首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have used an alkaline phosphatase protection assay to investigate the interaction of the trp repressor with its operator sequence. The assay is based on the principle that the trp repressor will protect a terminally 5'-32P-labeled operator DNA fragment from attack by alkaline phosphatase. The optimal oligonucleotide for investigating the trp repressor/operator interaction extends two base pairs from each end of the genetically defined target sequence predicted by in vivo studies [Bass et al. (1987) Genes Dev. 1, 565-572]. The assay works well over a 10,000-fold range of protein/DNA affinity and is used to show that the corepressor, L-tryptophan, causes the liganded repressor to bind a 20 base pair trp operator duplex 6400 times more strongly than the unliganded aporepressor. The affinity of the trp repressor for operators containing symmetrical mutations was interpreted in terms of the trp repressor/operator crystal structure as follows: (1) Direct hydrogen bonds with the functional groups of G-9 of the trp operator and the side chain of Arg 69 of the trp repressor contribute to DNA-binding specificity. (2) G-6 of the trp operator is critical for DNA-binding specificity probably because of the two water-mediated hydrogen bonds between its functional groups and the N-terminus of the trp repressor's E-helix. (3) Sequence-dependent aspects of the trp operator's conformation help stabilize the trp repressor/operator complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
Abstract. The DNA-binding capacity of nuclear proteins of mouse cells was examined by the protein-blotting method. Under conditions in which the lac repressor specifically binds to the lac operator, the DNA-binding nuclear proteins from different tissues showed a tissue-specific distribution, suggesting that the species and amounts of nuclear proteins with DNA binding activity differ in different tissues.
When cloned eukaryotic genes were used for binding, eukaryotic DNA showed stronger binding than prokaryotic DNA. Competition experiments suggested that many nuclear proteins have different DNA binding properties from that of the prokaryotic repressor.  相似文献   

4.
The DNA-binding capacity of nuclear proteins of mouse cells was examined by the protein-blotting method. Under conditions in which the lac repressor specifically binds to the lac operator, the DNA-binding nuclear proteins from different tissues showed a tissue-specific distribution, suggesting that the species and amounts of nuclear proteins with DNA binding activity differ in different tissues. When cloned eukaryotic genes were used for binding, eukaryotic DNA showed stronger binding than prokaryotic DNA. Competition experiments suggested that many nuclear proteins have different DNA binding properties from that of the prokaryotic repressor.  相似文献   

5.
Role of the purine repressor hinge sequence in repressor function.   总被引:4,自引:0,他引:4       下载免费PDF全文
A protease-hypersensitive hinge sequence in Escherichia coli purine repressor (PurR) connects an N-terminal DNA-binding domain with a contiguous corepressor-binding domain. Binding of one molecule of dimeric repressor to operator DNA protects the hinge against proteolytic cleavage. Mutations in the hinge region impair repressor function in vivo. Several nonfunctional hinge mutants were defective in low-affinity binding to operator DNA in the absence of corepressor as well as in high-affinity corepressor-dependent binding to operator DNA, although binding of corepressor was similar to binding of the wild-type repressor. These results establish a role for the hinge region in operator binding and lead to a proposal for two routes to form the holoPurR-operator complex.  相似文献   

6.
The lambda repressor provides a model system for biophysical studies of DNA recognition by the helix-turn-helix motif. We describe laser Raman studies of the lambda operator sites OL1 and OR3 and their interaction with the DNA-binding domain of lambda repressor (residues 1-102). Raman spectra of the two DNA sites exhibit significant differences attributable to interstrand purine-purine steps that differ in the two oligonucleotides. Remarkably, the conformation of each operator is significantly and specifically altered by repressor binding. Protein recognition, which involves hydrogen-bond formation and hydrophobic contacts in the major groove, induces subtle changes in DNA Raman bands of interacting groups. These include (i) site-specific perturbations to backbone phosphodiester geometry at AT-rich domains, (ii) hydrophobic interaction at thymine 5CH3 groups, (iii) hydrogen bonding to guanine 7N and 6C = O acceptors, and (iv) alterations in sugar pucker within the C2'-endo (B-DNA) family. These perturbations differ between aqueous OL1 and OR3 complexes of repressor, indicating that protein binding in solution determines the precise DNA conformation. The overall structure of the lambda domain is not greatly perturbed by binding to either OL1 or OR3, in accord with X-ray studies of other complexes. However, Raman markers indicate a change in hydrogen bonding of the OH group of tyrosine-22, which is a hydrogen-bond acceptor in the absence of DNA but a combined donor and acceptor in the OL1 complex; yet, Y22 hydrogen bonding is not altered in forming the OR3 complex. The present results demonstrate qualitatively different and distinguishable modes of interaction of the lambda repressor DNA-binding domain with operators OL1 and OR3 in solution. This application of laser Raman spectroscopy to a well-characterized system provides a prototype for future Raman studies of other DNA-binding motifs under physiological conditions.  相似文献   

7.
8.
In Salmonella typhimurium the genes coding for the enzymes of histidine utilization (hut) are clustered in two adjacent operons, hutMIGC and hut(P,R,Q)UH. A single repressor, the product of the C gene, regulates both operons by binding at two operator sites, one near M and one in (P,R,Q). The deoxyribonucleic acid (DNA)-binding activity of the repressor was measured using DNA's containing separate operators. The repressor had greater activity when assayed using DNA containing the operator of the (P,R,Q)UH operon than when assayed using DNA containing the operator of the MIGC operon. The binding to either operator was absent in the presence of the inducer, urocanate. The DNA-binding activities were also determined for two super-repressors. The super-repressors had altered DNA-binding properties, although the self-regulated nature of the repressors complicated the analysis of the results. A purfication procedure for the wild-type repressor is presented. The purified repressor was somewhat unstable, and additional experiments using it were not performed.  相似文献   

9.
Flexibility of the DNA-binding domains of trp repressor   总被引:9,自引:0,他引:9  
An orthorhombic crystal form of trp repressor (aporepressor plus L-tryptophan ligand) was solved by molecular replacement, refined to 1.65 A resolution, and compared to the structure of the repressor in trigonal crystals. Even though these two crystal forms of repressor were grown under identical conditions, the refined structures have distinctly different conformations of the DNA-binding domains. Unlike the repressor/aporepressor structural transition, the conformational shift is not caused by the binding or loss of the L-tryptophan ligand. We conclude that while L-tryptophan binding is essential for forming a specific complex with trp operator DNA, the corepressor ligand does not lock the repressor into a single conformation that is complementary to the operator. This flexibility may be required by the various binding modes proposed for trp repressor in its search for and adherence to its three different operator sites.  相似文献   

10.
The kinetics of coupling of protein dimerization and DNA binding have been investigated in the biotin repressor system. Two repressor monomers bind to the 40 base-pair biotin operator sequence. In previous analyses of equilibrium-binding data the weak dimerization of the repressor has justified using a model in which two protein monomers bind cooperatively to the operator site. Here, rapid kinetic methods have been used to directly determine the binding mechanism. Results of rapid-mixing DNaseI footprinting measurements of association of the repressor with operator indicate that the binding process involves at least two steps. Results of measurements of the unimolecular dissociation of the complex reveal a half-life of approximately 400 seconds. Analysis of the data using a combination of simulation and global non-linear least-squares analysis provides support for a binding model in which a preformed repressor dimer associates with the biotin operator. This kinetic model is consistent with the previously proposed model for regulation of the functional switch in the repressor from enzyme to site-specific DNA-binding protein.  相似文献   

11.
Primer extension experiments showed that the argR gene, encoding the arginine repressor in Salmonella typhimurium, is transcribed from a single promoter that is negatively regulated by arginine. A repressor overproducing strain was constructed and the repressor was purified to homogeneity. Gel filtration, sedimentation and cross-linking studies established that the native repressor is a hexamer of identical 17,000 Mr subunits. Gel retardation experiments indicate that the apparent dissociation constant for repressor/carAB operator is 6 x 10(-12) M. These experiments showed that arginine is essential for binding of the repressor to the DNA and that pyrimidine nucleotides have no significant effect on this binding. These results indicate that the effect of pyrimidines on expression of the arginine sensitive "downstream" carAB promoter is not directly mediated by the arginine repressor. These experiments also suggest that a single hexamer binds to the carAB operator, which carries two previously defined "ARG box" sequences that characterize operators for arg genes. Gel retardation experiments with DNA fragments carrying the individual ARG boxes showed that both boxes are required for effective binding of the hexameric repressor to the operator, indicating that the ARG boxes comprise a single binding site for the repressor. Analysis of the potential secondary structure of the arginine repressor does not reveal any of the recognizable structural motifs common to a number of DNA-binding proteins. A combination of DNase I, premethylation interference, depurination and hydroxyl radical footprinting techniques were employed to characterize the interactions of the repressor with the carAB operator, with the results suggesting that the repressor predominantly interacts with A.T residues in this region. Comparative DNA sequence analysis of the known arginine operators of enteric bacteria further indicates that the specificity of interaction may be based more on the precise distance between two defined A.T-rich regions rather than on the specific nucleotide sequence.  相似文献   

12.
The repressor of bacteriophage Mu functions in the establishment and maintenance of lysogeny by binding to Mu operator DNA to shut down transposition. A domain at its N terminus functions in DNA binding, and temperature-sensitive mutations in this domain can be suppressed by truncations at the C terminus. To understand the role of the C-terminal tail in DNA binding, a fluorescent probe was attached to the C terminus to examine its environment and its movement with respect to the DNA binding domain. The emission spectrum of this probe indicated that the C terminus was in a relatively hydrophobic environment, comparable to the environment of the probe attached within the DNA-binding domain. Fluorescence of two tryptophan residues located within the DNA-binding domain was quenched by the probe attached to the C terminus, indicating that the C terminus is in close proximity to this domain. Addition of DNA, even when it did not contain operator DNA, reduced quenching of tryptophan fluorescence, indicating that the tail moves away from the DNA-binding domain as it interacts with DNA. The presence of the tail also produced a trypsin hypersensitive site within the DNA-binding domain; mutant repressors with an altered or truncated C terminus were relatively resistant to cleavage at this site. Interaction of the wild-type repressor with DNA greatly reduced cleavage at the site. A repressor with a temperature-sensitive mutation in the DNA-binding domain was especially sensitive to cleavage by trypsin even in the presence of DNA, and the C-terminal tail failed to move in the presence of DNA at elevated temperatures. These results indicate that the tail sterically inhibits DNA binding and that it moves during establishment of repression. Such conformational changes are likely to be involved in communication between repressor protomers for cooperative DNA binding.  相似文献   

13.
BACKGROUND: Lactose repressor protein (Lac) controls the expression of the lactose metabolic genes in Escherichia coli by binding to an operator sequence in the promoter of the lac operon. Binding of inducer molecules to the Lac core domain induces changes in tertiary structure that are propagated to the DNA-binding domain through the connecting hinge region, thereby reducing the affinity for the operator. Protein-protein and protein-DNA interactions involving the hinge region play a crucial role in the allosteric changes occurring upon induction, but have not, as yet, been analyzed in atomic detail. RESULTS: We have used nuclear magnetic resonance (NMR) spectroscopy and restrained molecular dynamics (rMD) to determine the structure of the Lac repressor DNA-binding domain (headpeice 62; HP62) in complex with a symmetrized lac operator. Analysis of the structures reveals specific interactions between Lac repressor and DNA that were not found in previously investigated Lac repressor-DNA complexes. Important differences with the previously reported structures of the HP56-DNA complex were found in the loop following the helix-turn-helix (HTH) motif. The protein-protein and protein-DNA interactions involving the hinge region and the deformations in the DNA structure could be delineated in atomic detail. The structures were also used for comparison with the available crystallographic data on the Lac and Pur repressor-DNA complexes. CONCLUSIONS: The structures of the HP62-DNA complex provide the basis for a better understanding of the specific recognition in the Lac repressor-operator complex. In addition, the structural features of the hinge region provide detailed insight into the protein-protein and protein-DNA interactions responsible for the high affinity of the repressor for operator DNA.  相似文献   

14.
The interaction of proteins bound to sites widely separated on the genome is a recurrent motif in both prokaryotic and eukaryotic regulatory systems. Lac repressor mediates the formation of "DNA loops" by the simultaneous interaction of a single protein tetramer with two DNA-binding sites. The DNA-binding properties of a Lac repressor mutant (LacIadi) deficient in the association of protein dimers to tetramers was investigated. The results of quantitative footprint and gel mobility-shift titrations suggest that the wild-type Lac repressor (LacI+) binds cooperatively to two operator sites separated by 11 helical turns on a linear DNA restriction fragment by the formation of a "looped complex." LacIadi binds to this two-site operator non-cooperatively and without formation of a looped complex. These results demonstrate that the dimer-tetramer association of LacI+ is directly responsible for its cooperative binding and its ability to mediate formation of a looped complex. The Iadi mutation disrupts the monomer-dimer as well as eliminating the dimer-tetramer association equilibria while the DNA binding affinity of LacIadi to a single site is unchanged relative to the wild-type protein. These results suggest that DNA binding and dimer-tetramer association are functionally unlinked. The similarity of the DNA-binding properties of LacIadi and Gal repressor, a protein believed to function by mediating the formation of a looped complex, are discussed.  相似文献   

15.
J Chen  S Pongor    A Simoncsits 《Nucleic acids research》1997,25(11):2047-2054
Single-chain derivatives of the phage 434 repressor, termed single-chain repressors, contain covalently dimerized DNA-binding domains (DBD) which are connected with a peptide linker in a head-to-tail arrangement. The prototype RR69 contains two wild-type DBDs, while RR*69 contains a wild-type and an engineered DBD. In this latter domain, the DNA- contacting amino acids of thealpha3 helix of the 434 repressor are replaced by the corresponding residues of the related P22 repressor. We have used binding site selection, targeted mutagenesis and binding affinity studies to define the optimum DNA recognition sequence for these single-chain proteins. It is shown that RR69 recognizes DNA sequences containing the consensus boxes of the 434 operators in a palindromic arrangement, and that RR*69 optimally binds to non-palindromic sequences containing a 434 operator box and a TTAA box of which the latter is present in most P22 operators. The spacing of these boxes, as in the 434 operators, is 6 bp. The DNA-binding of both single-chain repressors, similar to that of the 434 repressor, is influenced indirectly by the sequence of the non-contacted, spacer region. Thus, high affinity binding is dependent on both direct and indirect recognition. Nonetheless, the single-chain framework can accommodate certain substitutions to obtain altered DNA-binding specificity and RR*69 represents an example for the combination of altered direct and unchanged indirect readout mechanisms.  相似文献   

16.
Cooperative association of the Escherichia coli biotin repressor with the biotin operator is allosterically activated by binding of the corepressor, bio-5'-AMP. The corepressor function of the adenylate is due, in part, to its ability to induce repressor dimerization. Since a high-resolution structure of only the apo or unliganded repressor is currently available, the location of the dimerization interface on the protein structure is not known. Here, five mutants in the corepressor-binding domain of the repressor have been analyzed with respect to their DNA-binding and self-assembly properties. Results of these studies reveal that four of the mutant proteins exhibit defects in DNA binding. These same proteins are compromised in self-assembly. Furthermore, in the three-dimensional structure of the apo protein the mutations all lie in partially disordered surface loops, one of which is known to participate directly in corepressor binding. These results suggest that multiple disordered surface loops function in the corepressor-induced dimerization required for sequence-specific DNA binding by the biotin repressor.  相似文献   

17.
The function of the E. coli lactose operon requires the binding of the tetrameric repressor protein to the operator DNA. We have previously shown that γ-irradiation destabilises the repressor-operator complex because the repressor gradually loses its DNA-binding ability (Radiat Res 170:604–612, 2008). It was suggested that the observed oxidation of tyrosine residues and the concomitant structural changes of irradiated headpieces (DNA-binding domains of repressor monomers) could be responsible for the inactivation. To unravel the mechanisms that lead to repressor-operator complex destabilisation when tyrosine oxidation occurs, we have compared by molecular dynamic simulations two complexes: (1) the native complex formed by two headpieces and the operator DNA, and (2) the damaged complex, in which all tyrosines are replaced by their oxidation product 3,4-dihydroxyphenylalanine (DOPA). On a 20 ns time scale, MD results show effects consistent with complex destabilisation: increased flexibility, increased DNA bending, modification of the hydrogen bond network, and decrease of the positive electrostatic potential at the protein surface and of the global energy of DNA-protein interactions.  相似文献   

18.
19.
Recognition of DNA sequences by the repressor of bacteriophage 434   总被引:2,自引:0,他引:2  
The structure of a complex between the DNA-binding domain of phage 434 repressor and a 14 base-pair synthetic DNA operator reveals the molecular interactions important for sequence-specific recognition. A set of contacts with DNA backbone, notably involving hydrogen bonds between peptide-NH groups and DNA phosphates, position the repressor and fix the DNA configuration. Direct interactions between amino acid side chains and DNA bases involve nonpolar van der Waals contacts as well as hydrogen bonds. The structures of the repressor domain and of the 434 cro protein are extremely similar. There appear to be no major conformational changes in the proteins when they bind to DNA.  相似文献   

20.
The function of the E. coli lactose operon requires the binding of lactose repressor to operator DNA. We have previously shown that γ rradiation destabilizes the repressor-operator complex because the repressor loses its DNA-binding ability. It was suggested that the observed oxidation of the four tyrosines (Y7, Y12, Y17, Y47) and the concomitant structural changes of the irradiated DNA-binding domains (headpieces) could be responsible for the inactivation. To pinpoint the tyrosine whose oxidation has the strongest effect, four headpieces containing the product of tyrosine oxidation, 3,4-dihydroxyphenylalanine (DOPA), were simulated by molecular dynamics. We have observed that replacing Y47 by DOPA triggers the largest change of structure and stability of the headpiece and have concluded that Y47 oxidation is the greatest contributor to the decrease of repressor binding to DNA. To experimentally verify this conclusion, we applied the alanine screening mutagenesis approach. Tetrameric mutated repressors bearing an alanine instead of each one of the tyrosines were prepared and their binding to operator DNA was checked. Their binding ability is quite similar to that of the wild-type repressor, except for the Y47A mutant whose binding is strongly reduced. Circular dichroism determinations revealed small reductions of the proportion of α helices and of the melting temperature for Y7A, Y12A and Y17A headpieces, but much larger ones were revealed for Y47A headpiece. These results established the critical role of Y47 oxidation in modifying the structure and stability of the headpiece, and in reduction of the binding ability of the whole lactose repressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号