首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
6_磷酸果糖激酶(PFK)是糖酵解途径一个关键酶。基于腾冲嗜热厌氧菌基因组中的注释,基因TTE1816可能是PFK的一种,但是,它是否确有生物活性还必须有实验数据的支持。腾冲嗜热厌氧菌在最适温度培养后,提取细菌全蛋白,并采用双向电泳将可溶性蛋白质分离,然后运用质谱鉴定若干染色斑点。实验表明,TTE1816在高温条件下能够表达蛋白质。将TTE1816基因体外克隆至细菌表达载体,并在BL_21大肠杆菌中表达为可溶性蛋白。酶动力学实验表明,重组蛋白TTE1816具有PFK的催化活性,最适反应温度在60℃。它还能够催化葡萄糖、果糖、甘露糖和6_磷酸葡萄糖的磷酸化反应。另外,在高底物浓度和酶浓度的条件下,TTE1816还表现果糖二磷酸酶的特性。结果证明,TTE1816是腾冲嗜热厌氧菌中PFK家族的一个新成员。  相似文献   

2.
3.
B A French  S H Chang 《Gene》1987,54(1):65-71
The gene (Bs-pfk) for phosphofructokinase (PFK) from Bacillus stearothermophilus has been cloned and sequenced. The deduced amino acid sequence is nearly identical to the sequence which was previously determined by peptide analysis. The elevated G + C content of Bs-pfk relative to the homologous Ec-pfkA from Escherichia coli is consistent with previous observations concerning genes from thermophilic prokaryotes. A significant degree of homology exists when the deduced amino acid sequence of B. stearothermophilus PFK is compared with the corrected sequences of rabbit muscle PFK or E. coli PFK-1. The cloning and sequencing of Bs-pfk completes the first step toward using site-specific mutagenesis to investigate the structure-function relationships for this allosteric enzyme.  相似文献   

4.
A novel enzyme catalysing citryl-CoA cleavage to acetyl-CoA and oxaloacetate was purified from Hydrogenobacter thermophilus TK-6, and designated citryl-CoA lyase (CCL). The citrate cleavage reaction in this organism proceeded by a unique set of two consecutive reactions: (i). citryl-CoA formation by citryl-CoA synthetase (CCS) and (ii). citryl-CoA cleavage by CCL. Purified CCL gave a single 30 kDa band in SDS-PAGE and gel filtration chromatography indicated that the native state of the enzyme exists as a trimer (alpha(3)). Citryl-CoA lyase showed low citrate synthase (CS) activity. Using an oligonucleotide probe, the corresponding gene was cloned and sequenced. The gene was expressed in Escherichia coli and recombinant CCL was also purified. The CCL protein sequence showed similarity to the C-terminal regions of ATP citrate lyase (ACL) and CS sequences in the database. By further sequence comparisons, the phylogenetic relationship between CCS, CCL, ACL and CS was investigated.  相似文献   

5.
[目的]球形芽孢杆菌缺乏EMP、HMP、ED途径的关键酶,如磷酸果糖激酶等被认为是其不能以糖类物质进行生长的主要原因.杀蚊球形芽孢杆菌C3-41全基因组序列分析表明,在染色体DNA上存在的磷酸果糖激酶基因pfk,为了进一步分析球形芽孢杆菌糖酵解途径,进一步确定磷酸果糖激酶在糖酵解途径中的功能.[方法]通过pfk基因在球形芽孢杆菌菌株中的Southern-blot拷贝数鉴定,在C3-41pfk基因克隆的基础上进行pfk基因在大肠杆菌中的融合表达、序列分析和序列比对等方法进行研究.[结果]证明了球形芽孢杆菌pfk基因由960 bp核苷酸组成,表达42 kDa的PFK融合蛋白,有保守的底物结合域和ATP结合域,同时pfk基因重组表达质粒可以回复大肠杆菌pfk缺陷型菌株DFl020代谢糖的能力.[结论]杀蚊球形芽孢杆菌C3-41的pfk表达产物具有磷酸果糖激酶活性,为今后深入研究球形芽孢杆菌产能代谢机理奠定了基础.  相似文献   

6.
Some strains of Bacillus sphaericus are entomopathogenic to mosquito larvae, which transmit diseases, such as filariasis and malaria, affecting millions of people worldwide. This species is unable to use hexoses and pentoses as unique carbon sources, which was proposed to be due to the lack of glycolytic enzymes, such as 6-phosphofructokinase (PFK). In this study, PFK activity was detected and the pfk gene was cloned and sequenced. Furthermore, this gene was shown to be present in strains belonging to all the homology groups of this heterogeneous species, in which PFK activity was also detected. A careful sequence analysis revealed the conservation of different catalytic and regulatory residues, as well as the enzyme's phylogenetic affiliation with the family of allosteric ATP-PFK enzymes.  相似文献   

7.
A highly heat-stable amylase gene from an obligately anaerobic and extremely thermophilic bacterium, Dictyoglomus thermophilum, was cloned and expressed in Escherichia coli. The nucleotide sequence of the amylase gene predicts a 686-amino-acid protein of relative molecular mass 81,200, which is consistent with that determined by sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the purified enzyme. The NH2-terminal sequence determined using the enzyme purified from E. coli cells corresponds precisely to that predicted from the nucleotide sequence, except for the absence of the NH2-terminal methionine in the mature protein. When the amylase gene was expressed in E. coli cells, the enzyme was localized in the cytoplasmic fraction; this is probably explained by the absence of the signal sequence for secretion. By using the amylase purified from the E. coli transformant, some enzymatic properties, such as optimum pH, optimum temperature, pH-stability and heat-stability, were examined. The amylase was found to be a highly liquefying-type.  相似文献   

8.
We previously reported the purification and characterization of a novel type of alkaline ceramidase from Pseudomonas aeruginosa strain AN17 (Okino, N., Tani, M., Imayama, S., and Ito, M. (1998) J. Biol. Chem. 273, 14368-14373). Here, we report the molecular cloning, sequencing, and expression of the gene encoding the ceramidase of this strain. Specific oligonucleotide primers were synthesized using the peptide sequences of the purified ceramidase obtained by digestion with lysylendopeptidase and used for polymerase chain reaction. DNA fragments thus amplified were used as probes to clone the gene encoding the ceramidase from a genomic library of strain AN17. The open reading frame of 2,010 nucleotides encoded a polypeptide of 670 amino acids including a signal sequence of 24 residues, 64 residues of which matched the amino acid sequence determined for the purified enzyme. The molecular weight of the mature enzyme was estimated to be 70,767 from the deduced amino acid sequence. Expression of the ceramidase gene in Escherichia coli, resulted in production of a soluble enzyme with the identical N-terminal amino acid sequence. Recombinant ceramidase was purified to homogeneity from the lysate of E. coli cells and confirmed to be identical to the Pseudomonas enzyme in its specificity and other enzymatic properties. No significant sequence similarities were found in other known functional proteins including human acid ceramidase. However, we found a sequence homologous to the ceramidase in hypothetical proteins encoded in Mycobacterium tuberculosis, Dictyostelium discoideum, and Arabidopsis thaliana. The homologue of the ceramidase gene was thus cloned from an M. tuberculosis cosmid and expressed in E. coli, and the gene was demonstrated to encode an alkaline ceramidase. This is the first report for the cloning of an alkaline ceramidase.  相似文献   

9.
Having previously determined the complete amino acid sequence of 2-keto-4-hydroxyglutarate aldolase from Escherichia coli (C. J. Vlahos and E. E. Dekker, J. Biol. Chem. 263:11683-11691, 1988), we amplified the gene that codes for this enzyme by the polymerase chain reaction using synthetic degenerate deoxyoligonucleotide primers. The amplified DNA was sequenced by subcloning the polymerase chain reaction products into bacteriophage M13; the nucleotide sequence of the gene was found to be in exact agreement with the amino acid sequence of the gene product. Overexpression of the gene was accomplished by cloning it into the pKK223.3 expression vector so that it was under control of the tac promoter and then using the resultant plasmid, pDP6, to transform E. coli DH5 alpha F'IQ. When this strain was grown in the presence of isopropyl beta-D-thiogalactopyranoside, aldolase specific activity in crude extracts was 80-fold higher than that in wild-type cells and the enzyme constituted approximately 30% of the total cellular protein. All properties of the purified, cloned gene product, including cross-reactivity with antibodies elicited against the wild-type enzyme, were identical with the aldolase previously isolated and characterized. A strain of E. coli in which this gene is inactivated was prepared for the first time by insertion of the kanamycin resistance gene cartridge into the aldolase chromosomal gene.  相似文献   

10.
The gene encoding D-lactate dehydrogenase (D-lactate: NAD+ oxidoreductase, EC 1.1.1.28) of Lactobacillus plantarum has been sequenced, and expressed in Escherichia coli cells with an inducible expression plasmid, in which the 5'-noncoding region of the gene was replaced with the tac promoter. Comparison of the sequence of D-lactate dehydrogenase with L-lactate dehydrogenases, including the L. plantarum L-lactate dehydrogenase, showed no significant homology. In contrast, the D-lactate dehydrogenase is homologous to E. coli D-3-phosphoglycerate dehydrogenase and Lactobacillus casei D-2-hydroxyisocaproate dehydrogenase. This indicates that D-lactate dehydrogenase is a member of a new family of 2-hydroxyacid dehydrogenases recently proposed, being distinct from L-lactate dehydrogenase and L-malate dehydrogenase, and strongly suggests that the new family consists of D-isomer-stereospecific enzymes. In the reductive reaction, the enzyme showed a broad substrate specificity, although pyruvate was the most favorable of all 2-ketocarboxylic acids tested. In particular, hydroxypyruvate is effectively reduced by the enzyme, the reaction rate, and Km value being comparable to those in the case of pyruvate, indicating that the enzyme has not only D-lactate dehydrogenase activity but also D-glycerate dehydrogenase activity. The conserved residues in this family appear to be the residues involved in the substrate binding and the catalytic reaction, and thus to be targets for site-directed mutagenesis.  相似文献   

11.
A synthetic gene encoding the Schizophyllum commune xylanase XynA was constructed by a novel PCR-based procedure. Three long oligonucleotides were synthesized and used in combination with flanking PCR primers to generate a 607 base pair gene which contained 31 unique locations for restriction enzyme cleavage. The amino acid sequence was tailored for expression in Escherichia coli by using only those codons found in highly expressed E. coli genes. The availability of the gene will facilitate analysis of the structure and function of this and other beta-(1,4) xylanases.  相似文献   

12.
The pheA gene encoding the bifunctional P-protein (chorismate mutase:prephenate dehydratase) was cloned from Pseudomonas stutzeri and sequenced. This is the first gene of phenylalanine biosynthesis to be cloned and sequenced from Pseudomonas. The pheA gene was expressed in Escherichia coli, allowing complementation of an E. coli pheA auxotroph. The enzymic and physical properties of the P-protein from a recombinant E. coli auxotroph expressing the pheA gene were identical to those of the native enzyme from P. stutzeri. The nucleotide sequence of the P. stutzeri pheA gene was 1095 base pairs in length, predicting a 365-residue protein product with an Mr of 40,844. Codon usage in the P. stutzeri pheA gene was similar to that of Pseudomonas aeruginosa but unusual in that cytosine and guanine were used at nearly equal frequencies in the third codon position. The deduced P-protein product showed sequence homology with peptide sequences of the E. coli P-protein, the N-terminal portion of the E. coli T-protein (chorismate mutase:prephenate dehydrogenase), and the monofunctional prephenate dehydratases of Bacillus subtilis and Corynebacterium glutamicum. A narrow range of values (26-35%) for amino acid matches revealed by pairwise alignments of monofunctional and bifunctional proteins possessing activity for prephenate dehydratase suggests that extensive divergence has occurred between even the nearest phylogenetic lineages.  相似文献   

13.
L F Wu  A Reizer  J Reizer  B Cai  J M Tomich    M H Saier  Jr 《Journal of bacteriology》1991,173(10):3117-3127
The fruK gene encoding fructose-1-phosphate kinase (FruK), located within the fructose (fru)-catabolic operon of Rhodobacter capsulatus, was sequenced. FruK of R. capsulatus (316 amino acids; molecular weight = 31,232) is the same size as and is homologous to FruK of Escherichia coli, phosphofructokinase B (PfkB) of E. coli, phosphotagatokinase of Staphylococcus aureus, and ribokinase of E. coli. These proteins therefore make up a family of homologous proteins, termed the PfkB family. A phylogenetic tree for this new family was constructed. Sequence comparisons plus chemical inactivation studies suggested the lack of involvement of specific residues in catalysis. Although the Rhodobacter FruK differed markedly from the other enzymes within the PfkB family with respect to amino acid composition, these enzymes exhibited similar predicted secondary structural features. A large internal segment of the Rhodobacter FruK was found to be similar in sequence to the domain bearing the sugar bisphosphate-binding region of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase of plants and bacteria. Proteins of the PfkB family did not exhibit statistically significant sequence identity with PfkA of E. coli. PfkA, however, is homologous to other prokaryotic and eukaryotic ATP- and PPi-dependent Pfks (the PfkA family). These eukaryotic, ATP-dependent enzymes each consist of a homotetramer (mammalian) or a heterooctamer (yeasts), with each subunit containing an internal duplication of the size of the entire PfkA protein of E. coli. In some of these enzymes, additional domains are present. A phylogenetic tree was constructed for the PfkA family and revealed that the bacterial enzymes closely resemble the N-terminal domains of the eukaryotic enzyme subunits whereas the C-terminal domains have diverged more extensively. The PPi-dependent Pfk of potato is only distantly related to the ATP-dependent enzymes. On the basis of their similar functions, sizes, predicted secondary structures, and sequences, we suggest that the PfkA and PfkB families share a common evolutionary origin.  相似文献   

14.
The riboflavin kinase in Methanocaldococcus jannaschii has been identified as the product of the MJ0056 gene. Recombinant expression of the MJ0056 gene in Escherichia coli led to a large increase in the amount of flavin mononucleotide (FMN) in the E. coli cell extract. The unexpected features of the purified recombinant enzyme were its use of CTP as the phosphoryl donor and the absence of a requirement for added metal ion to catalyze the formation of FMN. Identification of this riboflavin kinase fills another gap in the archaeal flavin biosynthetic pathway. Some divalent metals were found to be potent inhibitors of the reaction. The enzyme represents a unique CTP-dependent family of kinases.  相似文献   

15.
Protease II gene of Escherichia coli HB101 was cloned and expressed in E. coli JM83. The transformant harboring a hybrid plasmid, pPROII-12, with a 2.4 kbp fragment showed 90-fold higher enzyme activity than the host. The whole nucleotide sequence of the inserted fragment of plasmid pPROII-12 was clarified by the dideoxy chain-terminating method. The sequence that encoded the mature enzyme protein was found to start at an ATG codon, as judged by comparison with amino terminal protein sequencing. The molecular weight of the enzyme was estimated to be 81,858 from the nucleotide sequence. The reactive serine residue of protease II was identified as Ser-532 with tritium DFP. The sequence around the serine residue is coincident with the common sequence of Gly-X-Ser-X-Gly, which has been found in the active site of serine proteases. Except for this region, protease II showed no significant sequence homology with E. coli serine proteases, protease IV and protease La (lon gene), or other known families of serine proteases. However, 25.3% homology was observed between protease II and prolyl endopeptidase from porcine brain. Although the substrate specificities of these two enzymes are quite different, it seems possible to classify protease II as a member of the prolyl endopeptidase family from the structural point of view.  相似文献   

16.
10-Formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1), an abundant cytosolic enzyme of folate metabolism, shares significant sequence similarity with enzymes of the aldehyde dehydrogenase (ALDH) family. The enzyme converts 10-formyltetrahydrofolate (10-fTHF) to tetrahydrofolate and CO(2) in an NADP(+)-dependent manner. The mechanism of this reaction includes three consecutive steps with the final occurring in an ALDH-homologous domain. We have recently identified a mitochondrial isoform of FDH (mtFDH), which is the product of a separate gene, ALDH1L2. Its overall identity to cytosolic FDH is about 74%, and the identity between the ALDH domains rises up to 79%. In the present study, human mtFDH was expressed in Escherichia coli, purified to homogeneity, and characterized. While the recombinant enzyme was capable of catalyzing the 10-fTHF hydrolase reaction, it did not produce detectable levels of ALDH activity. Despite the lack of typical ALDH catalysis, mtFDH was able to perform the characteristic 10-fTHF dehydrogenase reaction after reactivation by recombinant 4'-phosphopantetheinyl transferase (PPT) in the presence of coenzyme A. Using site-directed mutagenesis, it was determined that PPT modifies mtFDH specifically at Ser375. The C-terminal domain of mtFDH (residues 413-923) was also expressed in E. coli and characterized. This domain was found to exist as a tetramer and to catalyze an esterase reaction that is typical of other ALDH enzymes. Taken together, our studies suggest that ALDH1L2 has enzymatic properties similar to its cytosolic counterpart, although the inability to catalyze the ALDH reaction with short-chain aldehyde substrates remains an unresolved issue at present.  相似文献   

17.
The enzyme phosphofructokinase (PFK) is a defining activity of the highly conserved glycolytic pathway, and is present in the domains Bacteria, Eukarya, and Archaea. PFK subtypes are now known that utilize either ATP, ADP, or pyrophosphate as the primary phosphoryl donor and share the ability to catalyze the transfer of phosphate to the 1-position of fructose-6-phosphate. Because of the crucial position in the glycolytic pathway of PFKs, their biochemical characteristics and phylogenies may play a significant role in elucidating the origins of glycolysis and, indeed, of metabolism itself. Despite the shared ability to phosphorylate fructose-6-phosphate, PFKs that have been characterized to date now fall into three sequence families: the PFKA family, consisting of the well-known higher eukaryotic ATP-dependent PFKs together with their ATP- and pyrophosphate-dependent bacterial cousins (including the crenarchaeal pyrophosphate-dependent PFK of Thermoprotetus tenax) and plant pyrophosphate-dependent phosphofructokinases; the PFKB family, exemplified by the minor ATP-dependent PFK activity of Escherichia coli (PFK 2), but which also includes at least one crenarchaeal enzyme in Aeropyrum pernix; and the tentatively named PFKC family, which contains the unique ADP-dependent PFKs from the euryarchaeal genera of Pyrococcus and Thermococcus, which are indicated by sequence analysis to be present also in the methanogenic species Methanococcus jannaschii and Methanosarcina mazei.  相似文献   

18.
The intracellular beta-xylosidase was induced when Streptomyces thermoviolaceus OPC-520 was grown at 50 degrees C in a minimal medium containing xylan or xylooligosaccharides. The 82-kDa protein with beta-xylosidase activity was partially purified and its N-terminal amino acid sequence was analyzed. The gene encoding the enzyme was cloned, sequenced, and expressed in Escherichia coli. The bxlA gene consists of a 2,100-bp open reading frame encoding 770 amino acids. The deduced amino acid sequence of the bxlA gene product had significant similarity with beta-xylosidases classified into family 3 of glycosyl hydrolases. The bxlA gene was expressed in E. coli, and the recombinant protein was purified to homogeneity. The enzyme was a monomer with a molecular mass of 82 kDa. The purified enzyme showed hydrolytic activity towards only p-nitrophenyl-beta-D-xylopyranoside among the synthetic glycosides tested. Thin-layer chromatography analysis showed that the enzyme is an exo-type enzyme that hydrolyze xylooligosaccharides, but had no activity toward xylan. High activity against pNPX occurred in the pH range 6.0-7.0 and temperature range 40-50 degrees C.  相似文献   

19.
The alpha-galactosidase gene aga36A of Clostridium stercorarium F-9 was cloned, sequenced, and expressed in Escherichia coli. The aga36A gene consists of 2,208 nucleotides encoding a protein of 736 amino acids with a predicted molecular weight of 84,786. Aga36A is an enzyme classified in family 36 of the glycoside hydrolases and showed sequence similarity with some enzymes of family 36 such as Geobacillus (formerly Bacillus) stearothermophilus GalA (57%) and AgaN (52%). The enzyme purified from a recombinant E. coli is optimally active at 70 degrees C and pH 6.0. The enzyme hydrolyzed raffinose and guar gum with specific activities of 3.0 U/mg and 0.46 U/mg for the respective substrates.  相似文献   

20.
Escherichia coli is being developed as a biocatalyst for bulk chemical production from inexpensive carbohydrates derived from lignocellulose. Potential substrates include the soluble xylodextrins (xyloside, xylooligosaccharide) and xylobiose that are produced by treatments designed to expose cellulose for subsequent enzymatic hydrolysis. Adjacent genes encoding xylobiose uptake and hydrolysis were cloned from Klebsiella oxytoca M5A1 and are functionally expressed in ethanologenic E. coli. The xylosidase encoded by xynB contains the COG3507 domain characteristic of glycosyl hydrolase family 43. The xynT gene encodes a membrane protein containing the MelB domain (COG2211) found in Na(+)/melibiose symporters and related proteins. These two genes form a bicistronic operon that appears to be regulated by xylose (XylR) and by catabolite repression in both K. oxytoca and recombinant E. coli. Homologs of this operon were found in Klebsiella pneumoniae, Lactobacillus lactis, E. coli, Clostridium acetobutylicum, and Bacillus subtilis based on sequence comparisons. Based on similarities in protein sequence, the xynTB genes in K. oxytoca appear to have originated from a gram-positive ancestor related to L. lactis. Functional expression of xynB allowed ethanologenic E. coli to metabolize xylodextrins (xylosides) containing up to six xylose residues without the addition of enzyme supplements. 4-O-methylglucuronic acid substitutions at the nonreducing termini of soluble xylodextrins blocked further degradation by the XynB xylosidase. The rate of xylodextrin utilization by recombinant E. coli was increased when a full-length xynT gene was included with xynB, consistent with xynT functioning as a symport. Hydrolysis rates were inversely related to xylodextrin chain length, with xylobiose as the preferred substrate. Xylodextrins were utilized more rapidly by recombinant E. coli than K. oxytoca M5A1 (the source of xynT and xynB). XynB exhibited weak arabinosidase activity, 3% that of xylosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号