首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chiral spin crossover iron(II) complex, fac-Λ-[FeII(HLR)3](ClO4)2·EtOH was synthesized and its crystal structures in both the high-spin (HS) and low-spin (LS) states were determined, where HLR denotes 2-methylimidazol-4-yl-methylideneamino-R-(+)-1-methylphenyl. The complex assumes octahedral coordination geometry of N6 donor atoms by three bidentate ligands HLR. The complex exists as the facial-Λ-isomer of fac-Λ-[FeII(HLR)3]2+ of the possible geometrical fac- and mer-isomers and the Δ- and Λ-enantiomorphs. The X-ray structural analyses revealed that the R-form of the ligand (HLR) induces the fac-Λ-isomer of fac-Λ-[FeII(HLR)3]2+ and the S-form of the ligand (HLS) induces the fac-Δ-isomer of fac-Δ-[Fe(HLS)3]2+. The complex fac-Λ-[FeII(HLR)3](ClO4)2·EtOH shows a complete steep spin crossover between the HS and the LS states at T1/2 = 195 K.  相似文献   

2.
The reaction of ruthenium carbonyl polymer ([Ru(CO)2Cl2]n) with azopyridyl compounds (2,2′-azobispyridine; apy or 2-phenylazopyridine; pap) generated new complexes, [Ru(azo)(CO)2Cl2] (azo = apy, pap). [Ru(apy)(CO)2Cl2] underwent photodecarbonylation to give a chloro-bridged dimer complex, whereas the corresponding pap complex ([Ru(pap)(CO)2Cl2]) was not converted to a dimer. The reactions of the chloro-bridged dimer containing the bpy ligand (bpy = 2,2′-bipyridine) with either apy or pap resulted in the formation of mixed polypyridyl complexes, [Ru(azo)(bpy)(CO)Cl]+. The novel complexes containing azo ligands were characterized by various spectroscopic measurements including the determination of X-ray crystallographic structures. Both [Ru(azo)(CO)2Cl2] complexes have two CO groups in a cis position to each other and two chlorides in a trans position. The azo groups are situated cis to the CO ligand in [Ru(azo)(bpy)(CO)Cl]+. All complexes have azo N-N bond lengths of 1.26-1.29 Å. The complexes exhibited azo-based two-electron reduction processes in electrochemical measurements. The effects of introducing azopyridyl ligands to the ruthenium carbonyl complexes were examined by ligand-based redox potentials, stretching frequencies and force constants of CO groups and bond parameters around Ru-CO moieties.  相似文献   

3.
The synthesis, structure and characterization of the dinuclear Mn(II) complex [Mn2(LO)(μ-OAc)2](ClO4) (1) where LOH = 2,6-bis{bis(2-(2-pyridyl)ethyl)aminomethyl)}-4-methylphenol are reported. The reaction of Mn(ClO4)2 · 6H2O with the dinucleating ligand LOH and H3CCOONa in the presence of NEt3 in dry, degassed methanol and under an argon atmosphere, yields 1 as a colorless powder. The crystal structure of 1, determined by X-ray diffraction methods, shows a dinuclear Mn(II) complex in which two Mn(II) ions, each in six-coordinate approximate octahedral coordination, are bridged by the phenolate oxygen of LO and by two acetate ions in a syn,syn-1,3-bridging mode. The Mn-Mn distance is 3.557(1) Å and Mn-Ophenolate-Mn angle is 112.50(9)°. Cyclic voltammetry of 1 in acetonitrile solution shows a quasi-reversible wave at E1/2 = 0.65 V, for the Mn2(II,II)/Mn2(II,III) redox process, and an irreversible oxidation peak at Ep,c = 1.22 V versus Ag/AgCl for the Mn2(II,III) to Mn2(III,III) oxidation process. Controlled potential electrolysis of 1 in acetonitrile solution at 0.85 V (versus Ag/AgCl) takes up 1 F of charge per mole of 1 to yield a brown solution of the Mn2(II,III) state of the complex, which, however, is unstable and reverts back to the Mn2(II,II) state in solution at room temperature. Least square fitting of the variable temperature magnetic susceptibility measurements on powdered sample of 1 is obtained with g = 1.888, J = −2.75 cm−1, Par = 0.008, TIP = 0. The low −J value and the room temperature calculated magnetic moment of the complex (5.30 BM per Mn(II)), which is less than the spin-only moment of Mn(II), show that the two Mn(II) ions are weakly antiferromagnetically coupled.  相似文献   

4.
The SS bond-activation of diorganyl disulfide by the anionic metal carbonyl fragment [Mn(CO)5] gives rise to an extensive chemistry. Oxidative decarbonylation addition of 2,2′-dithiobis(pyridine-N-oxide) to [Mn(CO)5], followed by chelation and metal-center oxidation, led to the formation of [MnII(SC5H4NO)3] (1). The effective magnetic moment in solid state by SQUID magnetometer was 5.88 μB for complex 1, which is consistent with the MnII having a high-spin d5 electronic configuration in an octahedral ligand field. The average Mn(II)S, SC and NO bond lengths of 2.581(1), 1.692(4) and 1.326(4) Å, respectively, indicate that the negative charge of the bidentate 1-oxo-2-thiopyridinato [SC5H4NO] ligand in complex 1 is mainly localized on the oxygen atom. The results are consistent with thiolate-donor [SC5H4NO] stabilization of the lower oxidation state of manganese (Mn(I)), while the O,S-chelating [SC5H4NO] ligand enhances the stability of manganese in the higher oxidation state (Mn(II)). Activation of SS bond as well as OH bond of 2,2′-dithiosalicylic acid by [Mn(CO)5] yielded [(CO)3Mn(μ-SC6H4C(O)O)2Mn(CO)3]2− (4). Oxidative addition of bis(o-benzamidophenyl) disulfide to [Mn(CO)5] resulted in the formation of cis-[Mn(CO)4(SR)2] (R=C6H4NHCOPh) which was employed as a chelating metallo ligand to synthesize heterotrinuclear [(CO)3Mn(μ-SR)3Co(μ-SR)3Mn(CO)3] (8) possessing a homoleptic hexathiolatocobalt(III) core.  相似文献   

5.
The syntheses, structures and magnetic properties of five new manganese (III) cyclam complexes, trans-[Mn(cyclam)(OH2)2](CF3SO3)3 · H2O, trans-[Mn(cyclam)I2]I, trans-[Mn(cyclam)(ONO)2]ClO4, trans-[Mn(cyclam)(OClO3)2]ClO4 and trans-[Mn(cyclam)(CH3COO)(CH3COOH)](ClO4)2, are reported. Cyclam is the tetradentate amine ligand 1,4,8,11-tetraazacyclotetradecane. The complexes all exhibit pronounced tetragonal elongation of the coordination octahedron with the four cyclam nitrogens occupying the four equatorial positions. The magnetic properties are consistent with the formulation of the complexes as high-spin d4 systems. trans-[Mn(cyclam)(OH2)2](CF3SO3)3 · H2O is shown to be a convenient starting material for the syntheses of trans cyclam complexes. [Mn(cyclam)(CH3COO)(CH3COOH)](ClO4)2 exhibits extremely short intermolecular hydrogen bonds resulting in a pseudo-chain structure. The tilt of the axial ligands with respect to the equatorial plane containing the manganese and the cyclam nitrogen atoms is discussed.  相似文献   

6.
《Inorganica chimica acta》1987,128(2):219-229
The complexes of Λ-α-[Co(R,S-picbn)Cl2] ClO4 (where R,S-picbn is 3R,4S-dimethyl-1,6-di(2-pyridyl)-2,5-diazahexane) together with its Δ-Λ-α and Δ,Λ-β exo congeners,Δ-Λ-β-exo-[Co(picchmn)Cl2] ClO4 (where picchmn is N,N'-di(2-picolyl)-1R, 2S-diaminocyclohexane) as well as Δ,Λ-β-endo-[Co(R,S-picstien)Cl2] ClO4·2H2O, [Co(R,S-picstien)(ox)] ClO4·0.5H2O and [Co(R,S-picstien)(mal)] ClO4·3H2O (where picstien is 3R,4S-diphenyl-1,6-di(2-pyridyl)-2,5-diazahexane, ox is the oxalate dianion and mal is the malonate dianion) have been synthesised. The nature of the compounds was determined using a combination of 1H NMR and, for certain chiral species, chiroptical techniques. In the various β complexes, the tetradentate is observed to adopt either the exo or endo geometry, specifically. Factors which influence coordination geometry include steric interactions and hydrophobic bonding effects.A number of chemical transformations between dinitro and dichloro complexes of Co(III) with R,S- picbn have been examined, as has the reaction of Δ,Λ-β-exo-[Co(R,S-picbn)Cl2]+ with S-alanine in aqueous solution. The resulting product mixture contains eight of the sixteen possible β diastereoisomers, of which three have been isolated and characterised. The eight are composed of four β1 and four β2 isomers, however, and it is noted that isomerisation at the inplane amine nitrogen atom is restricted by the overall geometry of the complexes formed. Discriminatory forces in these complexes are small in magnitude, and exo/endo isomerisation is somewhat dependent upon the choice of ligand(s) used to complete the coordination sphere.  相似文献   

7.
The μ-phosphinidene complexes [Mn2(CO)8{μ-P(TMP)}] (1) (TMP = tetramethylpiperidyl) and [Mn2(CO)8{μ-P(NiPr2)}] (2) react with elemental sulfur to form rare phosphinidene sulfide complexes [Mn2(CO)9{μ-η12-P(TMP)S}] (3) and [Mn2(CO)8{μ-η12-P(NiPr2)S}] (4), respectively. Photolysis of 3 results in the unprecedented conversion to [Mn2(CO)6(μ-{κPκ2S}2-(TMP)(S)P-P(S)(TMP)] (5), which contains a novel 10-electron donor diphosphene disulfide ligand (TMP)(S)P-P(S)(TMP).  相似文献   

8.
The oxygen-evolving complex (OEC) of Mn-depleted photosystem II (PSII) can be reconstituted in the presence of exogenous Mn or a Mn complex under weak illumination, a process called photoactivation. Synthetic Mn complexes could provide a powerful system to analyze the assembly of the OEC. In this work, four mononuclear Mn complexes, [(terpy)2MnII(OOCH3)]·2H2O (where terpy is 2,2′:6′,2″-terpyridine), MnII(bzimpy)2, MnII(bp)2(CH3CH2OH)2 [where bzimpy is 2,6-bis(2-benzimidazol-2-yl)pyridine] and [MnIII(HL)(L)(py)(CH3OH)]CH3OH (where py is pyridine) were used in photoactivation experiments. Measurements of the photoreduction of 2,6-dichorophenolindophenol and oxygen evolution demonstrate that photoactivation is more efficient when Mn complexes are used instead of MnCl2 in reconstructed PSII preparations. The most efficient recoveries of oxygen evolution and electron transport activities are obtained from a complex, [MnIII(HL)(L)(py)(CH3OH)]CH3OH, that contains both imidazole and phenol groups. Its recovery of the rate of oxygen evolution is as high as 79% even in the absence of the 33-kDa peptide. The imidazole ligands of the Mn complex probably accelerate P 680 •+ reduction and consequently facilitate the process of photoactivation. Also, the strong intermolecular hydrogen bond probably facilitates interaction with the Mn-depleted PSII via reorganization of the hydrogen-bonding network, and therefore promotes the recovery of oxygen evolution and electron transport activities.  相似文献   

9.
The pH-dependent heterometallic complex formation with p-sulfonatothiacalix[4]arene (TCAS) as bridging ligand in aqueous solutions was revealed by the use of spectrophotometry, nuclear magnetic relaxation and fluorimetry methods. The novelty of the structural motif presented is that the appendance of emission metal center ([Ru(bpy)3]2+) is achieved through the cooperative non-covalent interactions with the upper rim of TCAS. The second metal block (Fe(III), Fe(II) and Mn(II)), bound with the lower rim of TCAS in the inner sphere coordination mode is serving as quencher of [Ru(bpy)3]2+ emission. The difference between the complex ability of Fe(III) and Fe(II) ions provides pH conditions for redox-dependent emission of [Ru(bpy)3]2+.  相似文献   

10.
Two new ene-yne substituted 2,4-pentanedionatoruthenium(III) complexes formed by the Heck-like reactions in the course of the Sonogashira reactions. The two complexes are structural isomers; one is [Ru(E-1,4-mBSima)(dpm)2] and another is [Ru(E-2,4-mBSima)(dpm)2], where E-1,4-mBSima is E-3-(1,4-bis(trimethylsilyl)-1-butene-3-ynyl)-2,4-pentanedionate, E-2,4-mBSima is E-3-(2,4-bis(trimethylsilyl)-1-butene-3-ynyl)-2,4-pentanedionate, and dpm is dipivaloylmethanate (2,2,6,6-tetramethylheptan-3,5-dionate). Both of complexes have been characterized by 1H NMR and infrared spectroscopies, mass spectrometry, and electrochemistry. [Ru(E-1,4-mBSima)(dpm)2] has also been characterized by X-ray crystallography. The ruthenium(III) is coordinated in an octahedral arrangement by the oxygen atoms of three β-diketonate ligands. The dihedral angle between the 2,4-pentanedionato chelate ring and the ene-yne plane on the E-1,4-mBSima ligand is 91°. The ene-yne group in [Ru(E-1,4-mBSima)(dpm)2] is fixed either in the solution state suggested by the 1H NMR spectrum with no symmetry.  相似文献   

11.
Two new complexes [(Etdpa)MnCl2] and [(Adpa)Mn(Cl)(H2O)] (Etdpa = ethyl bis(2-pyridylmethyl)amino-2-propionate; Adpa = bis(2-pyridylmethyl)amino-2-propionic acid) were synthesized and characterized by spectral methods. The crystal structure of [(Etdpa)MnCl2] shows that the Mn(II) atom is coordinated by three N atoms (N1, N2, N3), one oxygen atom (O1) of the ligand (Etdpa) and two chloride atoms (Cl1, Cl2), forming a distorted octahedral geometry. The binding interaction between ct-DNA and the synthesized complexes was relatively weak, but they can inhibit the induced swelling of Ca2+-loaded mitochondria in a dose-dependent manner. The [(Adpa)Mn(Cl)(H2O)] can cause the obvious decrease of mitochondria membrane potential. The MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenpyltetra-zolium bromide) assay shows that the two Mn(II) complexes are more active against cancer cells. Especially [(Adpa)Mn(Cl)(H2O)] can inhibit the proliferation of glioma cells with IC50 9.5 μM. Experimental results indicate that the [(Adpa)Mn(Cl)(H2O)] could be a new potential antitumor complex to target the mitochondria.  相似文献   

12.
A homologous series of β-brominated porphyrins derived from meso-tetrakis(4-carbomethoxyphenyl)porphyrinatomanganese(III) chloride, i.e., Mn(III)(BrxTCMPP)Cl (x = 0, 2, 4, 6, and 8), was prepared and investigated as cytochrome P450 models. Hydroxylations of cyclohexane by iodosylbenzene (PhIO) and iodobenzene diacetate (PhI(OAc)2) in the presence or absence of water were carried out as P450 model reactions. The influence of the degree of β-bromination of the macrocycle on the UV-vis spectra, the Mn(III)/Mn(II) reduction potential, and the catalytic properties of the Mn(III)(BrxTCMPP)Cl (x = 0, 2, 4, 6, and 8) series were examined. The catalytic efficiency does not correlate with the Mn(III)/Mn(II) reduction potential and shows a bell-shaped behavior, where the best results are achieved with the hexabrominated complex. Better hydroxylation yields were achieved by using PhI(OAc)2 as oxygen donor, but at expenses of catalyst recovery; addition of water to this system resulted in a increase in the reaction rate. Recycling of the more oxidatively robust complexes Mn(III)(Br6TCMPP)Cl and Mn(III)(Br8TCMPP)Cl is feasible when using PhIO as oxygen donor. Selectivity and UV-vis data suggested that hydroxylation by both PhIO and PhI(OAc)2 share closely related active species and mechanism. We also show that the Mn(III)/Mn(II) reduction potentials are inappropriate predictors of P450-type activity of Mn porphyrin-catalyzed oxidations.  相似文献   

13.
Four seven-coordinated manganese(II) complexes [Mn(tpa)(η1-NO3)(η2-NO3)] (1), [Mn(bpia)(η1-NO3)(η2-NO3)] (2), [Mn(tpa)(η1-NO3)(η2-NO3)] (3), [Mn(tpa)(η1-NO3)(η2-NO3)] (4), and one octacoordinated manganese(II) complex [Mn(bppza)(η2-NO3)2] (5) have been synthesized and characterized using the tripodal tetradentate ligands tpa, bpia, bipa, ipqa, and bppza (tpa: tris(2-pyridylmethyl)amine, bpia: bis(2-pyridylmethyl)(2-(N-methyl)imidazolylmethyl)amine, bipa: bis-(2-(N-methyl)imidazolylmethyl)(2-pyridylmethyl)amine, ipqa: (2-(N-methyl)imidazolylmethyl)(2-pyridylmethyl)(2-quinolylmethyl)amine, and bppza: bis(2-pyridylmethyl)(2-pyrazylmethyl)amine). The crystal structures for all compounds have been determined. 1, 2 and 3 crystallize in the triclinic space group , 4 crystallizes in the orthorhombic space group Pbca, whereas the eight-coordinated 5 crystallizes in the monoclinic space group P21/n. All compounds have one bidentate bound nitrate group in common. The coordination number and its geometry depend on the coordination mode of the second nitrate group. The coordination polyhedron for 1, 2, 3 and 4 is best described as an oblate octahedron and the one for 5 as a doubly oblate octahedron.  相似文献   

14.
《Inorganica chimica acta》1988,149(1):139-145
The stoichiometry and kinetics of the reaction between [Cu(dien)(OH)]+ and [Fe(CN)6]3− in aqueous alkaline medium are described. The rate equation − (d[Fe(III)]/dt = {k1[OH]2[[Cu(dien)(OH)]+] + k2[OH] × [[Cu(dien)(OH)]+]2}([Fe(III)]/[Fe(II)]) (Fe(III) = [Fe(CN)6]3−; Fe(II) = [Fe(CN)6]4−, the 4:4:1 OH/Fe(III)/[Cu(dien)(OH)]+ stoichiometric ratio and the nature of the ultimate products identified in the reaction solution suggest the fast formation of a doubly deprotonated Cu(III)-diamido complex which slowly undergoes an internal redox process where the ligand is oxidised to the Schiff base H2NCH2CH2NCHCHNH.The [[Cu(dien)(OH)]+]2 term in the rate equation is explained with the formation of a transient μ-hydroxo mixed-valence Cu dimer. A two-electron internal reduction of the Cu(III) complex yielding a Cu(I) intermediate is suggested to account for the presence of monovalent copper in a precipitate which forms at relatively high reactant concentrations and in the absence of dioxygen.  相似文献   

15.
Reaction of [Rh(CO)2I]2 (1) with MeI in nitrile solvents gives the neutral acetyl complexes, [Rh(CO)(NCR)(COMe)I2]2 (R=Me, 3a; tBu, 3b; vinyl, 3c; allyl, 3d). Dimeric, iodide-bridged structures have been confirmed by X-ray crystallography for 3a and 3b. The complexes are centrosymmetric with approximate octahedral geometry about each Rh centre. The iodide bridges are asymmetric, with Rh-(μ-I) trans to acetyl longer than Rh-(μ-I) trans to terminal iodide. In coordinating solvents, 3a forms mononuclear complexes, [Rh(CO)(sol)2(COMe)I2] (sol=MeCN, MeOH). Complex 3a reacts with pyridine to give [Rh(CO)(py)(COMe)I2]2 and [Rh(CO)(py)2(COMe)I2] and with chelating diphosphines to give [Rh(Ph2P(CH2)nPPh2)(COMe)I2] (n=2, 3, 4). Addition of MeI to [Ir(CO)2(NCMe)I] is two orders of magnitude slower than to [Ir(CO)2I2]. A mechanism for the reaction of 1 with MeI in MeCN is proposed, involving initial bridge cleavage by solvent to give [Rh(CO)2(NCMe)I] and participation of the anion [Rh(CO)2I2] as a reactive intermediate. The possible role of neutral Rh(III) species in the mechanism of Rh-catalysed methanol carbonylation is discussed.  相似文献   

16.
The geochemical cycling of cobalt (Co) has often been considered to be controlled by the scavenging and oxidation of Co(II) on the surface of manganese [Mn(III,IV)] oxides or manganates. Because Mn(II) oxidation in the environment is often catalyzed by bacteria, we have investigated the ability of Mn(II)-oxidizing bacteria to bind and oxidize Co(II) in the absence of Mn(II) to determine whether some Mn(II)-oxidizing bacteria also oxidize Co(II) independently of Mn oxidation. We used the marine Bacillus sp. strain SG-1, which produces mature spores that oxidize Mn(II), apparently due to a protein in their spore coats (R.A. Rosson and K. H. Nealson, J. Bacteriol. 151:1027-1034, 1982; J. P. M. de Vrind et al., Appl. Environ. Microbiol. 52:1096-1100, 1986). A method to measure Co(II) oxidation using radioactive 57Co as a tracer and treatments with nonradioactive (cold) Co(II) and ascorbate to discriminate bound Co from oxidized Co was developed. SG-1 spores were found to oxidize Co(II) over a wide range of pH, temperature, and Co(II) concentration. Leucoberbelin blue, a reagent that reacts with Mn(III,IV) oxides forming a blue color, was found to also react with Co(III) oxides and was used to verify the presence of oxidized Co in the absence of added Mn(II). Co(II) oxidation occurred optimally around pH 8 and between 55 and 65°C. SG-1 spores oxidized Co(II) at all Co(II) concentrations tested from the trace levels found in seawater to 100 mM. Co(II) oxidation was found to follow Michaelis-Menten kinetics. An Eadie-Hofstee plot of the data suggests that SG-1 spores have two oxidation systems, a high-affinity-low-rate system (Km, 3.3 × 10-8 M; Vmax, 1.7 × 10-15 M · spore-1 · h-1) and a low-affinity-high-rate system (Km, 5.2 × 10-6 M; Vmax, 8.9 × 10-15 M · spore-1 · h-1). SG-1 spores did not oxidize Co(II) in the absence of oxygen, also indicating that oxidation was not due to abiological Co(II) oxidation on the surface of preformed Mn(III,IV) oxides. These results suggest that some microorganisms may directly oxidize Co(II) and such biological activities may exert some control on the behavior of Co in nature. SG-1 spores may also have useful applications in metal removal, recovery, and immobilization processes.  相似文献   

17.
A new heterometallic complex [CuMn(5-Brsap)2(MeOH)(Ac)] ⋅ CH3OH (1) (5-Brsap = 5-bromo-2-salicylideneamino-1-propanol) has been synthesized and characterized structurally as well as magnetically. Complex 1 has an alkoxo-bridged Cu(II) and Mn(III) heterobinuclear core, where the Mn(III) and Cu(II) ions have elongated octahedral and square-pyramidal geometries, respectively. In dc magnetic susceptibility measurements reveal that there is strong ferromagnetic interaction between the Mn(III) and Cu(II) ions with an exchange coupling constant J = 67.64 cm−1. The ac magnetic susceptibility measurements, frequency dependence in both the real and imaginary signals is observed, which indicates slow relaxation of magnetization. An Arrhenius plot gave the effective anisotropy barrier Δ/kB = 11.58 K and the pre-exponential factor ι0 = 1.28 × 10−6 s.  相似文献   

18.
A new phenoxo-bridged binuclear manganese(III) Schiff base complex, [Mn(L)(N3)]2 (1) where L = N,N′-bis(salicylidene)-1,2-propanediamine has been synthesized and characterized by IR, elemental analysis, crystal structure analysis and variable temperature magnetic susceptibility measurements. The single crystal X-ray diffraction reveals that the structure is dimeric with each phenolate oxygen atom acting as a bridge between two symmetry equivalent Mn atoms. Low temperature magnetic study shows that the complex exhibits intra-dimer ferromagnetic exchange and single-molecule-magnet (SMM) behavior as well.  相似文献   

19.
Light-induced interaction of Fe(II) cations with the donor side of Mn-depleted photosystem II (PS II(–Mn)) results in the binding of iron cations and blocking of the high-affinity (HAZ) Mn-binding site. The pH dependence of the blocking was measured using the diphenylcarbazide/2,6-dichlorophenolindophenol test. The curve of the pH dependence is bell-shaped with pK 1 = 5.8 and pK 2 = 8.0. The pH dependence of the O2-evolution mediated by PS II membranes is also bellshaped (pK 2 = 7.6). The pH dependence of the process of electron donation from exogenous donors in PS II(–Mn) was studied to determine the location of the alkaline pH sensitive site of the electron transport chain. The data of the study showed that the decrease in the iron cation binding efficiency at pH > 7.0 during blocking was determined by the donor side of the PS II(–Mn). Mössbauer spectroscopy revealed that incubation of PS II(–Mn) membranes in a buffer solution containing 57Fe(II) + 57Fe(III) was accompanied by binding only Fe(III) cations. The pH dependence of the nonspecific Fe(III) cation binding is also described by the same bell-shaped curve with pK 2 = 8.1. The treatment of the PS II(–Mn) membranes with the histidine modifier diethylpyrocarbonate resulted in an increase in the iron binding strength at alkaline pH. It is suggested that blocking efficiency at alkaline pH is determined by competition between OH and histidine ligand for Fe(III). Because the high-affinity Mn-binding site contains no histidine residue, this fact can be regarded as evidence that histidine is located at another (other than high-affinity) Fe(III) binding site. In other words, this means that the blockage of the high-affinity Mn-binding site is determined by at least two iron cations. We assume that inactivation of oxygen-evolving complex and inhibition of photoactivation in the alkaline pH region are also determined by competition between OH and a histidine residue involved in coordination of manganese cation outside the high-affinity site.  相似文献   

20.
A series of four mononuclear manganese (II) complexes with the N-tridentate neutral ligands 2,2:6,2′′-terpyridine (terpy) and N,N-bis(2-pyridylmethyl)ethylamine (bpea) have been synthesized and crystallographically characterized. The complexes have five- to seven-coordinate manganese(II) ions depending on the additional ligands used. The [Mn(bpea)(Br)2] complex (1) has a five-coordinated manganese atom with a bipyramidal trigonal geometry, while [Mn(terpy)2](I)2 (2) is hexa-coordinated with a distorted octahedral geometry. Otherwise, the reactions of Mn(NO3)2 · 4H2O with terpy or bpea afforded novel seven-coordinate complexes [Mn(terpy)(NO3)2(H2O)] (3) and [Mn(bpea)(NO3)2] (4), respectively. 3 has a coordination polyhedron best described as a distorted pentagonal bipyramid geometry with one nitrate acting as a bidentate chelating ligand and the other nitrate as a monodentate one. 4 possesses a highly distorted polyhedron geometry with two bidentate chelating nitrate ligands. These complexes represent unusual examples of structurally characterized complexes with a coordination number seven for the Mn(II) ion and join a small family of nitrate complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号