 10(-8) to 10(-6) M. The effect is due to an increase in the Ca2+ permeability of the membrane which is also observed on liposomes. The inhibition of Ca2+ uptake is accompanied by an increase in the Ca2+-sensitive ATPase activity of sarcoplasmic reticulum vesicles.  相似文献   

14.
ATP-dependent Ca2+ uptake by subfractions of skeletal muscle sarcoplasmic reticulum (SR) was studied with the Ca2+ indicator dye, antipyrylazo III. Ca2+ uptake by heavy SR showed two phases, a slow uptake phase and a fast uptake phase. By contrast, Ca2+ uptake by light SR exhibited a monophasic time course. In both fractions a steady state of Ca2+ uptake was observed when the concentration of free Ca2+ outside the vesicles was reduced to less than 0.1 microM. In the steady state, the addition of 5 microM Ca2+ to the external medium triggered rapid Ca2+ release from heavy SR but not from light SR, indicating that the heavy fraction contains a Ca2+-induced Ca2+ release channel. During Ca2+ uptake, heavy SR showed a constant Ca2+-dependent ATPase activity (1 mumol/mg protein X min) which was about 150 times higher than the rate of Ca2+ uptake in the slow uptake phase. Ruthenium red, an inhibitor of Ca2+-induced Ca2+ release, enhanced the rate of Ca2+ uptake during the slow phase without affecting Ca2+-dependent ATPase activity. Adenine nucleotides, activators of Ca2+ release, reduced the Ca2+ uptake rate. These results suggest that the rate of Ca2+ accumulation by heavy SR is not proportional to ATPase activity during the slow uptake phase due to the activation of the channel for Ca2+-induced Ca2+ release. In addition, they suggest that the release channel is inactivated during the fast Ca2+ uptake phase.  相似文献   

15.
Light and heavy sarcoplasmic reticulum vesicles were isolated from rabbit leg muscle using a combination of differential centrifugation and isophycnic zonal ultracentrifugation. Light sarcoplasmic reticulum vesicles obtained from the 30–32.5% and heavy sarcoplasmic reticulum vesicles obtained from the 38.5–42% sucrose regions of the linear sucrose gradient were determined to be free of surface and mitochondrial membrane contamination by marker enzyme analysis and electron microscopy. Thin sections of the light vesicles revealed empty vesicles of various sizes and shapes. Freeze-fracture replicas of the light vesicles showed an asymmetric distribution of intramembranous particles with the same orientation and distribution as the longitudinal sarcoplasmic reticulum in vivo. Heavy vesicles appeared as rounded vesicles of uniform size filled with electron dense material, similar to that seen in the terminal cisternae of the sarcoplasmic reticulum. The cytoplasmic surface of the membrane was decorated by membrane projections, closely resembling the ‘feet’ which join the sarcoplasmic reticulum to the transverse tubules in the intact muscle fiber. Freeze-fracture replicas of the heavy vesicles revealed an asymmetric distribution of particles which in some areas of the vesicle's surface are larger and less densely aggregated than those of the light vesicles. In the best quality replicas, some regions of the luminal leaflet were not smooth but showed evidence of pits. These structural details are characteristic of the area of sarcoplasmic reticulum membrane which is covered by the ‘feet’ in the intact muscle.Heavy vesicles contained greater than six times the calcium content of light vesicles, 54 vs. 9 nmol Ca2+/μl of water space. After KCl washing both contained less than 4 nmol Ca2+/μl of water space. Although they transported at the same rate and the same total amount of calcium, the rate of passive Ca2+ efflux from the heavy vesicles was double that of light vesicles. The higher rate of calcium efflux from the heavy vesicles was inhibited by dantrolene, an inhibitor of Ca2+ release. High resolution sodium dodecyl sulfate gel electrophoresis showed that the light vesicles contained predominantly Ca2+-ATPase along with several approx. 55 000-dalton proteins and a 5000-dalton proteolipid, while the heavy vesicles contained Ca2+-ATPase and calsequestrin along with several approx. 55 000-dalton proteins, extrinsic 34 000- and 38 000-dalton proteins, intrinsic 30 000- and 33 000-dalton proteins and two proteolipids of 5000 and 9000 daltons. KCl washing of the heavy vesicles removed both the approx. 34 000- and 38 000-dalton proteins, and the ‘sarcoplasmic reticulum feet’ were no longer seen on the heavy vesicles. The KCl supernatant was enriched in the 34 000- and 38 000-dalton proteins, indicating that these proteins are possible components of the sarcoplasmic reticulum feet. The biochemical and morphological data strongly support the view that the light vesicles are derived from the longitudinal sarcoplasmic reticulum and that the heavy vesicles are derived from the terminal cisternae containing junctional sarcoplasmic reticulum membrane with the intact ‘sarcoplasmic reticulum feet’.  相似文献   

16.
Calcium transport was examined in microsomal membrane vesicles from red beet (Beta vulgaris L.) storage tissue using chlorotetracycline as a fluorescent probe. This probe demonstrates an increase in fluorescence corresponding to calcium accumulation within the vesicles which can be collapsed by the addition of the calcium ionophore A23187. Calcium uptake in the microsomal vesicles was ATP dependent and completely inhibited by orthovanadate. Centrifugation of the microsomal membrane fraction on a linear 15 to 45% (w/w) sucrose density gradient revealed the presence of a single peak of calcium uptake which comigrated with the marker for endoplasmic reticulum. The calcium transport system associated with endoplasmic reticulum vesicles was then further characterized in fractions produced by centrifugation on discontinous sucrose density gradients. Calcium transport was insensitive to carbonylcyanide m-chlorophenylhydrazone indicating the presence of a primary transport system directly linked to ATP utilization. The endoplasmic reticulum vesicles contained an ATPase activity that was calcium dependent and further stimulated by A23187 (Ca(2+), A23187 stimulated-ATPase). Both calcium uptake and Ca(2+), A23187 stimulated ATPase demonstrated similar properties with respect to pH optimum, inhibitor sensitivity, substrate specificity, and substrate kinetics. Treatment of the red beet endoplasmic reticulum vesicles with [gamma-(32)P]-ATP over short time intervals revealed the presence of a rapidly turning over 96 kilodalton radioactive peptide possibly representing a phosphorylated intermediate of this endoplasmic reticulum associated ATPase. It is proposed that this ATPase activity may represent the enzymic machinery responsible for mediating primary calcium transport in the endoplasmic reticulum linked to ATP utilization.  相似文献   

17.
Calcium filling of sarcoplasmic reticulum vesicles in the steady state is greatly increased by precipitation of lumenal calcium with oxalate. We find that low concentrations (1 mM) of Pi also allow greater loading by forming a soluble complex with lumenal calcium, an effect that is likely to be of physiological relevance. Furthermore, ADP scavenging by ATP regenerating systems favors calcium loading by preventing reversal of the pump. We also find that uncoupling of ATPase and transport activities is another factor limiting calcium loading. In fact, calcium uptake and ATP utilization occur with a molar ratio of 2:1 in the transient state following addition of ATP but decrease to much lower values in the steady state. Even in the absence of the highly conductive channel which is present only in "heavy" vesicles, "light" vesicles display calcium leakage which is inhibited by medium Ca2+ in the concentration range of ATPase activation and is likely related to an ATPase channel which is involved in calcium transport. It is apparent that, under conditions of ATPase turnover and in the presence of high lumenal Ca2+ and ADP, slippage of calcium through this channel produces true uncoupling of catalytic and transport activities. Coupling is improved by complexation of lumenal Ca2+ and by ATP regeneration and is influenced by the solvent characteristics of the reaction medium. The synergistic effects of lumenal Ca2+ and ADP, and the role of alternate pathways for phosphoenzyme cleavage, are clarified by steady state analysis of a multiple step reaction mechanism. It is concluded that the ideal (2:1) stoichiometric coupling of transport and ATPase activities is not insured by an obligatory pathway of catalysis (as predicted by all reaction schemes published so far); rather, coupling is influenced by the concentrations of ligands and their effects on second order reactions and the consequent distribution of intermediate states.  相似文献   

18.
The ultrastructural localization of the Ca2+ + Mg2+-dependent ATPase of sarcoplasmic reticulum in rat gracilis muscle was determined by indirect immunoferritin labeling of ultrathin frozen sections. Simultaneous visualization of ferritin particles and of adsorption- stained cellular membranes showed that the Ca2+ + Mg2+-ATPase was concentrated in the longitudinal sarcoplasmic reticulum and in the nonjunctional regions of the terminal cisternae membrane but was virtually absent from mitochondria, plasma membranes, transverse tubules, and junctional sarcoplasmic reticulum. Ferritin particles were found preponderantly on the cytoplasmic surface of the membrane, in agreement with published data showing an asymmetry of the Ca2+ + Mg2+- ATPase within the sarcoplasmic reticulum membrane. Comparison of the density of ferritin particles in fast and slow myofibers suggested that the density of the Ca2+ + Mg2+-ATPase in the sarcoplasmic reticulum membrane in a fast myofiber is approximately two times higher than in a slow myofiber.  相似文献   

19.
Denervation of rat skeletal muscle produces after 14 days a decrease in Ca2+ uptake of a heterogeneous population of sarcoplasmic-reticulum vesicles, when measured in the presence of oxalate. The Mg2+-dependent ATPase (Ca2+-independent) activity increased after the same period and the Ca2+ + Mg2+-dependent ATPase activity decreased. Concomitant with these changes, there was an increase in vesicle size and calcium content. The observations are discussed in terms of changes in altered membrane structure, manifested in the shift of the equilibrium of the ATPase from an enzyme involved in calcium transport to a phosphoenzyme giving rise to an increase in the Mg2+-dependent ATPase activity.  相似文献   

20.
Fragmented sarcoplasmic reticulum (FSR) of bullfrog skeletal muscle was fractionated into light and heavy sarcoplasmic reticulum (LSR and HSR) by sucrose density gradient centrifugation. Morphological and biochemical studies revealed that large parts of LSR and HSR were derived from longitudinal reticulum and terminal cisternae of SR, respectively. The Ca2+ uptake ability and ATPase activity of LSR were higher than those of HSR. Ca2+ release from Ca2+ preloaded SR vesicles by changing the medium from K-gluconate to KCl was suppressed by addition of 0.3 M sucrose or glucose; there was no correlation between Ca2+ release and membrane potential change either in LSR or HSR vesicles. Dantrolene sodium (DAN, 20 microM) had no effect on Ca2+ release. It is concluded that ion-induced Ca2+ release from SR (both HSR and LSR) in the isolated system is due to an osmotic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号