首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using the tetracyanometalate precursor [Fe(4,4′-dmbipy)(CN)4]- (4,4′-dmbipy = 4,4′-dimethyl-2,2′-bipyridine) as the building block, two new cyano-bridged one-dimensional heterobimetallic coordination polymers, [M(CH3OH)2Fe2(4,4′-dmbipy)2(CN)8]n (M = Cu, 1; Mn, 2), have been synthesized and structurally characterized. X-ray crystallography reveals that complexes 1 and 2 consist of heterobimetallic chains of squares, and the central MII ion is six-coordinated as an elongated distorted octahedral geometry. Magnetic studies show ferromagnetic coupling between FeIII and CuII ions in complex 1. Complex 2 exhibits ferrimagnetic behavior caused by the noncompensation of the local interacting spins (SMn = 5/2 and SFe = 1/2), which interact antiferromagnetically through bridging cyanide groups. magpack program has been employed to investigate the magnetic nature of squares chain structure.  相似文献   

2.
Four new heterobimetallic coordination polymers, namely, {[Cu(aeoe)M(H2O)3 · 2H2O]2}n (M = Mn(II) (1), Co(II) (2), Ni(II) (3)) and [Cu(aeoe)Ni(H2O)3]2 (4) (H4aeoe = N′-(2-aminoterephthalic acid)-N′′-(ethylenediamine)oxamidato) have been synthesized and characterized structurally. Complexes 1-3 are allomerism and feature 1-D ladder-like chain structure constructed from neutral tetranuclear complex units through the syn-anti carboxylate bridges, whereas complex 4 is a cyclic neutral tetranuclear complex unit. Their magnetic properties are also investigated based on their structures.  相似文献   

3.
Mono- and di-manganese inclusion compounds 1 and 2 are reported. Two mono-manganese molecules Mn(bpy)2(NO3)2 (bpy=2,2′-bipyridine) and [Mn(bpy)2(NO3)(H2O)]·NO3 coexist in the mole ratio of 1:1 in the structure of 1, while two di-manganese molecules [Mn2O(bpy)2(phtha)2(H2O)2]·(NO3)2 (phtha=phthalate) and [Mn2O(bpy)2(phtha)2(NO3)(H2O)]·NO3 in the structure of 2. Refluxing Mn(NO3)2/bpy/phthalic acid reaction mixtures in CH3CN leads to the isolation of 1, further concentration of the reaction solution in raising temperature results in 2. The Mn1 and Mn2 units in the inclusion compounds 1 and 2 are similar to other reported Mn1 and Mn2 analogs, respectively. The Jahn–Teller distortion was observed to give rise to the elongation along the Oterminal---Mn---Ocarboxyl axes for all the four Mn(III) sites in 2, leading to unexpected longer Mn(III)---Oaqua than Mn(II)---Oaqua in 1. Extensive hydrogen bonding interactions among H2O, NO3 − and COOH were observed in the two inclusion compounds. Cyclic voltammetry of 2 in DMF displays two quasi-reversible redox couples at +0.10/+0.22 and −0.43/−0.36 V assigned to the Mn(III)Mn(IV)/2Mn(III) and 2Mn(III)/Mn(III)Mn(II), respectively. Variable temperature magnetic susceptibilities of 1 and 2 were measured. The data were fit to a model including axial zero-field splitting term and a good fit was found with D=1.77 cm−1, g=1.98 and F=1.48×10−5 for 1. For 2, the least-squares fitting of the experimental data led to J=2.37 cm−1, g=2.02 and D=0.75 cm−1 with R=1.45×10−3.  相似文献   

4.
A series of pyrazole-bridged heterometallic 3d-4f complexes, [CuDy(ipdc)2(H2O)4] · (2H2O)(H3O+) (1) and [CuLn(pdc)(ipdc)(H2O)4] · H3O+ (Ln = Ho (2), Er (3), Yb (4); H3ipdc = 4-iodo-3,5-pyrazoledicarboxylic acid; H3pdc = 3,5-pyrazoledicarboxylic acid), {[Cu3Ln4(ipdc)6(H2O)16] · xH2O}n (Ln = Sm (5), x = 8.5; Ln = Eu (6), x = 7; Ln = Gd (7), Tb (8), x = 9), have been synthesized and structurally characterized. Ligand H3ipdc was in situ obtained by iodination of ligand H3pdc. Complexes 1-4 are pyrazole-bridged heterometallic dinuclear complexes, and 2-4 are isostructural. Complexes 5-8 are isostructural and comprised of an unusual infinite one-dimensional tape-like chain based on pyrazole-bridged heterometallic dinuclear units. The magnetic properties of compounds 1-4, 7 and 8 have been investigated through the magnetic measurement over the temperature range of 1.8-300 K.  相似文献   

5.
Two new first-raw transition metal diphosphonate complexes, namely, {[Ni3([hpyedpH)2(H2O)4]·(H2O)2}n (1) and [Mn[hpyedpH2](H2O)]n (2), based on a multidentate ligand 1-hydroxy-2-(3-pyridyl)-ethylidene-1,1-diphosphonic acid (hpyedpH4) have been synthesized under hydrothermal reaction and structurally characterized by single-crystal X-ray diffraction, IR spectroscopy and element analyses. The data reveals that complex 1 is a 2D layer structure, whereas the complex 2 possesses a 1D motif. The powder X-ray diffraction (PXRD) patterns for complexes 1 and 2 were collected as well, which match well with the ones calculated from their single-crystal structure data. Magnetic measurements show that complex 1 is a ferrimagnet with Tc = 5.0 K. Magnetic studies of complex 2 indicate antiferromagnetic behavior.  相似文献   

6.
A series of new 3d-4f heterobimetallic Schiff base complexes of the general formula [Zn(μ-L2)Ln(NO3)3(H2O)n] (Ln = La 1, Nd 2, Gd 3, Er 4 and Yb 5; n = 1 or 2; H2L2 = N,N′-bis(3-methoxy-5-p-tolylsalicylidene)ethylene-1,2-diamine) are synthesized and characterized. Complexes 1, 2, 4 and 5 are structurally characterized by X-ray crystallography. The photophysical properties of these complexes are also investigated. At room temperature, complexes 1-5 exhibit similar solution absorption and emission spectra in the UV-Vis region. Furthermore, compounds 2, 4 and 5 exhibit solution emission corresponding to the lanthanide(III) ion in the near-infrared region at room temperature. The triplet state emission of the 3d-4f bimetallic complexes without energy transfer is also determined through the photophysical study of complex 3.  相似文献   

7.
Two novel complexes Co(N3)2(PNN)4 (I) and Mn(N3)2(PNN)2(CH3OH)(C2H5OH) (II) (PNN=2-(p-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3–oxide) were synthesized and characterized by infrared spectra, elemental analyses and UV–Vis techniques. The crystal structures of both complexes have been determined by X-ray diffraction analysis. Complex I is a neutral five-spin system and adopts a centrosymmetric tetragonally compressed octahedral coordination geometry in which Co(II) ion is coordinated to four radicals through the nitrogen atoms of the pyridine rings and two azide anions occupying the axial positions. Complex II is a neutral three-spin system in which Mn(II) ion is bound to two azide anions, two alcohol molecules and two radicals through the nitrogen atom of pyridine rings, and shows one-dimensional chain structure via hydrogen bonds (dON=2.78 Å). The magnetic properties for complexes I and II have been investigated in the temperature range 2–300 K. A theoretical model has been developed for complex I and the magnetic behaviors for both complexes have been discussed in detail.  相似文献   

8.
Two new mononuclear spin-crossover iron(II) complexes, [FeL2(NCS)2] · H2O (1) and [FeL2(NCSe)2] (2), have been synthesized from the reaction of the versatile ligand 4,5-bis(2-cyanoethylthio)-2-bis(2-pyridyl)methylene-1,3-dithiole (L), Fe(ClO4)2, and KNCX (X = S/Se). Reactions of L with CuII or CoII salts afford one mononuclear complex [CuL(hfac)2] · CH3OH (hfac = hexafluoroacetylacetonate) (3), one dinuclear complex [(CuLCl)2(μ-Cl)2] · CH3OH (4), and two 1D chain species, [CuL2]n(BF4)2n (5) and [CoL2]n(ClO4)2n · 2nCH2Cl2 (6). The crystal structures of complexes 1 and 3-6 have been determined by X-ray crystallography. Short intermolecular S?S contacts between neighboring 1D arrays are observed in 5 and 6, which lead to the formation of the 2D structure. The magnetic properties are studied, and antiferromagnetic couplings between the CuII centers across the chloride bridges have been found in 4 (J = 2.04 cm-1). Spin-crossover behaviors between high and low spin states are observed at T1/2 = 80 K for 1 and T1/2 = 300 K for 2, respectively.  相似文献   

9.
Three new ion-pair complexes (m-MPYNN)2Ni(mnt)2 (1), (p-MPYNN)2Ni(mnt)2 (2) and (p-MPYNN)2Cu(mnt)2 (3) (m- or p-MPYNNI = [3- or4- (4,4,5,5-tetramethyl-1-oxido-3-oxyl-4,5-dihydro-3H-imidazol-2′-yl)-1-methylpyridinium] iodide, mnt = maleonitriledithiolate) have been prepared and characterized by elemental analyses, IR, single crystal X-ray diffraction and magnetic susceptibility. In complex 1, the m-MPYNN cations form a centrosymmetric dimer, and the [Ni(mnt)2]2− anion lies on a center of inversion. Complexes 2 and 3 show layered packing, and the p-MPYNN cations lie between the layers of the anions. Magnetic susceptibility measurements in the temperature range 2-300 K show that the three complexes exhibit weak antiferromagnetic behaviors. The behavior of complex 1 was explained with the singlet-triplet model.  相似文献   

10.
Two new binuclear radical complexes derived from a new long nitronyl nitroxide ligand, 2-[4-(5-pyrimidyl)phenyl]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (4-NITPhPyrim), and M(hfac)2 (M2+ = Cu2+, Mn2+; hfac = hexafluoroacetylacetonato), [Cu(hfac)2(4-NITPhPyrim)]2 · 4H2O (1) and [Mn(hfac)2(4-NITPhPyrim)]2 · 4H2O (2), were synthesized as well as characterized structurally and magnetically. X-ray analysis indicates that 1 and 2 are rectangle-like centrosymmetric dimer M2L2 complexes. Magnetic measurements indicate that there are two types of magnetic exchanges in 1: the ferromagnetic (FM) exchange between the Cu(II) ion and the directly bonded nitroxide unit (J1 = 24.20 cm−1) and the weak FM exchange of Cu-NIT through the pyrimidine and phenyl rings (J2 = 0.62 cm−1). Besides the strong antiferromagnetic (AFM) coupling between the Mn(II) ion and the directly bonded nitroxide unit (J = −87.61 cm−1), there is a weak FM interaction between the two Mn-NIT pairs (θ = 0.39 K) in 2.  相似文献   

11.
Two new Co(II) coordination polymers with mixed ligands, {[Co(BTA)0.5(DBI)2]·DBI·H2O}n (1) and [Co(PDA)(DBI)(H2O)]n (2) (H4BTA = benzene-1,2,4,5-tetracarboxylic acid; H2PDA = 2,2′-(1,2-phenylene)diacetic acid; DBI = 5,6-dimethyl-1H-benzoimidazole) have been synthesized under hydrothermal conditions, respectively. Both of them are characterized by elemental analyses, powder X-ray diffraction, thermogravimetric analysis, single-crystal X-ray diffraction, and magnetic susceptibilities. In 1, the Co(II) ions are four-coordinated and lie in distorted tetrahedron coordination environment. 1D ladder-like chain structure is formed by the bridging BTA4− ligand. In 2, the Co(II) ions are in slightly distorted octahedral coordination geometry, and linked by PDA2− ligand exhibiting a 2D layer structure. Temperature-dependent magnetic susceptibility measurements of 1 and 2 revealed that there are antiferromagnetic interactions between Co(II) ions.  相似文献   

12.
[PPh4]2[MoSe4] and [PPh4]2[WSe4] react with two equivalents of AuCN in CH3CN to afford [PPh4]2[(NC)Au(μ-Se)2-Mo(μ-Se)2Au(CN)] · CH3CN (bd1) and [PPh4]2[(NC)Au(μ-Se)2Au(CN)] · CH3CN (bd2), respectively. Compounds 1 and 2 are isostructural. Compound 1 crystallizes in the triclinic space group with two formula units in a cell dimensions a=13.181(4), b=14.239(4), C=14.684(4) Å, α=73.00(3), β=73.66(2), γ=79.06(2)° at 113 K. Full anisotropic refinement of the structure of 1 on F2 led to a value of R1=0.0562 for those 9075 data having Fo2 . 2σ(Fo2). The [(NC)Au(μ-Se)2Mo(μ-Se)2Au(CN)]2− anion of 1 comprises two AuCN fragments ligating the opposite edges of a tetrahedral [MoSe4]2− moiety. Compounds 1 and 2 exhibit an IR band at 2250 cm−1 that may be assigned to a CN stretching mode of the CH3CH solvate; such a solvate molecule was found in the crystal structure of 1. The 77Se NMR spectra show a resonance at 1104 ppm for 1 and 832 ppm for 2. Addition of excess PME2Ph to the same solutions that produce 1 and 2 results in the formation of [PPh4][(Me2PhP)Au(μ-Se)2MoSe2] (3) and [PPh4][(Me2PhP)Au(μ-Se)2WSe2] (4), respectively. Compounds 3 and 4 are not isostructural. Compound 3 crystallizes in the monoclinic space gorup Cc with four formula units in a cell of dimensions a=21.912(4), B=9.809(2), C=15.959(3) Å, β=100.79(3) at 113 K. Full anisotropic refinement of the structure of 1 on F2 led to a value of R1=0.0481 for those 6851 data having Fo2 > 2σ(Fo2). Compound 4 crystallizes in the triclinic space group with two formula units in a cell of dimensions a=11.315(2), B=13.053(3), C=14.173(3) Å, α=103.59(3), β=103.55(3), γ=114.75(3)δ at 113 K. Full anisotropic refinement of the structure of 4 on F2 led to a value of R1=0.0414 for those 7825 data having Fo2 > 2σ(Fo2). The [(Me2]PhP)Au(μ-Se)2MoSe2] anion of 3 and the [(Me2PhP)Au(μ-Se)2WSe2] anion of 4 comprise an [(Me2PhP)Au]+ fragment ligated across an edge of a tetrahedral (MSe4]2− moiety. [PPh4]2[MoSe4] and [PPh4]2[WSe4] react with one equivalent of AuCN in CH3CH to afford [PPh4]2[(NC)Au(μ-Se)2MoSe2] (5) and [PPh4]2[(NC)Au(μ-Se)2WSe2] (6), respectively. Compounds 5 and 6 are isostructural. Compounds 5 crystallizes in the monoclinic space group C2/c with four formula units in a cell of dimensions a=11.234(15), B=20.329(28), C=20.046(28) Å, β=91.81(5)° at 113 K. Full anisotropic refinement of the structure of 5 on F2 led to a value of R1=0.0457 for those 4003 data having Fo2 > 2σ(Fo2). The [(NC)Au(μ-Se)2MoSe2]2− anion of 5, which has a crystallographically imposed twofold axis, comprises an AuCN fragment ligated across an edge of a tetrahedral [MoSe4]2− moiety. The reaction of [PPh4]2(NC)Cu(μ-Se)2MoSe2] with one equivalent of AuCN in CH3CN produces a precipitate that is then redissolved through reaction with an excess of PMe2Ph to afford [PPh4][(Me2PhP)2Cu(μ-Se)2MoSe2] (7). Compound 7 crystallizes in the monoclonic space group P11/c with four formula units in a cell of dimensions a=9.975(1), B=30.391(7), C=14.541(6) Å, β=109.66(3) at 113 K. Full anisotropic refinement of the structure of 7 on F2 led to a value of R1=0.0305 for those 5205 data having Fo2 > 2σ(Fo2). The [(Me2PhP)2Cu(μ-Se)2MoSe2] anion of 7 comprises an [(Me2PhP)2Cu]+ fragment ligated across an edge of the [MoSe4]2− moiety to provide a tetrahedral geometry about the Cu atom. The NMR, IR and UV-Vis spectroscopic data for these compounds are consistent with their solid-state structures.  相似文献   

13.
The preparation and magnetic properties of three copper(II) compounds of formulae [Cu2(bpcam)2(H2O)2(C2O4)] (1), [Cu2(bpcam)2(H2O)4(C4O4)] · 10 H2O (2) and Cu2(bpcam)2(C5O5)(H2O)3 (3) [bpcam = bis(2-pyrimidyl)amidate, and are reported. The structures of two of them (1 and 2) have been solved by single crystal X-ray diffraction and consists of centrosymmetric discrete copper(II) dinuclear units bridged by bis-bidentate oxalate (1) and bis-monodentate squarate (2), with the bpcam group acting as a terminal tridentate ligand. Each copper atom in 1 exhibits a distorted elongated octahedral coordination geometry. Three bpcam nitrogen atoms and one oxalate oxygen define the basal plane while the other oxalate oxygen and a water molecule take up the axial positions. Each copper atom in 2 is in an elongated octahedral surrounding with three bpcam nitrogen atoms and one squarate oxygen in the equatorial plane and two water molecules in the axial positions. The intramolecular copper-copper separations are 5.677(1) (1) and 7.819(53) Å (2). Magnetic susceptibility measurements for 1-3 in the temperature range 1.9-290 K show the occurrence of weak ferromagnetic interactions through oxalato (J = +0.75 cm−1) and squarato (J = +1.26 cm−1), the Hamiltonian being defined by . These values are analyzed and discussed in the light of the available magneto-structural data for analogous systems. The quasi-Curie law observed in 3 (θ = −1.15 K) contrasts with the significant antiferromagnetic interaction through bis-chelating croconate in other structurally characterized croconate-bridged copper(II) complexes and rules out the presence of bridging croconate in this compound.  相似文献   

14.
The mixed-ligand complexes of manganese(II) of formula [Mn(pyim)2(C5O5)] (1) and [Mn(pyim)(H2O)(C5O5)]n · 2.5nH2O (2) [pyim = 2-(2-pyridyl)imidazole and  = croconate (dianion of 4,5-dihydroxy-4-cyclopentene-1,2,3-trione)] have been prepared and their structures determined by X-ray crystallographic methods. Compound 1 is a tris-chelated mononuclear complex where the manganese atom is six-coordinate: four nitrogen atoms from two pyim molecules and two oxygen atoms from a croconate group build a somewhat distorted octahedral surrounding around the metal atom. The resulting neutral mononuclear units are linked to each other through double bridges which are constituted by the imidazole N-H and the metal-coordinated croconate-oxygen atom, the metal-metal separation through this supramolecular pathway being 7.6856(11) Å. Compound 2 is a croconato-bridged manganese(II) uniform chain with an intrachain metal-metal distance of 7.5118(9) Å. A bidentate pyim group, a water molecule and four oxygen atoms from two bis-bidentate croconate ligands build an irregular seven-coordination polyhedron around each manganese atom in 2. The investigation of the magnetic properties of 2 in the temperature range 1.9-295 K has shown the occurrence of a weak antiferromagnetic interaction [J = −0.066 cm−1 with the Hamiltonian defined as H = −i Si · Si+1] through the bis-bidentate croconate. The ability of the bis-chelating croconate to mediante magnetic interactions between paramagnetic first-row transition metal ions is discussed and compared to that of the related oxalate ligand.  相似文献   

15.
Two tetracyanometalate building blocks, [Fe(5,5′-dmbipy)(CN)4]? (2) and [Fe(4,4′-dmbipy)(CN)4]? (3) (5,5′-dmbipy = 5,5′-dimethyl-2,2′-bipyridine; 4,4′-dmbipy = 4,4′-dimethyl-2,2′-bipyridine), and two cyano-bridged heterobimetallic complexes, [Cu2(bpca)2(H2O)2Fe2(5,5′-dmbipy)2(CN)8] · 2[Cu(bpca)Fe(5,5′-dmbipy)(CN)4] · 4H2O (4) and [Cu(bpca)Fe(4,4′-dmbipy)(CN)4]n (5) (bpca = bis(2-pyridylcarbonyl)amidate), have been synthesized and structurally characterized. Complex 4 contains two dinuclear and one tetranuclear heterobimetallic clusters in an asymmetric unit whereas the structure of complex 5 features a one-dimensional heterobimetallic zigzag chain. The Cu(II) ion is penta-coordinated in the form of a distorted square-based pyramid. Magnetic studies show ferromagnetic coupling between Cu(II) and Fe(III) ions with g = 2.28, J1 = 2.64 cm?1, J2 = 5.40 cm?1 and TIP = ?2.36 × 10?3 for complex 4, and g = 2.17, J = 4.82 cm?1 and zJ = 0.029 cm?1 for complex 5.  相似文献   

16.
Three new binuclear metal complexes of the formulas (L = 3,5-dimethyl-1-thiocarboxamide pyrazole) have been synthesized and characterized by chemical analysis, FT-IR spectroscopy, solution conductivity, solid state magnetic measurements and X-ray single crystal and variable temperature powder diffraction. Complex 1 forms doubly chloro-bridged dimers, with Cu(II) in distorted trigonal bipyramidal coordination with the apical positions occupied by chlorine atoms. Magnetic measurements indicate an antiferromagnetic interaction between the Cu(II) centres in the dimer, with the singlet-triplet exchange parameter of J = −19.40 cm−1. Complex 2 forms doubly sulfur-bridged dimers, with Cu(I) in distorted tetrahedral coordination with apical positions occupied by bromine atoms. Complex 3 is a cobalt analogue of 1. It contains dinuclear units formed by five-coordinate high-spin Co(II) in a distorted trigonal bipyramidal environment. The magnetisation of 3 shows no significant departure from Curie-Weiss behaviour between room temperature and 5 K. All crystal structures are stabilized by two-dimensional hydrogen bonding networks between the carboxamide nitrogen donors and the terminal halide acceptors.  相似文献   

17.
Two copper(II) complexes [Cu4(L1)4] (1) and [Cu2(phen)2(HL2)2] (ClO4)2 (2) have been synthesized from two potentially tridentate ligands N-(2-hydroxybenzyl) propanolamine (H2L1) and N-(2-hydroxybenzyl) ethanolamine (H2L2). X-ray analyses revealed that 1 contains a Cu4O4 cubane core, with each two Cu(II) atoms bridged by a pair of alkoxides; 2 has a bis(μ2-phenoxo)-bridged dicopper(II) structure. Variable temperature magnetic measurements of 1 have revealed that the correlation between 2J and the bridge angles φ for 1 shows a very strong antiferromagnetic tendency, i.e. the ferromagnetic and antiferromagnetic interactions cross at the φ of 94.5°. The relatively weak antiferromagnetic interactions (2J=−226.8 cm−1) with respect to the bridge angles (φ=100.4°) for 2 have been ascribed to the pyramidal distortions at the phenoxide oxygen atoms in addition to the unfavorable overlaps of the magnetic orbitals for the highly distorted copper coordination polyhedra.  相似文献   

18.
Four copper(II) complexes containing the reduced Schiff base ligands, namely, N-(2-hydroxybenzyl)-glycinamide (Hsglym) and N-(2-hydroxybenzyl)-l-alaninamide (Hsalam) have been synthesized and characterized. The crystal structures of [Cu2(sglym)2Cl2] (1), [Cu2(salam)2(NO3)2] · H2O (3), [Cu2(salam)2(NO3)(H2O)](NO3) · 1.5H2O (4), [Cu2(salam)2](ClO4)2 · 2H2O (5) show that the Cu(II) atoms are bridged by two phenolato oxygen atoms in the dimers. The sglym ligand bonded to Cu(II) in facial manner while salam ligand prefers to bind to Cu(II) in meridonal geometry. Variable temperature magnetic studies of 3 showed it is antiferromagnetic. These Cu(II) complexes and [Cu2(sglym)2(NO3)2] (2), exhibit very small catecholase activity as compared to the corresponding complexes containing acid functional groups.  相似文献   

19.
Three new coordination compounds, [Ni(Pht)(Py)2(H2O)3] (1), [Ni(Pht)(β- Pic)2(H2O)3] · H2O (2) and [Ni(Pht)(1-MeIm)2(H2O)3] (3) (where Pht2− = dianion of o-phthalic acid; Py = pyridine, β-Pic = 3-methylpyridine, 1-MeIm = 1-methylimidazole), have been synthesized and characterized by IR spectroscopy and thermogravimetric analysis. Crystallographic studies 1-3 reveal that each Ni(II) center has a distorted octahedral geometry being coordinated by two nitrogen atoms of aromatic amines, one oxygen atom from a carboxylate group of a phthalate ligand and three water molecules. Pht2− anions act as monodentate ligands, while the remaining uncoordinated carboxylate oxygen atoms participate in the formation of hydrogen bonding. The uncoordinated oxygen atoms form hydrogen bonds with the coordinated water molecules from adjacent complexes creating a centrosymmetric dimer unit. Further, these dimer units are connected by O-H?O hydrogen bonds in double-chains. Depending on the nature of aromatic amines, the arrangement of these double-chains differs. The double-chains are held together only by van der Waals interactions in 1. In contrast, in 2 these chains form layers by π-π interactions between antiparallel molecules of β-Pic as well as by π-π interactions between β-Pic and Pht aromatic rings. In complex 3, the double-chains are knitted together via C-H?O hydrogen bonds between the methyl group of 1-MeIm and the coordinated carboxylate oxygen atom of Pht, as well as π-π contacts involving antiparallel 1-MeIm cycles. The thermal dependence of the magnetic susceptibilities for compounds 1 and 2 shows a weak antiferromagnetic interaction between the two Ni2+ ions of the hydrogen bonded dimers. For compound 3, a ferromagnetic interaction could be observed. Modeling the experimental data with MAGPACK resulted in: g = 2.22, |D| = 4.11 cm−1 and J = −0.29 cm−1 for compound 1, g = 2.215, |D| = 3.85 cm−1 and J = −0.1 cm−1 for compound 2 and g = 2.23, |D| = 4.6 cm−1 and J = 0.22 cm−1 for compound 3.  相似文献   

20.
Three new Fe(II) complexes [Fe(HIM2py)2(SCN)2] (1), [Fe(HIM2py)2(H2O)2](ClO4)2 · 2H2O (2), and [Fe(HIM2py)2(4,4-bipy)](ClO4)2 · 3CH3CH2OH (3) (4,4-bipy = 4,4′-bipyridine, HIM2py = 1-hydroxyl-2(2′-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole) have been synthesized and characterized structurally as well as magnetically. The X-ray analysis reveals that HIM2py ligands are coordinated to the metal ions as an unusual six-membered didentate chelate with the κ2N(py), O(HIM) mode. Fe(II) ions in complex 3 are bridged by 4,4-bipy, leading to a 1D chain structure. The magnetic behavior of complex 3 is investigated, showing weak antiferromagnetic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号