首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The coordination chemistry of the ligand bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]ether (L1) was tested in front of Pd(II) and Pt(II). Complexes cis-[MCl2(L1)] (M=Pd(II) and Pt(II)) were obtained, due to the chelate condition of the ligand and the formation of a stable 10-membered ring. The crystal structure of cis-[PtCl2(L1)] was resolved by X-ray diffraction. Treatment of [PdCl2(L1)] or [Pd(CH3CN)4](BF4)2 with AgBF4 in the presence of L1 gave the complex [Pd(L1)2](BF4)2. The initial cis-[PdCl2(L1)] was recovered by reacting [Pd(L1)2](BF4)2 with an excess of NEt4Cl. Reaction of [Pt(CH3CN)4](BF4)2 (generated in situ from [PtCl2(CH3CN)2] and AgBF4 in acetonitrile) with ligand L1 yields complex [Pt(L1)2](BF4)2.  相似文献   

2.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

3.
The organometallic tin(IV) complexes [SnPh2(SRF)2] SRF = SC6F4-4-H (1), SC6F5 (2), were synthesized and their reactivity with [MCl2(PPh3)2] M = Ni, Pd and Pt explored. Thus, transmetallation products were obtained affording polymeric [Ni(SRF)(μ-SRF)]n, monomeric cis-[Pt(PPh3)2(SC6F4-4-H)2] (3) and cis-[Pt(PPh3)2(SC6F5)2] (4) and dimeric species [Pd(PPh3)(SC6F4-4-H)(μ-SC6F4-4-H)]2 (5) and [Pd(PPh3)(SC6F5)(μ-SC6F5)]2 (6) for Ni, Pt and Pd, respectively. The crystal structures of complexes 1, 2, 3, 4 and 6 were determined.  相似文献   

4.
Reaction of Mo2(O2CCH3)2(DMepyF)2 (HDMepyF=N,N-di(6-methyl-2-pyridyl)formamidine) with HBF4 in CH2Cl2/CH3CN afforded the complex trans-[Mo2(H2DMepyF)2(CH3CN)4](BF4)6 (1), which crystallized in two forms, trans-[Mo2(H2DMepyF)2(CH3CN)4](ax-CH3CN)2(BF 4)6 · 2CH3CN (1a), and trans- [Mo2(H2DMepyF)2(CH3CN)4](ax-BF4) 2(BF4)4 · 2CH3CN (1b). The molecular structures of complexes (1) consist of two quadruply bonded molybdenum atoms, which are spanned by two trans-bridging formamidinate ligands and coordinated by four trans-CH3CN. Each H2DMepyF+ ligand adopts an s-cis,s-cis- conformation. The difference between 1a and 1b is that complex 1a contains two CH3CN molecules as axial ligands, while 1b contains two BF4 anions as axial ligands. Complex 1 is the first dimolybdenum complex containing a pair of trans bridging ligands and two pairs of trans-CH3CN ligands.  相似文献   

5.
Two isomeric dibenzo-O2S2 macrocycles L1 and L2 have been synthesised and their coordination chemistry towards palladium(II) has been investigated. Two-step approaches via reactions of 1:1-type complexes, [cis-Cl2LPd] (1a: L = L1, 1b: L = L2), with different O2S2 macrocycle systems (L1 and L2) have led to the isolation of the following bis(O2S2 macrocycle) palladium(II) complexes in the solid state: [Pd(L1)2](ClO4)2 (2a) and a mixture of [Pd(L1)2](ClO4)2 (2a) + [Pd(L2)2](ClO4)2 (2b).  相似文献   

6.
The reaction of [FeII(H2O)6](BF4)2 with tris(2-pyridylmethyl)amine (TPyA) and triethylamine in methanol under aerobic conditions forms [(TPyA)FFeIIIOFeIIIF(TPyA)](BF4)2 · 0.5MeOH (1), in which each Fe(III) ion is coordinated to a TPyA and an F ion as well as an oxo ion (O2−) linking two Fe(III) ions. 1 has offset face-to-face π-π interactions between the dimers, and possesses a supramolecular network structure. The magnetic susceptibility of 1 can be fit with g = 2.0, J/kB = − 153 K (106 cm−1), and θ = − 0.3 K [H = − 2JSa · Sb]. These indicate that very strong antiferromagnetic interactions occur via the oxo bridge within the Fe(III) dimer and weak antiferromagnetic interactions between the dimers.  相似文献   

7.
The preparation, crystal structures and magnetic properties of three copper(II) compounds of formulae [Cu2(dmphen)2(dca)4] (1), [Cu(dmphen)(dca)(NO3)]n (2) and [Cu(4,4-dmbpy)(H2O)(dca)2] (3) (dmphen=2,9-dimethyl-1,10-phenanthroline, dca=dicyanamide and 4,4-dmbpy=4,4-dimethyl-2,2-bipyridine) are reported. The structure of 1 consists of discrete copper(II) dinuclear units with double end-to-end dca bridges whereas that of 2 is made up of neutral uniform copper(II) chains with a single symmetrical end-to-end dca bridge. Each copper atom in 1 and 2 is in a distorted square pyramidal environment: two (1) or one (2) nitrile-nitrogen atoms from bridging dca groups, one of the nitrogen atoms of the dmphen molecule (1 and 2) and either one nitrile-nitrogen from a terminal dca ligand (1) or a nitrate-oxygen atom (2) build the equatorial plane whereas the second nitrogen atom of the heterocyclic dmphen fills the axial position (1 and 2). The copper-copper separations through double (1) and single (2) end-to-end dca bridges are 7.1337(7) (1) and 7.6617(7) (2). Compound 3 is a mononuclear copper(II) complex whose structure contains two neutral and crystallographically independent [Cu(4,4-dmbpy)(H2O)(dca)2] molecules which are packed in two different layer arrangements running parallel to the bc-plane and alternating along the a-axis. The copper atoms in both molecules have slightly distorted square pyramidal surroundings with the two nitrogen atoms of the 4,4-dmbpy ligand and two dca nitrile-nitrogen atoms in the basal plane and a water oxygen in the apical position. A semi co-ordinated dca nitrile-nitrogen from a neighbour unit [2.952(6) Å for Cu(2)-N] is in trans position to the apical water molecule in one of the two molecules, this feature representing part of the difference in supramolecular connections in the alternating layers referred to above. Magnetic susceptibility measurements for 1-3 in the temperature range 1.9-290 K reveal the occurrence of weak antiferromagnetic interactions through double [J=−3.3 cm−1 (1), ] and single [J=−0.57 cm−1 (2), ] dca bridges and across intermolecular contacts [θ=−0.07 K (3)].  相似文献   

8.
Palladium [PdCl2(L)] complexes with N-alkylpyridylpyrazole derived ligands [2-(5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L1), 2-(1-ethyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L2), 2-(1-octyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L3), and 2-(3-pyridin-2-yl-5-trifluoromethyl-pyrazol-1-yl)ethanol (L4) were synthesised. The crystal and molecular structures of [PdCl2(L)] (L = L2, L3, L4) were resolved by X-ray diffraction, and consist of monomeric cis-[PdCl2(L)] molecules. The palladium centre has a typical square-planar geometry, with a slight tetrahedral distortion. The tetra-coordinate metal atom is bonded to one pyridinic nitrogen, one pyrazolic nitrogen and two chlorine ligands in cis disposition. Reaction of L (L2, L4) with [Pd(CH3CN)4](BF4)2, in the ratio 1M:2L, gave complexes [Pd(L)]2(BF4)2. Treatment of [PdCl2(L)] (L = L2, L4) with NaBF4 and pyridine (py) and treatment of the same complexes with AgBF4 and triphenylphosphine (PPh3) yielded [Pd(L)(py)2](BF4)2 and [Pd(L)(PPh3)2](BF4)2 complexes, respectively. Finally, reaction of [PdCl2(L4)] with 1 equiv of AgBF4 yields [PdCl(L4)](BF4).  相似文献   

9.
[PPN][Se5Fe(NO)2] (1) and [K-18-crown-6-ether][S5Fe(NO)2] (2′) were synthesized and characterized by IR, UV-Vis, EPR spectroscopy, magnetic susceptibility, and X-ray structure. [PPN][Se5Fe(NO)2] easily undergoes ligand exchange with S8 and (RS)2 (R = C7H4SN (5), o-C6H4NHCOCH3 (6), C4H3S (7)) to form [PPN][S5Fe(NO)2] and [PPN][(SR)2Fe(NO)2]. The reaction displays that [E5Fe(NO)2] (E = Se (3), S (4)) facilely converts to [Fe4E3(NO)7] by adding acid HBF4 or oxidant [Cp2Fe][BF4] in THF, respectively. Obviously, complexes 1 and 2′ serve as the precursors of the Roussin’s black salts 3 and 4. The electronic structure of {Fe(NO)2}9 core of [Se5Fe(NO)2] is best described as a dynamic resonance hybrid of {Fe+1(NO)2}9 and {Fe−1(NO+)2}9 modulated by the coordinated ligands. The findings, EPR signal of g = 2.064 for 1 at 298 K, implicate that the low-molecular-weight DNICs and protein-bound DNICs may not exist with selenocysteine residues of proteins as ligands, since the existence of protein-bound DNICs and low-molecular-weight DNICs in vitro has been characterized with a characteristic EPR signal at g = 2.03. In addition, complex 2′ treated human erythroleukemia K562 cancer cells exposed to UV-A light greatly decreased the percentage survival of the cell cultures.  相似文献   

10.
Substitution of thf ligands in [Cr(thf)3Cl3] and [Cr(thf)2(OH2)Cl3] was investigated. 2,2′-Bipyridine (bipy) was reacted with [Cr(thf)3Cl3] to form [Cr(bipy)(thf)Cl3] (1), which was subsequently reacted with water to give [Cr(bipy)(OH2)Cl3] (2). Reaction of 1 with acetonitrile (CH3CN), pyridine (py) and pyridine derivatives to form [Cr(bipy)(L)Cl3] (L = CH3CN 3, py 4 and 4-pyR with R = NH25, But6 and Ph 7). In addition, the substitution of bipy in [Cr(thf)3Cl3] was followed by 1H NMR spectroscopy at room temperature, which showed completion of the reaction in ca. 100 min. Complex 2 was characterised by single crystal X-ray diffraction. The theoretical powder diffraction pattern of 2 was compared to the experimentally obtained powder X-ray diffraction pattern, and shows excellent agreement. The dimer [Cr2(bipy)2Cl4(μ-Cl)2] was cleaved asymmetrically to give the anionic complex [Cr(bipy)Cl4] (8) and [Cr(bipy)2Cl2]+ (9). Complexes 8 and 9 were characterised by single crystal X-ray diffraction.  相似文献   

11.
Reaction of 4-amino-6-methyl-1,2,4-triazin-thione-5-one (AMTTO, 1) with 2-thiophenecarboxaldehyde and 2-furaldehyde led to the corresponding iminic compounds 6-methyl-4-[thiophene-2-yl-methylene-amino]-3-thioxo-[1,2,4]-triazin-3,4-dihydro(2H)-5-one (TAMTTO, 2) and 4-[furan-2-yl-methylene-amino]-6-methyl-3-thioxo-[1,2,4]-triazin-3,4-dihydro(2H)-5-one (FAMTTO, 3). Treatment of 2 with AgNO3 gave the complex [Ag2(TAMMTO)4](NO3)2 · 4MeOH (4) and of 2 and 3 with [Ag(PPh3)2]NO3 gave the complexes [Ag(TAMTTO)(PPh3)2]NO3 · 1.5THF (5) and [Ag(FAMTTO)(PPh3)2]NO3 (6), respectively. All the compounds have been characterized by elemental analyses, IR spectroscopy and mass spectrometry. Compound 2 and all the complexes have been characterized by X-ray diffraction studies, respectively. In addition, 5 and 6 have been characterized by 31P NMR spectroscopy. Crystal data for 2 at −80 °C: monoclinic, space group C2/c, a=2319.6(2), b=609.8(1), c=1673.6(2) pm, β=106.14(1)°, Z=8, R1=0.0523; for 4 at −80 °C: triclinic, space group , a=877.6(1), b=1085.2(1), c=1557.7(2) pm, α=77.14(1)°, β=80.87(1)°, γ=78.18(1)°, Z=1, R1=0.0407; for 5 at 20 °C: triclinic, space group , a=1151.1(2), b=1225.1(2), c=1887.4(3) pm, α=78.04(1)°, β=86.20(1)°, γ=76.03(1)°, Z=2, R1=0.0662; for 6 at −80 °C: triclinic, space group , a=1189.7(2), b=1387.8(2), c=1410.9(2) pm, α=94.74(2)°, β=95.12(2)°, γ=112.41(2)°, Z=2, R1=0.0511.  相似文献   

12.
The reactions of the Keplerate super cluster [Mo132O372(CH3CO2)30(H2O)72]42− with a Cu(II) source and an organonitrogen donor in methanol/DMF solutions yielded a series of bimetallic organic-inorganic oxide hybrid materials, including the molecular species [Cu(phen)2MoO4] (1) and [{Cu(terpy)}2(MoO4)2] (2) and a series of materials constructed from the tetranuclear building block {Mo4O10(OMe)6}2−: the molecular [{Cu2(phen)2(O2CCH3)2 (MeOH)}Mo4O10(OMe)6] (3), [{Cu(terpy)(O2CCH3)}2Mo4O10(OMe)6] (4) and [{Cu(terpy)Cl}2Mo4O10(OMe)6] (5), the one-dimensional phases [{Cu(bpy)(HOMe)2}Mo4O10(OMe)6] (6), [{Cu(bpy)(DMF)2}Mo4O10(OMe)6] (7), [{Cu(bpa)(DMF)2}Mo4O10(OMe)6] (8), [{Cu(phen)(DMF)2}Mo4O10(OMe)6] (9) and [{CuCl(dpa)}2Mo4O10(OMe)6] (10), and the two-dimensional material [{Cu2(DMF)2(pdpa)}{Mo4O10(OMe)6}2] (11). When methanol is replaced by the tridentate alkoxide tris-methoxypropane (trisp), the {Mo2O4(trisp)2}2− cluster building block is observed for [Cu(phen)Mo2O4(trisp)2] (12), [Cu(bpa)(DMF)Mo2O4(trisp)2] (13) and [{Cu(bpy)(NO3)}2Mo2O4(trisp)2] (14).  相似文献   

13.
The crystal structures of [Cr(NO)(NH3)5](PF6)2 (red) and [Cr(NO)(NH3)5]Cl(PF6) (brown) have been determined. The [Cr(NO)(NH3)5]2+(A) complex cations in these compounds have a slightly distorted octahedral geometry with a strictly linear Cr-N-O arrangement (from symmetry). The short interatomic distances (2.399 Å × 4) between the O (nitrosyl) and H (ammonia in adjacent complex cations) atoms in A(PF6)2 indicate the existence of hydrogen bonds, while the interatomic distances (3.258 Å × 8) between those in ACl(PF6) are much longer, and the hydrogen bonds should be weak in spite of the presence of the smaller counter anion of chloride ion in ACl(PF6). Comparisons of the five crystal structures of A(PF6)2, ACl2, ACl(ClO4), ACl(PF6), and A(ClO4)2 have led to the conclusion that the existence of the strong hydrogen bonds gives red crystals of A(PF6)2, while the absence of hydrogen bonds results in the formation of green crystals of A(ClO4)2 (O ? H, 3.595 Å × 2). The color change of the crystals (from red to green) with the change of outer sphere anions is attributed to the change of the strength of the hydrogen bonding between the complex cations.  相似文献   

14.
In [PtX(PPh3)3]+ complexes (X = F, Cl, Br, I, AcO, NO3, NO2, H, Me) the mutual cis and trans influences of the PPh3 groups can be considered constants in the first place, therefore the one bond Pt-P coupling constants of P(cis) and P(trans) reflect the cis and trans influences of X. The compounds [PtBr(PPh3)3](BF4) (2), [PtI(PPh3)3](BF4) (3), [Pt(AcO)(PPh3)3](BF4) (4), [Pt(NO3)(PPh3)3](BF4) (5), and the two isomers [Pt(NO2-O)(PPh3)3](BF4) (6a) and [Pt(NO2-N)(PPh3)3](BF4) (6b) have been newly synthesised and the crystal structures of 2 and 4·CH2Cl2·0.25C3H6O have been determined. From the 1JPtP values of all compounds we have deduced the series: I > Br > Cl > NO3 > ONO > F > AcO > NO2 > H > Me (cis influence) and Me > H > NO2 > AcO > I > ONO > Br > Cl > F > NO3 (trans influence). These sequences are like those obtained for the (neutral) cis- and trans-[PtClX(PPh3)2] derivatives, showing that there is no dependence on the charge of the complexes. On the contrary, the weights of both influences, relative to those of X = Cl, were found to depend on the charge and nature of the complex.  相似文献   

15.
A series of palladium complexes of the type [Pd(phPS2)(PAr3)] (phPS2) = [PhP(C6H4-2-S)2]2− have been synthesized in good yields and their crystal structures determined. Heck coupling reactions were carried out using the [Pd(phPS2)(PPh3)] (1), [Pd(phPS2){P(C6H4-4-Cl)3}] (2), [Pd(phPS2){P(C6H4-4-F)3}] (3), [Pd(phPS2){P(C6H4-4-CF3)3}] (4), [Pd(phPS2){P(C6H4-4-Me)3}] (5) and [Pd(phPS2){P(C6H4-4-OMe)3}] (6) complexes as catalyst precursors in order to examine the potential effect of the para-substituted triarylphosphines in the reaction of bromobenzene and styrene.  相似文献   

16.
The compounds [Ni(L)(MeCN)]I8 (1) and [Ni(L)(MeCN)]I12 (2) have been obtained from the reactions of the complexes [Ni(L)(L)][BF4](2 + n) {L=2,5,8-trithia[9](2,9)-1,10-phenanthrolinophane; L=MeCN, Cl, Br, I; n=charge of L} with an excess of I2 (molar ratios of 6, 10 and 20 have been used), in the presence of the stoichiometric amount of I (as Bu4nNI) necessary to balance the charge of the complex cation [Ni(L)(L)](2 + n)+. An X-ray diffraction analysis shows that, independently of the nature of L, both 1 and 2 contain the complex cation [Ni(L)(MeCN)]2+, which is therefore capable of templating two different polyiodide networks based on interacting I3/I5 and I5/I7 units, respectively. The solid state FT-Raman spectra of 1 and 2 are discussed based on their structural features.  相似文献   

17.
The reaction between [Rh(H2O)6](ClO4)3 and the monoanion Hdopn (H2dopn=bis(diacetylmonoxime-imino)propane 1,3=3,9-dimethyl-4,8-diazaundeca-3,8-diene-2,10-dione dioxime) afforded a new dimeric rhodium(II) compound of formula [Rh(Hdopn)(H2O)]2(ClO4)2 · H2O (1). Treatment of methanolic solution of 1 with NaX (X=Cl, Br, I) results in the replacement of water with halides in 1, leading to the formation of [Rh(Hdopn)X]2 rhodium(II) dimers. The X-ray crystal structure of [Rh(Hdopn)Cl]2 · 0.5H2O (2) was determined showing a [Rh(II)-Rh(II)] core. Upon the reaction of 1 with NaI carried out in air, [Rh(Hdopn)(I)2] (3) was isolated and characterized by a single-crystal X-ray diffraction analysis.  相似文献   

18.
Two new organic-inorganic hybrid compounds [Zn(phen)(SO4)(H2O)2]n (1) and [Cu(phen)(H2O)2] · SO4 (2) have been prepared by conventional aqueous solution synthesis and characterized by single-crystal X-ray diffraction, IR spectroscopy, thermal gravimetric analysis (TGA) and fluorescent spectroscopy. In compound 1, the sulfate group adopts bidentate mode to coordinate with two Zn(II) ions to form one-dimensional polymer. The one-dimensional polymers are further linked together via the intermolecular hydrogen-bonding and π-π stacking interactions to form a 3D supramolecular framework. Compound 2 is build up of discrete [Cu(phen)(H2O]2+ cations and SO42− anions to form a three-dimensional framework via hydrogen-bonding and π-π stacking interactions. Furthermore, the luminescent properties of both 1 and 2 were studied. The complexes 1 and 2 excited at 280 nm wavelength produced characteristic luminescence features, arising maybe due to the π-π transitions.  相似文献   

19.
The molecular structure of an o-phenylenediamine unit-containing oligophenylene (1), Ph-Ph′-Ph′(2,3-NH2)-Ph′-Ph (Ph = phenyl; Ph′ = p-phenylene; Ph′(2,3-NH2) = 2,3-diamino-p-phenylene), was determined by X-ray crystallography. 1 has a twisted structure, and forms an intermolecular C-H?π interaction network. The -NH2 group of 1 was air-oxidized to an imine, NH, group in the presence of [RuCl2(bpy)2] (bpy = 2,2′-bipyridyl) and gave a ruthenium(II)-benzoquinone diimine complex [Ru(2)(bpy)2](PF6)2 (2: Ph-Ph′-Ph′(2,3-imine)-Ph′-Ph). The molecular structure of [Ru(2)(bpy)2](PF6)2 was confirmed by X-ray crystallography. [Ru(2)(bpy)2](PF6)2 underwent two-step electrochemical reduction with E1/2 = −0.889 V and −1.531 V versus Fc+/Fc. The E1/2’s were located at higher potentials by 91 mV and 117 mV, respectively, than those of reported [Ru(bqdi)(bpy)2](PF6)2 (bqdi = benzoquinone diimine). Electrochemical oxidation of [Ru(2)(bpy)2](PF6)2 occurred at a lower potential by 180 mV than that of [Ru(bqdi)(bpy)2](PF6)2. Occurrence of the easier reduction and oxidation of [Ru(2)(bpy)2](PF6)2 than those of [Ru(bqdi)(bpy)2](PF6)2 is ascribed to the presence of a large π-conjugation system in 2.  相似文献   

20.
Four new dinuclear Mn(III) compounds have been synthesised: [{Mn(bpy)(H2O)}2(μ-4-ClC6H4COO)2(μ-O)}](ClO4)2 (1), [{Mn(EtOH)(phen)}2(μ-O)(μ-4-ClC6H4COO)2](ClO4)2 (2), [{Mn(bpy)(EtOH)}(μ-4-BrC6H4COO)2(μ-O){Mn(bpy)(ClO4)](ClO4) (3) and [{Mn(H2O)(phen)}2(μ-4-BrC6H4COO)2(μ-O)](ClO4)2 (4). The crystal structures of 2 and 3 are evidence for the tendency of the ethanol and the perchlorate to act as ligands. Due to the coordination of these groups, the environment of the manganese ions is elongated in the monodentate ligand direction, and this distortion is more important when this ligand is the perchlorate. The magnetic properties of the four compounds have been analysed: compounds 1, 3 and 4 show antiferromagnetic behaviour, with J = −6.33 cm−1 for 1, J = −6.76 cm−1 for 3 and J = −3.08 cm−1 for 4 (H = −JS1·S2), while compound 2 shows a very weak ferromagnetic coupling. For this compound, at low temperature the most important effect on the χMT data is the zero-field splitting of the ion, and the best fit was obtained with |DMn| = 2.38 cm−1 and |EMn| = 0.22 cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号