首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reaction of AgX (X=ClO4, NO3 or SO3CH3) acceptors with excesses of tris(pyrazol-1-yl)methane ligands L (L=CH(pz)3, CH(4-Mepz)3, CH(3,5-Me2pz)3, CH(3,4,5-Me3pz)3 or CH(3-Mepz)2(5-Mepz)) yields 1:1 [AgX(L)], 2:1 [Ag(L)2]X or 3:2 [(AgX)2(L)3] complexes. The ligand to metal ratio in all complexes is dependent on the number and disposition of the Me substituents on the azole ring of the neutral ligand and on the nature of the Ag(I) acceptor. All complexes have been characterized in the solid state as well as in solution (medium- and far-IR, 1H and 13C NMR and conductivity determinations) and the solid-state structures of [Ag(NO3){(pz)3CH}](∞/∞) and [Ag{(3,5-Me2pz)3CH}2]NO3 determined by single crystal X-ray studies.  相似文献   

2.
The crystal structures of two 1:1 ligand-silver(I) cyanide complexes, [Ag(CN)(en)] (en = ethane-1,2-diamine) (1) and [Ag(CN)(pn)] (pn = propane-1,2-diamine) (2), and of two 2:1 ligand-silver(I) cyanide compounds, [(AgCN)2 · tn] (tn = propane-1,3-diamine) (3) and [(AgCN)2 · bn] (bn = butane-1,4-diamine) (4), were determined from single-crystal X-ray diffraction data, collected at 173 K. In 1 and 2, mononuclear AgCN complexes are formed, in which silver(I) is coordinated by one cyanide and one chelating alkanediamine donor ligand. However, in the dinuclear adducts of 3 and 4, two AgCN units are connected by one alkane-1,n-diamine bridging ligand (n = 3, 4). The resulting molecules of 1-4 are cross-linked via N-H?N hydrogen bonds. Apart from these intermolecular contacts, comparatively short Ag(I)-Ag(I) distances of 3.182(1) Å (in 1), 3.267(1) Å (in 2), 3.023(2) Å (in 3) and 3.050(2) Å (in 4) occur.  相似文献   

3.
Synthetic, single crystal X-ray structural characterizations and vibrational spectroscopic studies are recorded for a number of adducts of 1:2 stoichiometry of silver(I) oxyanion salts for oxyanions of differing basicity (perchlorate, nitrate, carboxylate (as trifluoroacetate (≡‘tfa’))), with a variety of pyridine (≡‘py’) or piperidine (≡‘pip’) bases hindered in the 2- (and, sometimes, 6-) position(s) by methyl or non-coordinating functionalities of other types, the ligands employed being 2-methylpyridine (‘2mp’), 2,6-dimethylpyridine (‘lut’), 2,4,6-trimethylpyridine (‘coll’), quinoline (‘quin’), 2,2,6,6-tetramethylpiperidine (‘tmp’), 2-amino-,6-methylpyridine (‘nmp’), 2-methoxypyridine (‘mop’) and 2-cyanomethylpyridine (‘pcn’); studies are also recorded of adducts with the parent, ‘py’, base and with 4-cyanopyridine (‘cnp’). In the majority of the complexes, the NAgN motif predominates, as might be expected, variously distorted from linearity in response to changes in (competing) basicities of the nitrogen base and any nearby anion or solvent molecule; an unusual variation is found in the highly hindered tmp/tfa adduct which is a monohydrate with interacting water displacing the rather basic anion, the converse being the case in the corresponding nitrate, also a monohydrate. With the less-hindered base mpy, both nitrate and trifluoroacetate are binuclear, with O and OCO bridges corresponding to centrosymmetric four- and eight-membered rings, respectively; the quin/nitrate adduct is more complex, also binuclear but with bis(chelating) nitrate. AgNO3:py (1:3) is found to be binuclear, while with Agtfa/py, a 3:2 adduct [Ag(py)2][Ag2(tfa)3](∞|∞) is found with a novel, polymeric, strongly interacting anion. A further pair of 1:3 adducts, AgNO3:2np (2np = 2-aminopyridine) and Agtfa:nmp, both mononuclear [AgL3]+X are described, differing in the modes of interaction of silver with the three N-bases. In all simple NAgN systems with aromatic ligands, the pair of ligand ‘planes’ is disposed quasi-parallel.The far-IR spectra of [AgL2]Y (L = lut, coll; Y = ClO4, NO3, tfa) and of [Ag(py)n](ClO4) (n = 2,4) have been recorded and the ν(AgN) bands assigned in the range 80-240 cm−1. For the L = lut, coll complexes, there is a clear trend of decreasing ν(AgN) following increasing r(AgN) as the interaction with the counterion increases along the series Y = ClO4, NO3, tfa.  相似文献   

4.
The reaction between CuX2 (X=ClO4, NO3, Cl, Br and CH3COO) and excess of tris(pyrazol-1-yl)methane ligands L (L=CH(pz)3, CH(4-Mepz)3, CH(3,5-Me2pz)3, CH(3,4,5-Me3pz)3 or CH(3-Mepz)2(5-Mepz)) yields [CuX2(L)], [{CuX2}3(L2)2] or [Cu(L2)]X2-type complexes. The ligand to metal ratio is dependent on the number and disposition of the Me substituents on the azole-type ligand and mainly on the nature of the counter-ion X. All complexes have been characterized in the solid state as well as in solution (IR and UV spectra, and conductivity determinations). The solid-state structures of [Cu{(3,5-Me2pz)3CH}2](NO3)2, [Cu{(3,5-Me2pz)3CH}2](ClO4)2·0.5H2O, [Cu{(3,4,5-Me3pz)3CH}2](NO3)2·H2O, [Cu{(4-Mepz)3CH}2]Br2·3H2O have been determined by single crystal X-ray studies.  相似文献   

5.
Density functional theory has been used to study the electronic structure of [M(tp)] and [M(tpm)]+ conformers (M = Cu, Ag; tp = tris(pyrazol-1-yl)borate anion, tpm = tris(pyrazol-1-yl)methane) and the energetics of their interconversions. Results for the free tp ligand are similar to those of tpm [M. Casarin, D. Forrer, F. Garau, L. Pandolfo, C. Pettinari, A. Vittadini, J. Phys. Chem. A 112 (2008) 6723], indicating an intrinsic instability of the tripodal conformation (κ3-like). This points out that, though frequently observed, the κ3-coordinative mode is unlikely to be directly achieved through the interaction of M(I) with the κ3-like tp/tpm conformer. Analogously to the [M(tpm)]+ molecular ions, the energy barrier for the κ2-[M(tp)] → κ3-[M(tp)] conversion is computed to be negligible. Though κn-[M(tp)] and κn-[M(tpm)]+ (n = 1, 2, 3) have similar metal-ligand covalent interactions, the negative charge associated to the tp ligand makes the M-tp bonding stronger.  相似文献   

6.
Six hydrogen-bonded silver(I) complexes, Ag(4-abaH)2(NO3) (1), [Ag(4-abaH)2(NO3)]n (2), {[Ag(4-aba)(4-abaH)] · H2O}n (3), {[Ag(4,4-bipy)(H2O)](4-aba)0.5(NO3)0.5 · (H2O)0.5}n (4), [Ag[(3-abaH0.5)2] (5), and {[Ag(3-aba)] · H2O}n (6) (4-abaH=4-aminobenzoic acid, 3-abaH=3-aminobenzoic acid), have been synthesized and characterized by single-crystal X-ray diffraction analyses. In 1, 4-abaH serves as a monodentate ligand coordinating to Ag(I) through its nitrogen atom, while uncoordinated carboxylic group links (4-abaH)-Ag-(4-abaH) into a one-dimensional metallic carboxylic synthon. 2 may be regarded as an extension of 1 into a two-dimensional carboxylic synthon through NO3 − bridging two adjacent Ag(I) centers. In 3, 4-abaH in a monodentate mode and 4-aba in a μ-N,O bridging mode link three-coordinated Ag(I) to form a one-dimensional swallow-like chain, which is further extended into a two-dimensional layer structure through inter-chain hydrogen bonding interactions. The alternating Ag(I) and 4,4-bipy in 4 give rise to a slightly distorted linear chain, which is further extended into a two-dimensional layer through the completely overlapping and off-set stacking interactions. The hydrogen bonds involving in weakly coordinated aqueous molecules and 4-aba further extend it into a three-dimensional framework. In 5, the inter-molecular hydrogen bonding and π-π stacking interactions extend Ag[(3-abaH0.5)2] into a two-dimensional supramolecular architecture. In 6, 3-aba in a μ3-N,O,O coordination mode links three three-coordinated Ag(I) into a two-dimensional network. Uncoordinated aqueous molecules and the adjacent 3-aba oxygen atoms form intermolecular hydrogen bonds.  相似文献   

7.
Hydrophilic, monocationic [M(L)4]PF6 complexes (M = Cu or Ag; L: thp = tris(hydroxymethyl)phosphine, L: PTA = 1,3,5-triaza-7-phosphaadamantane, L: thpp = tris(hydroxypropyl)phosphine) were synthesized by ligand exchange reaction starting from [Cu(CH3CN)4]PF6 or AgPF6 precursors at room temperature in the presence of an excess of the relevant phosphine. The related [Au(L)4]PF6 complexes (L = thp, PTA or thpp) were synthesized by metathesis reactions starting from [Au(L)4]Cl at room temperature in the presence of equimolar quantity of TlPF6. The three series of complexes [M(L)4]PF6 were tested as cytotoxic agents against a panel of several human tumour cell lines also including a defined cisplatin resistant cell line. These investigations have been carried out in comparison with the clinically used metallodrug cisplatin and preliminary structure-activity relationships are presented. The best results in terms of in vitro antitumour activity were achieved with metal-thp species and, among the coinage metal complexes, copper derivatives were found to be the most efficient drugs. Preliminary studies concerning the mechanism of action of these [M(L)4]PF6 species pointed to thioredoxin reductase as one of the putative cellular targets of gold and silver complexes and provided evidence that copper derivatives mediated their cytotoxic effect through proteasome inhibition.  相似文献   

8.
Six new adducts of the form AgX:PPh3:H2C(pzx)2 (1:1:1) (H2C(pzx)2 = H2C(pz)2 = bis(pyrazolyl)methane or H2C(pzMe2)2 = bis(3,5-dimethylpyrazolyl)methane; X = ClO4, NO3, SO3CF3) have been synthesized and characterized by analytical, spectroscopic (IR, far-IR, 1H and 31P NMR) and two of them also by single crystal X-ray diffraction studies for comparison with counterpart adducts with 2,2′-bipyridyl (‘bpy’) derivatives reported in a previous paper, the bpy-derived ligands forming five-membered chelate rings, while the present H2C(pzx)2 should, potentially, form six-membered rings. Such is the case, the two adducts exhibiting quasi-planar N2AgP coordination environments, perturbed by the approach of the oxyanion, unidentate in the case of the perchlorate but, in the case of the nitrate, an interesting disordered aggregate of differing unidentate modes.  相似文献   

9.
The double-helicate dinuclear silver(I) complex [Ag2L2](SO3CF3)2 (1) was obtained by reaction of AgSO3CF3 with 4′-phenyl-terpyridine (L). Each Ag+ ion is coordinated by two N-atoms from one of the ligands and by one N-atom of the other ligand, forming an irregular Ag2N6 bi-triangle geometry, with a metallic bond between the two silver ions. Complex 1 reacts with potentially bidentate ligands (L1), such as 9,10-bis(diphenylphosphino)anthracene (PAnP), 4,4′-dipyridyl or bis(diphenyl phosphino)methane (DPPM), to give the corresponding dinuclear complexes with bridging L1, [Ag2L2(μ-L1)](SO3CF3)2 (L1 = PAnP 2, 4,4′-dipyridyl 3 or DPPM 4), whereas on reaction with PPh3 forms the mononuclear complex [AgL(PPh3)](SO3CF3) 5. Reaction of 1 with the potentially tridentate ligand tris(2-diphenylphosphinoethyl)amine (NP3) results in complete decomposition of the coordination spheres to form [Ag(NP3)](SO3CF3) 6. Compound 1 shows a strong fluorescence in the solid state with its excitation band at 383.5 nm, the emission band at 535.5 nm and the lifetime of 4.20 ns, but the derived complexes do not show fluorescent properties. The photoluminescence of 1 in various solvents was also studied. The complexes were characterized by 1H NMR, elemental analysis, IR, MS, UV and single crystal X-ray diffraction.  相似文献   

10.
A study of the complexation of heavy metal ions by the coronands 3,12,20,29-tetraoxa-35,36-diazapentacyclo[29.3.1.1.14,18.05,10.022,27]-hexatriaconta-1(35),5(10),6,8,14,16,18(36),22(27),23,25,31,33-dodecaene (1); 2,3,11,12-bis (4-methylbenzo)-1,4,10,13-tetrathia-7,16-dioxacyclo-octadeca-2,11-diene (2); 7,16-diaza-1,4,10,13-tetraoxa-2,3,11,12-dibenzocyclooctadeca-2,11-diene (3); 2-[19-(2-hydroxy-2-phenylethyl)-7,8,9,10, 18,19,20,21-octahydro-6H,17H-dibenzo[b,k][1,4,10,13,7,16]tetraoxadiazacyclooctadecin-8-yl]-1-phenyl-1-ethanol (4); 1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane (5); and 2-[16-(2-hydroxy-2-phenylethyl)-1,4,10,13-tetraoxa-7,16-diazacyclo-octadecanyl]-1-phenyl-1-ethanol (6) is described. Coronands 1 and 3 were prepared by literature methods, improved methods were used to prepare 2, and 4 and 6 were prepared from 3 and 5 (obtained commercially), respectively. Potentiometric studies in N,N-dimethylformamide yielded (logK/dm3 mol−1)=5.50, 6.49, 9.42 and 7.52 for [Ag · 1]+, [Ag · 2]+, [Ag · 5]+ and [Ag · 6]+, respectively; <2, <2, 4.30 and <2 for [Zn · 1]2+, [Zn · 2]2+, [Zn · 5]2+ and [Zn · 6]2+, respectively, <2, <2, 5.92 and >7.52 for [Cd · 1]2+, [Cd · 2]2+, [Cd · 5]2+, and [Cd · 6]2+, respectively, and 2.62, 2.38, 6.71 and >7.52 for [Pb · 1]2+, [Pb · 2]2+, [Pb · 5]2+, and [Pb · 6]2+, respectively. ESI-MS studies of the interactions of 1-6 with Ag+, Zn2+, Cd2+ and Pb2+ are also reported.  相似文献   

11.
The title ligand, N-(2-hydroxyphenyl)methyl-bis-(2-pyridylmethyl)amine, was prepared via a condensation-reduction synthetic route. The compounds, CuCl(C19H19N3O) and [CuBr(C19H19N3O)]+Br · 3H2O, were readily synthesized from the reaction of CuCl or CuBr2 and the ligand in acetonitrile. The title copper(I) compound is an O-H ? Cl hydrogen-bonded linear chain of tetrahedrally coordinated copper centers, and the title copper(II) compound exists as two strongly tetragonally distorted dibromide bridged metal cations in a dimer with the phenol hydroxyl groups weakly bound in a trans-fashion to one of the bridging bromides. In the copper(I) complex the phenoxy group acts only as a hydrogen bond donor, whereas in the copper(II) complex it acts both as a ligand and a hydrogen bond donor.  相似文献   

12.
Mixed-ligand complexes of the formula [Ag(PPh3)(L)Br]2 were obtained by treatment of various heterocyclic thiones L {L=pyridine-2-thione (py2SH), pyrimidine-2-thione (pymtH), benz-1,3-imidazoline-2-thione (bzimtH2), benz-1,3-thiazoline-2-thione (bztztH), 1-methyl-1,3-imidazoline-2-thione (meimtH) and 5-methoxy-benz-1,3-imidazoline-2-thione (5MeObzimtH2)} with equivalent quantities of silver(I) bromide and triphenylphosphine in dry acetone. The compounds were characterized by their IR, far-IR, UV–Vis and 1H NMR spectroscopic data. The crystal structure of [Ag(PPh3)(pymtH)Br]2 was determined by single-crystal X-ray diffraction methods. The complex exhibits a planar Ag2Br2 moiety in which each of the doubly bromine-bridged Ag(I) centres is further bonded to one phosphine P and one thione S atom.  相似文献   

13.
The reaction of 2-(methylthioethanol) with 1,8-dichloroanthraquinone and 1,5-dichloroanthraquinone in THF with base produces 1,8-bis(2-methylthioethoxy)anthraquinone (1) and 1,5-bis(2-methylthioethoxy)anthraquinone (2), respectively. Silver(I) complexes of 1 and 2 have been synthesized after combination with [Ag(CH3CN)4]BF4 in 1:1 M ratio to yield, [(1,8-bis(2-methylthioethoxy)anthraquinone)Ag]BF4, (3) and [(1,5-bis(2-methylthioethoxy)anthraquinone)Ag·CH3CN]BF4, (4). X-ray crystal structures of the free ligand (1) and the Ag(I) complexes (3 and 4) are reported. The intraannular carbonyl group forms a coordinate-covalent bond with Ag(I) and, in the solid state, both silver(I) complexes are found as coordination polymers.  相似文献   

14.
The reaction of AgX with the diphosphazane ligand, PriN(PPh2)2 (L) gives the polymeric complexes, [Ag2(μ-X)2(μ-L)]n (X = NO31a or OSO2CF31b). Single crystal X-ray analysis of 1a reveals a novel structural motif formed by interlinking of giant 40-membered rings; the diphosphazane ligand L adopts a unique ‘Cs’ geometry. These polymeric complexes exhibit a completely reversible ring-opening polymerization-depolymerization relationship with the dinuclear and mononuclear complexes, [{Ag(μ-L)(X)}2] (X = NO32a, X = OSO2CF32b) and [Ag(κ2-L)2]X (X = NO33a, X = OSO2CF33b).  相似文献   

15.
The meagre (structurally defined) array of 1:2 silver(I) (pseudo-)halide:unidentate nitrogen base adducts is augmented by the single-crystal X-ray structural characterization of the 1:2 silver(I) thiocyanate:piperidine (‘pip’) adduct. It is of the one-dimensional ‘castellated polymer’ type previously recorded for the chloride: ?Ag(pip)2(μ-SCN)Ag(pip)2? a single bridging atom (S) linking successive silver atoms. By contrast, in its copper(I) counterpart, also a one-dimensional polymer, the thiocyanate bridges as end-bound SN-ambidentate: ?CuSCNCuSCN? A study of the 1:1 silver(I) bromide:quinoline (‘quin’) adduct is recorded, as the 0.25 quin solvate, isomorphous with its previous reported ‘saddle polymer’ chloride counterpart.Recrystallization of 1:1 silver(I) iodide:tris(2,4,6-trimethoxyphenyl)phosphine (‘tmpp’) mixtures from py and quinoline (‘quin’)/acetonitrile solutions has yielded crystalline materials which have also been characterized by X-ray studies. In both cases the products are salts, the cation in each being the linearly coordinated silver(I) species [Ag(tmpp)2]+, while the anions are, respectively, the discrete [Ag5I7(py)2]2− species, based on the already known but unsolvated [Cu5I7]2− discrete, and the polymeric, arrays, and polymeric . The detailed stereochemistry of the [Ag(tmpp)2]+ cation is a remarkably constant feature of all structures, as is its tendency to close-pack in sheets normal to their P-Ag-P axes.The far-IR spectra of the above species and of several related complexes have been recorded and assigned. The vibrational modes of the single stranded polymeric AgX chains in [XAg(pip)2](∞|∞) (X = Cl, SCN) are discussed, and the assignments ν(AgX) = 155, 190 cm−1 (X = Cl) and 208 cm−1 (X = SCN) are made. The ν(AgX) and ν(AgN) modes in the cubane tetramers [XAg(pip)]4 (X = Br, I) are assigned and discussed in relation to the assignments for the polymeric AgX:pip (1:2) complexes, and those for the polymeric [XAg(quin)](∞|∞) (X = Cl, Br) compounds. The far-IR spectra of [Ag(tmpp)2]2[Ag5I7(py)2] and its corresponding 2-methylpyridine complex show a single strong band at about 420 cm−1 which is assigned to the coordinated tmpp ligand in [Ag(tmpp)2]+, and a partially resolved triplet at about 90, 110 and 140 cm−1 which is assigned to the ν(AgI) modes of the [Ag5I7L2]2− anion. An analysis of this pattern is given using a model which has been used previously to account for unexpectedly simple ν(CuI) spectra for oligomeric iodocuprate(I) species.  相似文献   

16.
Syntheses and room-temperature single crystal X-ray structural characterizations are recorded for a variety of silver(I) oxyanion (perchlorate, nitrate and trifluoroacetate (‘tfa’) (increasing basicity)) adducts, AgX, with a number of pyridine (‘py’) bases, L, functionalized in the 2-position with N- or O-donor groups, namely 2-amino-, 2-amino-6-methyl-, 2-aminomethyl-, 2-hydroxy-, 2-methoxy- and 2-acetyl- pyridines, ‘2np’, ‘nmp’, ‘amp’, ‘ohp’, ‘mop’, and ‘acp’. A variety of stoichiometries and associated structural types are defined: [Ag(chelate)2]X, L/X = amp,acp/ClO4, [XAg(chelate)2], L/X = acp/tfa, of 1:2 AgX:L stoichiometry; for 1:1 stoichiometry, although a discrete mononuclear complex [(chelate)Ag(O2NO)] is defined for AgNO3: acp (1:1), all others are polymers, successive silver atoms being linked by N,N′-bridging ligands singly (L/X = 2np/ClO4 (?HAgHTAgTHAgH?), amp/ClO4, NO3 (?HTAgHTAg?) (‘H’ ≡ head, ‘T’ = tail)) or pairwise, ?L2AgX2AgL2Ag? (L/X = 2np/tfa, nmp/NO3). More complex polymeric arrays are found with L/X = ohp/NO3, tfa, where interaction with the metal takes place via the O-donor only, the py functionality being protonated, and in adducts of more complex stoichiometry AgNO3:mop (2:3) and AgNO3:2np (3:4).  相似文献   

17.
Novel benzimidazolium salts were synthesized as N-heterocyclic carbene (NHC) precursors, these NHC precursors were metallated with Ag2O in dichloromethane at room temperature to give novel silver(I)–NHC complexes. Structures of these benzimidazolium salts and silver(I)–NHC complexes were characterized on the basis of elemental analysis, 1H NMR, 13C NMR, IR and LC–MS spectroscopic techniques. A series of benzimidazolium salts and silver(I)–NHC complexes were tested against standard bacterial strains: Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and the fungal strains: Candida albicans and Candida tropicalis. The results showed that benzimidazolium salts inhibited the growth of all bacteria and fungi strains and all silver(I)–NHC complexes performed good activities against different microorganisms.  相似文献   

18.
Silver(I) halides react with tri(p-tolyl)phosphine (tptp, C21H21P) in MeOH/MeCN solutions in 1:1 or 1:3 molar ratios to give complexes of formulae {[AgCl(tptp)]4} (1) or [AgX(tptp)3] (X = Cl (2), Br (3), I (4)), respectively. The complexes were characterized by elemental analyses, and FT-IR far-IR, FT-Raman, TG and 1H, 13C, 31P NMR spectroscopic techniques. Crystal structures of complexes 2-4 were determined by X-ray diffraction at room temperature (rt). The crystal structure of 1 and 4 was also determined at 100(1) and 140(2) K (lt), respectively. In complex 1 four μ3-Cl ions are bonded with four Ag(I) ions forming a cubane while the coordination sphere of silver(I) ions is completed by one P atom from a terminal tri(p-tolyl)phosphine ligand. In complexes 2-3 one terminal halogen and three P atoms from phosphine ligands form a tetrahedral arrangement around the metal ion. Complexes 1-4 were tested for in vitro cytostatic activity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (PAH, benzo[a]pyrene) carcinogenesis and against murine leukemia (L1210) and human T-lymphocyte (Molt4/C8 and CEM) cells. The silver(I) complexes 1-4 show strong activity.  相似文献   

19.
Five new silver(I)-saccharinate complexes [Ag2(sac)2(tmen)2] (1), [Ag2(sac)2(deten)2] (2), [Ag2(sac)2(dmen)2] (3), [Ag(sac)(N,N-eten)] (4), and [Ag(sac)(dmpen)]n (5); (sac = saccharinate, tmen = N,N,N′,N′-tetramethylethylenediamine, deten = N,N′-diethylethylenediamine, dmen = N,N′-dimethylethylenediamine, N,N-eten = N,N-diethylethylenediamine and dmpen = 1,3-diamino-2,2-dimethylpropan) have been synthesized and characterized by elemental analyses, IR, thermal analyses, single crystal X-ray diffraction and antimicrobial activities. The crystallographic analyses show that all the complexes crystallize in monoclinic space group P21/c. In 1, the sac ligand acts as a bridge to connect the silver centres through its imino N and carbonyl O atoms forming an eight-membered bimetallic ring in a chair conformation. Complex 2 has also a dimeric structure in which the monomeric [Ag(sac)(deten)] units are linked by Ag?Ag interactions. In 3, saccharinate ligand acts as a bridging bidentate ligand between two silver(I) centres through sulfonyl group and imino N atom, forming an alternating polymeric chain through the direction [0 1 0]. In 4, the inter-molecular N-H?O hydrogen bonds form one-dimensional polymeric chains through the a axis, and these linear chains are inter-connected to each other by N-H?O hydrogen bonds, which produce a chain of edge-fused and rings along [1 0 0]. Complex 5 is a coordination polymer in which the monomeric [Ag(dmpen)(sac)]n units are linked by Ag?Ag interactions, and the dmpen ligand acts as a bridge between the silver(I) ions, forming a two-dimensional network parallel to the (1 0 0) plane.  相似文献   

20.
The oxidation of Ni(PPh3)4 with BF3 · OEt2, H3CCOOH, and F3CCOOH, and that of (PPh3)2Ni(C2H4) with BF3 · OEt2 is studied by EPR spectroscopy. The reaction of the Ni(0) complexes with BF3 · OEt2 gives Ni(II) complexes with which they react to form Ni(I) compounds with covalent Ni-F and Ni-B bonds that transform with excess BF3 · OEt2 into cationic paramagnetic Ni(I) complexes. Acetic acid also adds oxidatively to Ni(PPh3)4 to form a Ni(II) complex that reacts further to give Ni(I) hydride and carboxylate complexes. The Ni(I) hydride is transformed by the acid into the Ni(I) carboxylate with release of hydrogen, the amount of which depends on the rate of acid addition. The following Ni(I) complexes are identified in the reaction medium: [Ni(PPh3)3]BF4, [(PPh3)2Ni(OEt2)]BF4, [(PPh3)Ni(OEt2)n]BF4, (PPh3)2NiBF2, (PPh3)3NiOOCCH3, and [(PPh3)2Ni(OEt2)P(OEt)3]BF4. Oxidation schemes of Ni(0) complexes by Lewis and Brønsted acids are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号