首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Embryonic induction has been demonstrated in numerous studies, yet the molecular basis for induction still eludes investigators. Components of the extracellular matrix (ECM), cell adhesion molecules (CAM), diffusable factors, as well as direct cell-cell contact, have been implicated in the early induction of avian feathers and scales. Although feathers and scales differ in many aspects, they are similar in that they appear initially as discrete and orderly arranged epidermal placodes. In the case of scutate scales, the cells of the epidermal placode are nonproliferative, while the cells of the interplacode regions are highly proliferative. In this study, I compare the proliferative activity of normal scale cells with that of the epidermal cells from embryos of the scaleless (sc/sc) mutant chicken which does not undergo epidermal placode formation and therefore lacks scutate scales. These results show that prior to the time that placodes would normally form, the proliferative activity of the scaleless epidermal cells is similar to that seen in normal epidermal cells. Likewise, the cessation of cell proliferation seen in normal placodes occurs in the epidermal basal cells of the sc/sc shank. It is the high rate of proliferation seen for the epidermal basal cells of the normal interplacode region and the outer surface of the scale ridge that never develops in the sc/sc epidermal cells.  相似文献   

2.
Unlike normal scutate scales whose outer and inner epidermal surfaces elaborate β (β-keratins) and α (α-keratins) strata, respectively, the scaleless mutant's anterior metatarsal epidermis remains flat and elaborates only an α stratum. Reciprocal epidermal-dermal recombinations of presumptive scale tissues from normal and mutant embryos have demonstrated that the scaleless defect is expressed only by the epidermis. In fact, the scaleless anterior metatarsal epidermis is unable to undergo placode formation. More recently, it has been determined that the absence of epidermal placode morphogenesis into a definitive scale ridge actually results in the establishment of a scale dermis which is incapable of inducing the outer and inner epidermal surfaces of scutate scales. Can the initial genetic defect in the scaleless anterior metatarsal epidermis be overcome by replacing the defective dermis with a normal scutate scale dermis, i.e., a dermis with scale ridges already present? Or, are the genes involved in the production of a β stratum regulated by events directly associated with morphogenesis of the epidermal placode? In the present study, we combined scaleless anterior metatarsal epidermis (stages 36 to 42) with normal scutate scale dermis (stage 40, 41, or 42) old enough to have acquired its scutate scale-inducing ability. After 7 days of growth as chorioallantoic membrane grafts, we observed grossly and histologically, typical scutate scales in these recombinant grafts. Electron microscopic and electrophoretic analyses have verified that these recombinant scales are true scutate scales. The scaleless mutation, known to be expressed initially by the anterior metatarsal epidermis, can be overcome by exposing this epidermis to appropriate inductive cues, i.e., cues that direct the differentiation of the outer and inner epidermal surfaces of the scutate scales and the production of specific structural proteins. We have determined that the time between stages 38 and 39 is the critical period during which the normal scutate scale dermis acquires these inductive abilities.  相似文献   

3.
Villalba  J. M.  Navarro  F.  Roldán  J. M.  González-Reyes  J. A.  Navas  P. 《Protoplasma》1994,178(3-4):87-96
Summary Expression of various sugar residues on the plasma membrane of frog (Rana perezi) epidermal cells at different stages of differentiation has been monitored with the use of a battery of HRP-conjugated lectins. In paraffin-embedded tissue, mannose residues (stained by Concanavalin A) were detected at the keratinocyte cell surface in all epidermal strata. However,Lens culinaris agglutinin (LCA), also specific for mannose, specifically stained the plasma membrane of cells from the stratum germinativum. Expression of N-acetyl-glucosamine (GlcNAc), labelled with wheat germ agglutinin (WGA), was maximum at the cell surface of basal cells and progressively decreased through the stratum spinosum. Galactose (Gal) and N-acetyl-galactosamine (GalNAc) residues, labelled withGriffonia simplicifolia I (GS I) andGlycine max (SBA) agglutinins, respectively, were expressed according to the degree of differentiation in amphibian epidermal cells. Sialic acid-containing glycoproteins, labelled withLimax flavus agglutinin (LFA), were found in the outermost plasma membrane of the replacement cell layer and stratum corneum. Glycoproteins responsible for the observed lectin-binding patterns have been identified by staining on nitrocellulose filters after electrophoresis of solubilized plasma membrane fractions and Western blotting. Changes at the level of glycosylation of plasma membrane glycoproteins as epidermal cells differentiate are discussed on the basis of a progressive addition of Gal residues. Integral membrane proteins have been solubilized with the non-denaturing detergent CHAPS and glycoproteins containing terminal Gal residues, that are expressed according to the degree of differentiation in frog epidermis, have been partially purified by affinity chromatography on a GS I-Sepharose 4 B column. The purified fraction was composed by four acidic glycoproteins with isoelectric points between 4.6 and 5.2 and, in SDS-gels gave five major protein bands with approximate molecular weights of 148, 140, 102, 60, and 52 kDa in SDS-gels. The 102 and 52 kDa bands correspond to the a and subunits of amphibian epidermal Na+,K+-ATPase as demonstrated by specific staining with a polyclonal antibody against the catalytic subunit of pig kidney proton pump and staining with lectins GS I, GS II, and WGA. Possible relationships between higher molecular weight proteins and the constituents of intramembranous particles from the outermost plasma membranes of the replacement cell layer and the stratum corneum are also discussed.Abbreviations BSA bovine serum albumin - CHAPS (3-[(cholamidopropyl) dimethyl-ammonio] 1-propanesulfonate) - Con A Canavalia ensiformis agglutinin - DTT dithiothreitol - Gal galactose - GalNAc N-acetyl-D-galactosamine - GlcNAc N-acetyl-D-glucosamine - GS I Griffonia simplicifolia agglutinin I - GS II Griffonia simplicifolia agglutinin II - HRP horseradish peroxidase - LFA Limax flavus agglutinin - LCA Lens culinaris agglutinin - NDPAGIF non-denaturing polyacrylamide gel isoelectric focusing - PAGE polyacrylamide gel electrophoresis - PAP peroxidase-antiperoxidase - PBS phosphate buffered saline - PMSF phenyl methyl sulphonyl fluoride - RCL replacement cell layer - SBA soybean agglutinin (Glycine max) - SB stratum basal - SDS sodium dodecyl sulphate - SG stratum granulosum - SS stratum spinosum - UEA I Ulex europaeus agglutinin I - WGA wheat germ (Triticum vulgaris) agglutinin  相似文献   

4.
5.
The effect of concanavalin A (conA), fucose-binding protein (FBP), Ricinus communis agglutinin (RCA), and wheat germ agglutinin (WGA) on fertilization of the ascidian Phallusia mammillata was investigated. ConA, FBP, and RCA had no influence on fertilization and did not bind to the chorion or sperm, as determined with FITC-conjugated conA and by electron microscopy with gold-labelled FBP. WGA (100 μg/ml) prevented fertilization of eggs by sperms in concentrations which gave 100% fertilization in controls (2 × 107 sperm/ml). N-Acetyl-glucosamine (50 mM) abolished the effect of WGA, whereas an excess (100 mM) of this competitive sugar alone did not affect fertilization. FITC-conjugated and gold-labelled WGA revealed binding sites on the chorion, but not on follicle cells nor sperms. Electron microscopy showed that WGA gold-markers are bound to the fibrillar network forming the outer layer of the chorion and indicate that WGA inhibits fertilization by interfering with sperm binding to the chorion. Binding of WGA to the chorion may either mask sperm binding receptors or cause chorion resistance to sperm enzymes.  相似文献   

6.
Sack  H. -J.  Stöhr  M.  Schachner  M. 《Cell and tissue research》1983,228(1):183-204
Summary The binding of several plant lectins, Concanavalin A (ConA), Lens culinarisA (LCA), wheat germ agglutinin (WGA), and Ricinus communis agglutinin 120 (RCA120) to cell surfaces of developing mouse cerebellar cells was assayed by the use of fluorescein isothiocyanate (FITC)-conjugated compounds. Freshly dissociated, live single-cell suspensions from 6-day-old mouse cerebellum contain 93% ConA, 99% LCA, 98% WGA, and 59% RCA 120-positive cells with ring fluorescence. Of the RCA 120-positive cells, 4% express a high and 55% a lower or very low number of lectin receptors. Flow cytometric analysis of fluorescent lectin binding yields results qualitatively similar to those obtained by scoring positive and negative cells in the fluorescence microscope.In monolayer cultures of 6-day-old mouse cerebellum practically all cells express receptors for ConA, LCA, and WGA, whereas RCA 120 binding sites are absent from neurons with small cell bodies (granule, basket and stellate cells) and present in large number on neurons with large cell bodies (Purkinje and possibly Golgi Type-II cells) and fibroblasts. RCA 120 receptors are weakly expressed on astro-and oligodendroglia. Cell type-specific expression of RCA 120 receptors is constant throughout all ages studied (embryonic day 13 to postnatal day 9). At early embryonic ages the proportion of highly fluorescent neurons with large cell bodies is significantly increased.  相似文献   

7.
Summary The lectin-mediated agglutinability of cells dissociated from different areas of the gastrulating chick embryo was investigated. Differences in agglutinability were quantified by using a Coulter counter. Cells from the area pellucida (AP) and those from the endoderm of the area opaca (AOEn) are agglutinated by Concanavalin A (Con A), wheat germ agglutinin (WGA) andRicinus communis agglutinin (RCA). In cells from both areas the greatest agglutination response is obtained with RCA. Trypsinization of AOEn cells enhances their agglutinability with Con A, WGA and RCA. The lectin-induced agglutinability of cells from the area pellucida is similar in EDTA-dissociated and trypsinized cells.Cells from the AP are significantly more agglutinable with Con A than those of the AOEn regardless whether the former are obtained by trypsinization or dissociation with EDTA. The higher agglutinability of cells of the area pellucida with Con A, as well as the differential enhancement by trypsin of the agglutinability of AOEn cells with Con A, WGA, and RCA may reflect a difference in the cell surface glycoreceptors between the cells of the are pellucida (predominantly embryonic) and the first extraembryonic (AOEn) cell line. These cells have been shown to sort out from each other at the earliest stages of development.  相似文献   

8.
9.
Summary Glycoconjugates of the extracellular matrix are important for the normal mechanical functions of connective tissue structures such as the temporomandibular joint disc. Since lectins are known to bind to sugar residues with high affinity, a variety of lectins were used to study the presence and distribution of glycoconjugates in the temporomandibular joint disc. Discs were removed from 6 to 8-month-old rabbits and either sectioned in a cryostat and processed for light microscopy or fixed in 2% glutaraldehyde and processed for electron microscopy. The frozen sections were incubated with fluorescein- or peroxidaseconjugated lectin solutions. Ultrathin sections mounted on grids were incubated with lectins combined with a colloidal gold marker system for electron microscopical study. Our results indicate thatCanavalia ensiformis agglutinin (ConA) showed little or no binding to the discal tissue.Triticum vulgaris agglutinin (WGA) andMacluras pomifera (MPA) were bound strongly to both the synovium and the extracellular matrix and WGA also bound to the territorial matrix of chondrocyte-like cells.Glycine max andArachis hypogoea agglutinins (SBA and PNA), were localized in the synovium and extracellular matrix but to a lesser degree than WGA and MPA. WGA, MPA,Griffonia simplicifolia II andUlex europaeus were bound by discal fibroblasts. WGA was also localized in lysosomes of synovial A-cells (macrophages). The electron microscopical studies with lectins and colloidal gold marker systems indicated that some areas of the disc may be fibrocartilagenous as had been suggested by earlier immunohistochemical studies using monoclonal antibodies to characteristic glycosaminoglycans (GAGs) in cartilage.  相似文献   

10.
The thumb pad is one of the most common secondary sexual characteristics in frogs. Although it is known that amphibian skin has affinity for several lectins, there is no report regarding lectin‐binding affinity of the thumb pad or its structural components. This study investigated localization and seasonal variation of specific carbohydrate moieties of glycoconjugates in both the epidermal and dermal components of the frog thumb pad at the light microscopic level using lectin histochemistry. The study consisted of four seasonal groups of the frog species, Pelophylax ridibundus (Synonym of Rana ridibunda): active, prehibernating, hibernating and posthibernating. Four horseradish peroxidase conjugated lectins were employed. It was found that dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA), and ulex europaeus (UEAI) gave positive reactions in both epidermal layers and breeding glands. These three lectins bound specific secretory cells in the breeding glands, and the distribution of the cells and epithelial lectin reactions exhibited seasonal changes. In addition, UEA‐I and peanut agglutinin (PNA) showed an affinity in granular glands and the granular zone of mixed glands. Generally, epidermal lectin binding showed dense affinity during the posthibernation period. DBA, UEA‐I, and WGA‐specific cells in the mucous gland decreased gradually until the posthibernation period. These findings suggest that differences of lectin binding in the thumb pad may be related to functional activities and, thus, seasonal adaptations. Moreover, the presence of specific lectin‐binding cells in the breeding glands indicated that they consisted of heterogeneous secretory cell composition or that the cells were at different secretory stages. J. Morphol. 275:76–86, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The ability of seven lectins to bind to newt epidermal cells and influence their motility was examined. Of the seven fluoresceinated lectins applied to frozen sections containing intact newt skin and migrating epidermis (wound epithelium), only Con A (concanavalin A), WGA (wheat germ agglutinin), and PNA (peanut agglutinin) produced detectable epidermal fluorescence. Con A and WGA each heavily labeled all layers of intact epidermis, but PNA bound only to the more superficial layers. In contrast to a single population of labeled cells in migrating epidermal sheets after treatment with Con A, there were both labeled and unlabeled cells after exposure to either WGA or PNA. The wound bed was labeled by both Con A and WGA, but not by PNA. DBA (Dolichos bifloris agglutinin), RCA I (Ricinus communis agglutinin), and UEA (Ulex europaeus agglutinin), did not produce significant fluorescence with either migrating or intact epidermis. In general, inhibitory effects on epidermal motility correlated with the binding studies. Thus, Con A, WGA, and PNA, the lectins which clearly bound to the epidermis, all produced a concentration-dependent depression in the rate of epidermal wound closure. RCA was somewhat paradoxical in that it was moderately inhibitory despite showing essentially no binding. The effects of SBA and UEA were equivocal. DBA had no effect. These results indicate that the inhibition of motility produced by Con A that we have described previously is not peculiar to this mannose-binding lectin, but is shared by at least one lectin with an affinity for D-GlcNAc (WGA), and one with an affinity for B-D-Gal(1-3)-D-GalNAc (PNA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
ABSTRACT. Cell surface carbohydrates of three phytoflagellates, Phytomonas francai. Phytomonas serpens and Phytomonas sp. from different hosts including cassava, coreid insect Phthia picta and the milkweed plant Euphorbia hyssopifolia, respectively, were analysed by agglutination assays employing a battery of highly purified lectins with affinity for receptor molecules containing N-acetylglucosamine (d-GlcNAc), N-acetylgalactosamine (D-GalNAc), galactose, mannose-like (D-Man-like) residues and fucose, and by binding assay using radiolabeled [125I]-wheat germ agglutinin (WGA) and fluorescent WGA lectin, as well as glycosidases of known sugar specificity, Escherichia coli K with mannose-affinity fimbrial lectin was also used as an agglutination probe. In general, the presence of D-GlcNAc. D-GalNAc and D-Man-like residues was detected in the phytomonads' plasma membrane. These sugar moieties were confirmed in whole cell hydrolysates as assessed by gas-liquid chromatography (GLC) which in addition, also showed the presence of galactose and xylose. However, marked differences in cell surface carbohydrate structures were observed. Wheat germ agglutinin, which binds to sialic acid and/or d-GlcNAc-containing residues, shows selective agglutinin activities for P. francai and Phytomonas sp., while Bandeiraea simplicifolia II agglutinin (which recognizes d-GlcNAc units) specifically bound to Phytomonas sp. Helix pomatia agglutinin which binds to D-GalNAc-containing residues reacted preferentially with Phytomonas sp. and P. serpens. Con A, which recognizes D-Man-like receptors, agglutinates all the phytomonads; however, the higher interaction was observed with Phytomonas sp. P. francai was selectively agglutinated in the presence of E. coli fimbrial lectin. Fluorescence WGA binding was significantly decreased by N-acetylglucosaminidase activities and the cell agglutination was not altered by neuraminidase treatment, suggesting the presence of an exposed D-GlcNAc moiety on the P. francai and Phytomonas sp. surfaces. Binding studies with [125I]-WGA essentially confirmed the fluorescence WGA binding and agglutination assays.  相似文献   

13.
The PC12 cell line displays cell surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). It has been previously shown that the lectin wheat germ agglutinin (WGA) alters the properties of NGF receptors on these cells. We now report that preincubations with either WGA or concanavalin A (Con A) decrease the binding of 125I-EGF to PC12 cells by greater than 50%. The inhibition of binding occurred at 37°C and 4°C and could be blocked or reversed by the addition of sugars which bind specifically to WGA or Con A. Scatchard analysis revealed that these lectins decreased binding primarily by lowering the affinity of the receptor and to a lesser extent by decreasing receptor number. Succinylalion of Con A (sCon A) produced a derivative that was less effective than the native lectin in decreasing EGF binding; however, addition of an antibody against Con A restored the ability of sCon A to decrease binding. Similar to results obtained with 125I-NGF binding, WGA but not Con A was found to increase, by scveralfold; the proportion of 125I-EGF binding that is resistant to solubilization by Triton X-100 detergent. A potential association of the EGF receptor with cytoskeletal elements is discussed which could account for such results.  相似文献   

14.
Morphogenesis of the anterior metatarsal skin (scutate scale region), from 9.5 to 12 days of development, results in the formation of orderly patterned scale ridges. It is after the initial formation of the Definitive Scale Ridge that the characteristic outer and inner epidermal surfaces differentiate. The hard, plate-like beta stratum, with its unique beta keratins, characterizes the epidermis of the outer surface, while the epidermis of the inner surface elaborates an alpha stratum. The anterior metatarsal region of the scaleless mutant does not undergo scale morphogenesis. Therefore, scale ridges do not form nor do the outer and inner epidermal surfaces with their characteristic beta and alpha strata. We have found that the extracellular matrix molecule, tenascin, first appears in the scutate scale dermis at 12 days of development when the scale ridge is established. Tenascin is found in the dermis only under the scale ridge and is not associated with the dermal-epidermal junction. Tenascin is not found in scaleless anterior metatarsal dermis at this time. As outgrowth of the Definitive Scale Ridge takes place, tenascin distribution correlates closely with the formation of the outer epidermal surface of each scale ridge. By 16 days of development tenascin is also found in close association with the dermal-epidermal junction. Tenascin does not appear in scaleless anterior metatarsal dermis until 16 days of development and then it is randomly and sparsely distributed at the dermal-epidermal junction. Tenascin's initial appearance and pattern of distribution in the scutate scale dermis and its abnormal expression in the scaleless dermis suggest that morphogenesis plays a significant role in regulation of its expression.  相似文献   

15.
Summary Using the label-fracture technique, an ultrastructural comparison was made of the number and distribution of wheat germ agglutinin (WGA)-binding sites between human normal and sickle red blood cells. The WGA was adsorbed to colloidal gold, and quantitative analysis of the electron micrographs revealed that more binding sites were present on the sickle erythrocytes than on the normal erythrocytes. Moreover, the sites were more clustered on the sickle red cells than on the normal red cells. Use of another lectin, Bandieraea simplicifolia-II, revealed that it did not bind to normal or sickle red cells. Because of the affinity of the WGA for sialic acid residues, it is probable that the WGA is binding to a transmembrane sialoglycoprotein, glycophorin A. The conformation and/or distribution of the glycophorin A molecules may be altered by the sickle hemoglobin that binds to the red cell membrane. Hence, as detected by WGA, new surface receptors, which could play a role in the adhesion of sickle cells to endothelium may be exposed.  相似文献   

16.
The lateral diffusion of lectin-labelled glycoconjugates was studied in the human colon carcinoma cell line HT29 using fluorescence photobleaching techniques. HT29 cells were grown in either Dulbecco's modified Eagle's medium with glucose (25 mM; DMEM-Glu) or with galactose (25 mM; DMEM-Gal). Cell cultivation in the DMEM-Gal medium was assumed to promote a transformation of the cells to become small-intestinal-like with characteristic microvilli and associated enzymes. The diffusion of glycoconjugates labelled with fluoresceinated Triticum vulgaris agglutinin (Wheat germ agglutinin; WGA), Ricinus communis agglutinin-I (RCA-I), Concanavalia ensiformis agglutinin (ConA), Ulex europaeus agglutinin-I (UEA-I) and Arachis hypogaea agglutinin (PNA) was in all cases rapid, with a diffusion constant (D) ranging between 0.4 and 0.8×10-8 cm2 s-1. As a comparison the diffusion of the fluorescent synthetic lipid analog diI-C14 was characterized by D=0.8 – 1.0 × 10–8 cm2 s-1. The diffusion of lectin-labelled surface components could not be related to the presence of microvilli on HT29 cells grown in DMEM-Gal, which ought to yield an apparently lower diffusion rate. The results indicate either that surface glycoconjugates in HT29 cells are dominated by glycolipid, or that the labelled glycoproteins are more or less free to diffuse in the plane of the membrane.  相似文献   

17.
Canine and feline platelet cytocentrifuge preparations (CCPs), cryostat and paraffin-embedded bone marrow sections were used in this study. We evaluated whether platelets, megakaryocytes and megakaryocyte precursor cells could be labelled by monoclonal antibodies (Y2/51, CLB-thromb/1, HPL1) against human platelet membrane glycoprotein GP IIIa and the GP IIb/IIIa complex or by the following 10 biotinylated lectins: concanavalin A (Con A), Lens culinaris agglutinin (LCA), Pisum sativum agglutinin (PsA), wheat germ agglutinin (WGA), peanut agglutinin (PNA), Phaseolus vulgaris lectin (PHA-L), Ricinus communis agglutinin 120 (RCA120), Ulex europaeus agglutinin — I(UEA-1), soybean agglutinin (SBA) and Dolichos biflorus agglutinin (DBA). Monoclonal antibodies Y2/51 and HPL1 cross reacted with platelets and megakaryocytic cells from both species, whereas CLB-thromb/1 was unreactive with canine preparations. Only Y2/51 labelled megakaryocytic cells in paraffin-embedded samples. LCA, PSA, WGA and PHA-L labelled feline and canine platelets and different numbers of morphologically identifiable megakaryocytes and numerous other, mostly myeloid, cells. Immunoblots of dog and cat platelet lysates using Y2/51 visualized a single protein of 95 kDa (unreduced), a mol·wt value within the range of those reported for GP IIIa. Some of the platelet (but not necessarily megakaryocyte) glycoproteins reacting with LCA, PSA and WGA could be identified in lectin blots following one- or two (nonreduced/reduced)-dimensional sodium dodecyl sulphatepolyacrylamide gel electrophoresis (SDS-PAGE). Thus in dogs and cats, the immunohistochemical detection of GP IIIa (and eventually GP IIb/IIIa) rather than lectin binding patterns could be important for the diagnosis of megakaryoblastic leukaemias.  相似文献   

18.
The scutate scales are entirely missing in chick embryos homozygous for the gene, “scaleless.” Reticulate scales of this mutant are present; however, they have undergone abnormal morphogenesis into irregular mounds and crevices. The pattern of keratinization seen along the anterior metatarsus of normal embryos differs dramatically from that seen along the anterior metatarsus of scaleless embryos. In contrast, we find that the unique pattern of keratinization seen in the epidermal cells of normal reticulate scales is retained in mutant reticulate scales, even though these scales are morphologically abnormal. We believe that differences in the initial tissue interactions (which establish the inductive ability of the dermis) of these two types of scales are responsible for the differences seen in their responses to the scaleless gene. The pleiotropic nature of the scaleless gene is discussed.  相似文献   

19.
125I-Wheat germ agglutinin (WGA) binding parameters of human urothelial cell lines of different grades of transformation (TGrll and TGrlll) were compared. The values of association constant (Ka) and the number of binding sites/cell for HCV29 (TGrll) cell line were about 3×106M–1 and over 4×107, respectively. Two TGrlll cell lines, HCV29T and Hu549 revealed lower values for Ka, and considerably higher numbers of binding sites/cell (about 3×108 and 2×108, respectively). Binding of125I-WGA to total cellular proteins resolved by SDS-PAGE and transferred to nitrocellulose showed multiple diffused bands in the range of 58–180 kDa. Some of these bands were characteristic for TGrll cells (124 kDa) or TGrlll cells (135 and 148 kDa).Abbreviations TGr transformation grade - WGA wheat germ agglutinin - sWGA succinylated wheat germ agglutinin - GlcNAc N-acetyl-d-glucosamine - BSA bovine serum albumin - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis  相似文献   

20.
Wheat plants are known to develop the associative symbiosis with the rhizobacterium Azospirillum brasilense.We studied the interaction of a lectin, wheat germ agglutinin (WGA), which is also found in wheat roots, with A. brasilense, strain sp245. When added to the azospirillum culture to the final concentration of 10–8to 10–9M, WGA enhanced IAA production, dinitrogen fixation, and ammonium excretion by bacterial cells. WGA also promoted the synthesis of proteins, both new and those already present in bacterial cells. The hypothesis that WGA is a signal molecule rerouting the bacterial metabolism in the direction favorable for the growth and development of the host plant has been put forward. It is suggested that signal properties of WGA are the basis for one of the functions of this lectin and essential for the effective associative symbiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号