首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The social amoeba Dictyostelium discoideum is a commonly used model organism for the study of social evolution, multicellularity, and cell biology. But the boundaries and structure of the species have not been explored. The lack of morphological traits to distinguish D. discoideum makes even knowing whether a given clone is D. discoideum a challenge. We address this with a phylogeny of a widespread collection of clones from a range of locations and including clones identified previously as potential cryptic species. We sequenced portions of nuclear ribosomal DNA and mitochondrial DNA, analyzing approximately 5500 and 2500 base pairs from the two regions respectively. We compared these sequences to known reference sequences for both D. discoideum and other closely related Dictyostelium species to create Bayesian and neighbor-joining phylogenetic trees representing the evolutionary relationships among the clones. We identified 51 unique D. discoideum concatenated sequences based on the combined mitochondrial and ribosomal sequence data. We also identified four unique D. citrinum concatenated sequences, three of which were previously classified as D. discoideum clones. Our analysis of the data revealed that all D. discoideum clones form a monophyletic group, but there are several well-supported subclades and pronounced genetic differentiation among locations (F(ST)=0.242, P=0.011), suggesting the presence of geographic or other barriers between populations. Our results reveal the need for further investigation into potential tropical cryptic species.  相似文献   

3.
甘蔗属及其近缘属种在分类关系上非常复杂,存在不少混乱,目前关于它们的分类学研究主要是基于形态学和同工酶水平,而基因水平上的报道很少,我们对甘蔗属及其近缘的属种的部分rbcL基因片段(1137bp)进行了测序比较,以期探讨rbcL基因能否用于研究甘蔗属及其近缘种之间的亲缘关系,序列比较显示rbcL基因在甘蔗属和近缘属种间的变异极低,一些来自不同属的个体序列完全一致,而某些同属内不同种个体却略有差异。这些结果表明rbcL基因在甘蔗属及其近缘属种之间的进化速率缓慢而不稳定,难以用于系统发育研究,不过,不同聚类方法都将斑茅与其它属种分开,放在玉米与甘蔗属和其他近缘属种分枝的外部,提示斑茅不应列入甘蔗属或蔗茅属,而应独立为一属。  相似文献   

4.
This paper focuses on the relationship between population genetic structure and speciation mechanisms in a monophyletic species group of Appalachian cave spiders (Nesticus). Using mtDNA sequence data gathered from 256 individuals, I analyzed patterns of genetic variation within and between populations for three pairs of closely related sister species. Each sister-pair comparison involves taxa with differing distributional and ecological attributes; if these ecological attributes are reflected in basic demographic differences, then speciation might proceed differently across these sister taxa comparisons. Both frequency-based and gene tree analyses reveal that the genetic structure of the Nesticus species studied is characterized by similar and essentially complete population subdivision, regardless of differences in general ecology. These findings contrast with results of prior genetic studies of cave-dwelling arthropods that have typically revealed variation in population structure corresponding to differences in general ecology. Species fragmentation through both extrinsic and intrinsic evolutionary forces has resulted in discrete, perhaps independent, populations within morphologically defined species. Large sequence divergence values observed between populations suggest that this independence may extend well into the past. These patterns of mtDNA genealogical structure and divergence imply that species as morphological lineages are currently more inclusive than basal evolutionary or phylogenetic units, a suggestion that has important implications for the study of speciation mechanisms.   相似文献   

5.
Morphological divergence among species may be constrained by the pattern of genetic variances and covariances among traits within species. Assessing the existence of such a relationship in nature requires information on the stability of intraspecific correlation and covariance structure and the correspondence of this structure to the pattern of evolutionary divergence within a lineage. Here, we investigate these issues for nine morphological traits and 15 species of stalk-eyed flies in the genus Diasemopsis. Within-species matrices for these traits were generated from phenotypic data for all the Diasemopsis species and from genetic data for a single Diasemopsis species, D. dubia. The among-species pattern of divergence was assessed by calculating the evolutionary correlations for all pairwise combinations of the morphological traits along the phylogeny of these species. Comparisons of intraspecific matrices reveal significant similarity among all species in the phenotypic correlations matrices but not the covariance matrices. In addition, the differences in correlation structure that do exist among species are not related to their phylogenetic placement or change in the means of the traits. Comparisons of the phenotypic and phylogenetic matrices suggest a strong relationship between the pattern of evolutionary change among species and both the intraspecific correlation structure and the stability of this structure among species. The phenotypic and the phylogenetic matrices are significantly similar, and pairs of traits whose intraspecific correlations are more stable across taxa exhibit stronger coevolution on the phylogeny. These results suggest either the existence of strong constraints on the pattern of evolutionary change or a consistent pattern of correlated selection shaping both the phenotypic and phylogenetic matrices. The genetic correlation structure for D. dubia, however, does not correspond with patterns found in the phenotypic and phylogenetic data. Possible reasons for this disagreement are discussed.  相似文献   

6.

Background  

Microorganisms are ubiquitous, yet we are only beginning to understand their diversity and population structure. Social amoebae (Dictyostelia) are a diverse group of unicellular eukaryotic microbes that display a unique social behaviour upon starvation in which cells congregate and then some die to help others survive and disperse. The genetic relationships among co-occurring cells have a major influence on the evolution of social traits and recent population genetic analysis found extensive genetic variation and possible cryptic speciation in one dictyostelid species (Dictyostelium purpureum). To further characterize the interplay among genetic variation, species boundaries, social behaviour, and reproductive isolation in the Dictyostelia, we conducted phylogenetic analyses and mating experiments with the geographically widespread social amoeba Dictyostelium giganteum.  相似文献   

7.
The study of intraspecific variation of acoustic signals and its relationship with genetic divergence is important for understanding the origin of divergence in communication systems. We studied geographical variation in the acoustic structure of advertisement calls from five populations of the four‐eyed frog, Pleurodema thaul, and its relationship with the genetic divergence among these populations. By analyzing temporal and spectral parameters of the advertisement calls, we report that the signals of northern, central, and southern populations have remarkable differences between them. A phylogeographical analysis from a mitochondrial DNA fragment demonstrated three phylogenetic groups coincident with those found with the bioacoustics analysis. Furthermore, bioacoustic and genetic distances show significant correlations after controlling for geographical distance. These results suggest that behavioural divergence among populations of P. thaul has a phylogenetic basis, supporting three evolutionary units within this species, as well as prompting the exploration of divergence processes in the sound communication system of this species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 142–155.  相似文献   

8.
The stable co‐existence of individuals of different genotypes and reproductive division of labour within heterogeneous groups are issues of fundamental interest from the viewpoint of evolution. Cellular slime moulds are convenient organisms in which to address both issues. Strains of a species co‐occur, as do different species; social groups are often genetically heterogeneous. Intra‐ and interspecies 1 : 1 mixes of wild isolates of Dictyostelium giganteum and D. purpureum form chimaeric aggregates, following which they segregate to varying extents. Intraspecies aggregates develop in concert and give rise to chimaeric fruiting bodies that usually contain more spores (reproductives) of one component than the other. Reproductive skew and variance in the proportion of reproductives are positively correlated. Interspecies aggregates exhibit almost complete sorting; most spores in a fruiting body come from a single species. Between strains, somatic compatibility correlates weakly with sexual compatibility. It is highest within clones, lower between strains of a species and lowest between strains of different species. Trade‐offs among fitness‐related traits (between compatible strains), sorting out (between incompatible strains) and avoidance (between species) appear to lie behind coexistence.  相似文献   

9.
Dictyostelium discoideum is a eukaryotic microbial model system for multicellular development, cell–cell signaling, and social behavior. Key models of social evolution require an understanding of genetic relationships between individuals across the genome or possibly at specific genes, but the nature of variation within D. discoideum is largely unknown. We re-sequenced 137 gene fragments in wild North American strains of D. discoideum and examined the levels and patterns of nucleotide variation in this social microbial species. We observe surprisingly low levels of nucleotide variation in D. discoideum across these strains, with a mean nucleotide diversity (π) of 0.08%, and no strong population stratification among North American strains. We also do not find any clear relationship between nucleotide divergence between strains and levels of social dominance and kin discrimination. Kin discrimination experiments, however, show that strains collected from the same location show greater ability to distinguish self from non-self than do strains from different geographic areas. This suggests that a greater ability to recognize self versus non-self may arise among strains that are more likely to encounter each other in nature, which would lead to preferential formation of fruiting bodies with clonemates and may prevent the evolution of cheating behaviors within D. discoideum populations. Finally, despite the fact that sex has rarely been observed in this species, we document a rapid decay of linkage disequilibrium between SNPs, the presence of recombinant genotypes among natural strains, and high estimates of the population recombination parameter ρ. The SNP data indicate that recombination is widespread within D. discoideum and that sex as a form of social interaction is likely to be an important aspect of the life cycle.  相似文献   

10.
Ants of genus Formica demonstrate variation in social organization and represent model species for ecological, behavioral, evolutionary studies and testing theoretical implications of the kin selection theory. Subgeneric division of the Formica ants based on morphology has been questioned and remained unclear after an allozyme study on genetic differentiation between 13 species representing all subgenera was conducted. In the present study, the phylogenetic relationships within the genus were examined using mitochondrial DNA sequences of the cytochrome b and a part of the NADH dehydrogenase subunit 6. All 23 Formica species sampled in the Palaearctic clustered according to the subgeneric affiliation except F. uralensis that formed a separate phylogenetic group. Unlike Coptoformica and Formica s. str., the subgenus Serviformica did not form a tight cluster but more likely consisted of a few small clades. The genetic distances between the subgenera were around 10%, implying approximate divergence time of 5 Myr if we used the conventional insect divergence rate of 2% per Myr. Within-subgenus divergence estimates were 6.69% in Serviformica, 3.61% in Coptoformica, 1.18% in Formica s. str., which supported our previous results on relatively rapid speciation in the latter subgenus. The phylogeny inferred from DNA sequences provides a necessary framework against which the evolution of social traits can be compared. We discuss implications of inferred phylogeny for the evolution of social traits.  相似文献   

11.
Gray DA  Huang H  Knowles LL 《Molecular ecology》2008,17(17):3836-3855
Species pairs that differ primarily in characters involved in mating interactions and are largely sympatric raise intriguing questions about the mode of speciation. When species divergence is relatively recent, the footprint of the demographic history during speciation might be preserved and used to reconstruct the biogeography of species divergence. In this study, patterns of genetic variation were examined throughout the geographical range of two cryptic sister taxa of field crickets, Gryllus texensis and G. rubens; mitochondrial cytochrome oxidase I (COI) was sequenced in 365 individuals sampled from 48 localities. Despite significant molecular divergence between the species, they were not reciprocally monophyletic. We devised several analyses to statistically explore what historical processes might have given rise to this genealogical structure. The analyses indicated that the biogeographical pattern of genetic variation does not support a model of recent gene flow between species. Instead, coalescent simulations suggested that the genealogical structure within G. texensis, namely a deep split between two geographically overlapping clades, reflects historical substructure within G. texensis. Additional tests that consider the concentration of G. rubens haplotypes in one of the two G. texensis genetic clusters suggest a model of speciation in which G. rubens was derived from one lineage of a geographically subdivided ancestor. These results indicate that, despite the contemporary sympatry of G. texensis and G. rubens, the data are indicative of an peripatric origin in which G. rubens was derived from one of the two historical partitions in the species currently recognized as G. texensis. This proposed model of species divergence suggests how the interplay of geography and selection may give rise to new species, although this requires testing with multilocus data. Specifically, the model highlights how that geographical partitioning of ancestral variation in the past may augment the selectively driven divergence of characters involved in the reproductive isolation of the species today.  相似文献   

12.
Aeschynanthus (Gesneriaceae) is a large genus of tropical epiphytes that is widely distributed from the Himalayas and China throughout South-East Asia to New Guinea and the Solomon Islands. Polymerase chain reaction (PCR) consensus sequences of the internal transcribed spacers (ITS) of Aeschynanthus nuclear ribosomal DNA showed sequence polymorphism that was difficult to interpret. Cloning individual sequences from the PCR product generated a phylogenetic tree of 23 Aeschynanthus species (two clones per species). The intraindividual clone pairs varied from 0 to 5.01%. We suggest that the high intraindividual sequence variation results from low molecular drive in the ITS of Aeschynanthus. However, this study shows that, despite the variation found within some individuals, it is still possible to use these data to reconstruct phylogenetic relationships of the species, suggesting that clone variation, although persistent, does not pre-date the divergence of Aeschynanthus species. The Aeschynanthus analysis revealed two major clades with different but overlapping geographic distributions and reflected classification based on morphology (particularly seed hair type).  相似文献   

13.
Social groups face a fundamental problem of overcoming selfish individuals capable of destroying cooperation. In the social amoeba Dictyostelium discoideum, there is evidence that some clones (‘cheaters’) contribute disproportionately to the viable spores in a fruiting body while avoiding the dead stalk cell fate. It remains unclear, however, whether this cheating is actually the product of selection. Here, I report the results of an experimental evolution study designed to test whether clones of D. discoideum will evolve resistance to cheating in the laboratory with genetic variation created only through spontaneous mutation. Two strains, one green fluorescent protein (GFP)-labelled and one wild-type, were allowed to grow and develop together before the wild-type strain was removed and replaced with a naïve strain evolving in parallel. Over the course of 10 social generations, the GFP-labelled strain reliably increased its representation in the spores relative to control populations that had never experienced the competitor. This competitive advantage extended to the non-social, vegetative growth portion of the life cycle, but not to pairwise competition with two other strains. These results indicate strong antagonism between strains, mediated by ample mutational variation for cheating and also suggest that arms races between strains in the wild may be common.  相似文献   

14.
Common marmosets are members of the family Callitrichidae, South American primates characterized by highly social group living and cooperative breeding. In this study we analysed 1112 base pairs (bp) of the mitochondrial control region in 59 Callithrix jacchus individuals, sampled mainly from two geographically distinct field sites in N.E. Brazil. Analysis of molecular variation revealed a highly significant genetic structuring of haplotypes between social groups and between populations. Examination of matrilineal genetic structure within social groups revealed that seven of nine recorded breeding pairs were from different maternal lineages, indicating assortative mating and outbreeding. In addition to the breeders, at least six of 10 groups contained adult individuals from different matrilines, with five haplotypes present in one social group of nine animals. Groups of mixed lineages raise questions about potential reproductive conflicts of interest, and the extent of kin-selected altruism in the evolution and maintenance of cooperative breeding in this species.  相似文献   

15.
A major challenge for social theory is to explain the importance of kin discrimination for the evolution of altruism. One way to assess the importance of kin discrimination is to test its effects on increasing relatedness within groups. The social amoeba Dictyostelium discoideum aggregates to form a fruiting body composed of dead stalk and live spores. Previous studies of a natural population showed that where D. discoideum occurs in the soil, multiple clones are often found in the same small soil samples. However, actual fruiting bodies usually contain only one clone. We here performed experiments to gauge the effect of kin-discriminatory segregation on increasing relatedness. We mixed co-occurring clones from this population using a relatedness level found in small soil samples. We found a lower proportion of uniclonal fruiting bodies and a lower level of relatedness compared with natural fruiting bodies. We found that the amount of relatedness increase attributable to kin-discriminatory segregation was small. These findings suggest a relatively minor influence of kin-discriminatory segregation on relatedness in D. discoideum. We discuss our results comparing with the results of previous studies, including those of wild clones and laboratory mutants. We ask why wild clones of D. discoideum exhibit a low degree of kin-discriminatory segregation, and what alternative factors might account for high relatedness in D. discoideum.  相似文献   

16.
The relationship between lineage formation and variation in the ecological niche is a fundamental evolutionary question. Two prevailing hypotheses reflect this relationship: niche conservatism and niche divergence. Niche conservatism predicts a pattern where sister taxa will occupy similar niche spaces; whereas niche divergence predicts that sister taxa will occupy different niche spaces. Widely distributed species often show distinct phylogeographic structure, but little research has been conducted on how the environment may be related to these phylogenetic patterns. We investigated the relationship between lineage divergence and environmental space for the closely related species Peromyscus maniculatus and P. polionotus utilizing phylogenetic techniques and ecological niche modeling (ENM). We estimated the phylogenetic relationship among individuals based on complete cytochrome b sequences that represent individuals from a majority of the species ranges. Niche spaces that lineages occupy were estimated by using 12 environmental layers. Differences in niche space were tested using multivariate statistics based on location data, and ENMs were employed using maximum entropy algorithms. Two similarity indices estimated significant divergence in environmental space based on the ENM. Six geographically structured lineages were identified within P. maniculatus. Nested within P. maniculatus we found that P. polionotus recently diverged from a clade occupying central and western United States. We estimated that the majority of the genetic lineages occupy distinct environmental niches, which supports a pattern of niche divergence. Two sister taxa showed niche divergence and represent different ecomorphs, suggesting morphological, genetic and ecological divergence between the two lineages. Two other sister taxa were observed in the same environmental space based on multivariate statistics, suggesting niche conservatism. Overall our results indicate that a widely distributed species may exhibit both niche conservatism and niche divergence, and that most lineages seem to occupy distinct environmental niches.  相似文献   

17.
A repetitive DNA sequence was isolated from a Dictyostelium discoideum genomic plasmid library of BglII-digested DNA ligated to the BamHI site in pBR322. This clone, called pBS582, hybridized to a large number of phage lambda Dictyostelium genomic clones. Southern blot analysis indicated that pBS582 DNA hybridized to many differently sized genomic DNA fragments generated by digestion with Eco RI, AvaI, or HindIII. Restriction maps of pBS582 and five genomic clones showed that the flanking regions of each of the genomic clones were different. These findings indicate that the sequence specific to pBS582 is scattered throughout the Dictyostelium genome and is reiterated approximately 100 times in the haploid genome. Northern blot analysis revealed that RNA which hybridized to pBS582 DNA was present during all stages of growth and development and did not seem to be developmentally regulated. Southern blot analysis of DNAs from other slime molds (D. giganteum, D. purpureum, and Polysphondylium violaceum) were performed to determine whether the pBS582 sequence was present in other species of slime molds. Hybridization of pBS582 was observed to DNA from the two Dictyostelium species but not to Polysphondylium. It may thus be possible to use hybridization of specific sequences as a biochemical tool to study the relatedness of different slime mold species and their molecular taxonomy.  相似文献   

18.
Patterns of multilocus DNA sequence variation within and between closely related taxa can provide insights into the history of divergence. Here, we report on DNA polymorphism and divergence at six nuclear loci in globally distributed samples of the ascomycete Venturia inaequalis, responsible for scab on apple, loquat, and pyracantha. Isolates from different hosts were differentiated but did not form diagnosable distinct phylogenetic species. Parameters of an Isolation-with-Migration model estimated from the data suggested that the large amount of variation shared among groups more likely resulted from recent splitting than from extensive genetic exchanges. Inferred levels of gene flow among groups were low and more concentrated toward recent times, and we identified two potentially recent one-off shifters from apple and pyracantha to loquat. These findings support a scenario of recent divergence in allopatry followed by introgression through secondary contact, with groups from loquat and pyracantha being the most recently differentiated.  相似文献   

19.
Aggregative multicellularity requires the ability of cells to recognise conspecifics. Social amoebae are among the best studied of such organisms, but the mechanism and evolutionary background of species recognition remained to be investigated. Here we show that heterologous expression of a single Dictyostelium purpureum gene is sufficient for D. discoideum cells to efficiently make chimaeric fruiting bodies with D. purpureum cells. This gene forms a bidirectional pair with another gene on the D. purpureum genome, and they are both highly polymorphic among independent wild isolates of the same mating group that do not form chimaeric fruiting bodies with each other. These paired genes are both structurally similar to D. discoideum tgrB1/C1 pair, which is responsible for clonal discrimination within that species, suggesting that these tgr genes constitute the species recognition system that has attained a level of precision capable of discriminating between clones within a species. Analysis of the available genome sequences of social amoebae revealed that such gene pairs exist only within the clade composed of species that produce precursors of sterile stalk cells (prestalk cells), suggesting concurrent evolution of a precise allorecognition system and a new ‘worker’ cell-type dedicated to transporting and supporting the reproductive cells.  相似文献   

20.
Spatial variation in allelic frequencies at nine allozyme loci were assayed in 20 populations of the crown-of-thorns starfish, Acanthaster planci, collected throughout the Pacific and Indian Oceans. These data were analyzed together with published data, for the same loci, from an additional 19 populations, giving a total sample size of approximately 1800 individuals. There was a marked discontinuity between the Indian and Pacific Ocean populations, but those off Western Australia and from the Southeast Asian region had a strong Pacific affinity. The genetic groups were congruent with the distributions of two color morph groups: gray-green to red-brown forms in the Pacific and a blue to pale red form in the Indian Ocean. These patterns of genetic structure are similar to those described for the starfish Linckia laevigata, which has similar life-history characteristics. Vicariant events may have influenced some populations within the Pacific, but the allozyme data cannot resolve the effects of these events clearly. Patterns of variation within regions were consistent with isolation by distance, but, at larger scales, were obscured by regional vicariance and some outliers, particularly by apparently high levels of gene flow between Japan and the Great Barrier Reef, Australia. Apparent gene flow between population pairs was not closely related to present-day ocean currents. The results demonstrate a strong influence of allopatric separation on genetic divergence at large geographic scales, but also show evidence of slow rates of change in gene frequencies consistent with the large population sizes of this species. Low levels of divergence between groups demonstrate the genetic structure is recent (Pleistocene) and are likely responses to changes in climate and sea level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号