首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The coordination chemistry and reactivity of zinc(II) complexes supported by monoanionic hydrotris(pyrazolyl)borate ligands substituted by 3,3,3-mesityl groups (TpMs) and 3,3,5-mesityl groups (TpMs∗) have been investigated. Salt metathesis of ZnCl2, ZnEt2, and Zn(OAc)2 with Tl[TpMs] or Tl[TpMs∗] cleanly afforded the corresponding compounds TpMsZnCl (1), TpMsZnEt (2), TpMs∗ZnEt (3), and TpMsZnOAc (5). Compound 3 slowly disproportionates in benzene solution to afford the bis(ligand) complex (κ2-TpMs∗)2Zn (4). Acetate complex 5 as well as TpMsZnOCOPh (6) and [TpMs∗ZnOAc]2 (7) were alternatively prepared by acidolysis of the parent ethyl complexes (2, 3) with the corresponding carboxylic acid. No reaction was observed between 2 and 3 and alcohols (ROH; R = Et, iPr, Bn), while salt metathesis reactions of ZnEt(OR) with Tl[TpMs] led to 2 instead of the desired zinc-alkoxide complex. Compounds 1-7 were characterized by elemental analysis, 1H and 13C NMR spectroscopy, as well as by X-ray diffraction studies for 1, 2, 4, 5 and 7. The former compounds adopt a monomeric structure in the solid state while [TpMs∗ZnOAc]2 (7) exists as an anti-syn bridged acetate dimer. Complex 4 is four-coordinated, featuring a rare bidentate coordination mode of the TpMs∗ ligands. The results are rationalized in terms of the variable steric constraint around the zinc atom provided by the TpMs and TpMs∗ ligands.  相似文献   

2.
The tris(pyrazolyl)borate and related tripodal N-donor ligands originally developed by Trofimenko stabilize mononuclear compounds containing MoVIO2, MoVIO, MoVO, and MoIVO units and effectively inhibit their polynucleation in organic solvents. Dioxo-Mo(VI) complexes of the type LMoO2(SPh), where L = hydrotris(3,5-dimethylpyrazol-1-yl)borate (Tp), hydrotris(3-isopropylpyrazol-1-yl)borate (TpiPr), and hydrotris(3,5-dimethyl-1,2,4-triazol-1-yl)borate (Tz) and related derivatives are the only model systems that mimic the complete reaction sequence of sulfite oxidase, in which oxygen from water is ultimately incorporated into product. The quasi-reversible, one-electron reduction of TpMoO2(SPh) in acetonitrile exhibits a positive potential shift upon addition of a hydroxylic proton donor, and the magnitude of the shift correlates with the acidity of the proton donor. These reductions produce two Mo(V) species, [TpMoVO2(SPh)] and TpMoVO(OH)(SPh), that are related by protonation. Measurement of the relative amounts of these two Mo(V) species by EPR spectroscopy enabled the pKa of the MoV(OH) unit in acetonitrile to be determined and showed it to be several pKa units smaller than that for water in acetonitrile. Similar electrochemical-EPR experiments for TpiPrMoO2(SPh) indicated that the pKa for its MoV(OH) unit was ∼1.7 units smaller than that for TpMoVO(OH)(SPh). Density functional theory calculations also predict a smaller pKa for TpiPrMoVO(OH)(SPh) compared to TpMoVO(OH)(SPh). Analysis of these results indicates that coupled electron-proton transfer (CEPT) is thermodynamically favored over the indirect process of metal reduction followed by protonation. The crystal structure of TpiPrMoO2(SPh) is also presented.  相似文献   

3.
The reactions of TpiPrMoO(SR)(NCMe) (TpiPr = hydrotris(3-isopropylpyrazolyl)borate) with propylene sulfide in toluene result in the formation of the diamagnetic, isovalent Mo(V) complex, [TpiPrMoVO]2(μ-S)(μ-S2). This complex and its previously reported μ-oxo analog, [TpiPrMoVO]2(μ-O)(μ-S2), react with cobaltocene to produce one-electron-reduced, mixed-valent complexes, [CoCp2][{TpiPrMoIV,VO}2(μ-E)(μ-S2)] (E = S or O, respectively). All complexes have been isolated and characterized by microanalysis, mass spectrometry, IR and 1H NMR or EPR spectroscopies, and X-ray crystallography. Neutral [TpiPrMoVO]2(μ-S)(μ-S2) exhibits a pseudo-C2 symmetric structure, with distorted octahedral anti oxo-Mo(IV) centers coordinated by TpiPr and linked by μ-sulfido and μ-disulfido ligands. A similar structure is adopted by the anion in mixed-valent [CoCp2][{TpiPrMoIV,VO}2(μ-S)(μ-S2)]; this compound adopts a hexagonal, supramolecular structure with columns of tight ion-pairs with interactions, interconnected through weaker contacts to three neighboring columns. The structure contains large interstitial voids filled with lattice solvent molecules. EPR investigation of the mixed-valent complexes gave rise to unusually broad signals with no evident hyperfine splitting. The synthesis and characterization of a number of cis-dioxo-Mo(VI) precursors are also reported.  相似文献   

4.
Reaction of [MoVI(TpMe,Me)(O)2Cl] with a variety of pyridine-based ligands [pyridine (py), 4,4′-bipyridine (bpy), 4-phenylpyridine (phpy) and 1,2′-bis(4-pyridyl)ethene (bpe)] in toluene in the presence of Ph3P affords the mononuclear oxo-Mo(IV) complexes [Mo(TpMe,Me)(O)Cl(L)] (L=py, phpy or monodentate bpy; abbreviated as Mo(py), Mo(phpy) and Mo(bpy), respectively) and the dinuclear complexes [{Mo(TpMe,Me)(O)Cl}2(μ-L)] (L=bpy, bpe; abbreviated as Mo2(bpy), Mo2(bpe), respectively). The complex Mo2(bpy), together with the by-product [{Mo(TpMe,Me)(O)Cl}2(μ-O)], have been crystallographically characterised. Electrochemical studies on the oxo-Mo(IV) complexes reveal the presence of reversible Mo(IV)/Mo(V) couples at around −0.3 V versus ferrocene/ferrocenium in every case. For the dinuclear complexes Mo2(bpy) and Mo2(bpe) these redox processes are coincident, indicating that they are largely metal-centred and not significantly delocalised across the bridging ligand. In contrast, Mo2(bpe) alone shows two reversible reductions, separated by 320 mV; these could be described as ligand-centred reductions of the bpe bridge, or as Mo(IV)/Mo(III) couples which—because of their separation—are substantially delocalised onto the bridging ligand. UV-Vis spectroelectrochemical studies using an OTTLE cell at 243 K revealed that oxidation of the complexes results in spectral changes (collapse of the Mo(IV) d-d transitions, loss in intensity of the Mo→pyridine MLCT transition) consistent with the formation of a Mo(V) state following metal-centred oxidation, but that one-electron reduction of Mo2(bpe) results in appearance of numerous intense transitions more characteristic of a ligand radical following ligand-centred reduction.  相似文献   

5.
The synthesis of a series of rhodium and iridium complexes bearing bulky cyclopentadienyl or hydro(trispyrazolyl)borate ligands is described. The rhodium cyclopentadienyl and hydrotris(pyrazolyl)borate diene compounds, [(η5-C5Me4But)Rh(η4-2,3-MeRC4H4] (R = H, 1; Me, 2) and TpMsRh(η4-2,3-MeRC4H4) (R = H, 3; Me, 4; TpMs is hydrotris(3-mesitylpyrazol-1-yl)borate), respectively, have been prepared from the corresponding Rh(I) diene precursors and Zn(C5Me4But)2 (for 1 and 2), or TlTpMs (for 3 and 4), as effective C5Me4But or TpMs transfer reagents. In contrast with these results, attempts to obtain a bis(ethylene) derivative of the TptolIr(I) unit (Tptol stands for hydrotris(3-p-tolylpyrazol-1-yl)borate) have provided instead the Ir(III) complex [(κ4-N,N′,N″,C-Tptol)-Ir(C2H5)(C2H4)] (5), whose formation requires C-H bond activation of a molecule of ethylene and of one of the Tptolp-tolyl substituents. In refluxing toluene 5 experiences metalation of a second p-tolyl substituent to give [(κ5-N,N′,N″,C,C′-Tptol)-Ir(C2H4)] (6), which features unusual κ5-Tptol coordination. The latter compound reacts with carbon monoxide to yield the corresponding carbonyl, 7.  相似文献   

6.
A series of oxo-vanadium(IV) complexes: TpVO(pzH)(CH3COO) (1), TpVO(pzH)(CCl3COO) (2), TpVO(pzH)(C6H5COO) (3), TpVO(pzH)(m-NO2-C6H4COO)·CH3CN (4) and [TpVO(pzH)(H2O)]+[m-NO2-C6H4-SO3]·CH3OH (5) (Tp = hydrotris(3,5-dimethylpyrazolyl)borate; pzH = 3,5-dimethylpyrazole) are synthesized in methanol solution under physiological conditions. They are characterized by elemental analysis, IR, UV-Vis and X-ray crystallography. Structural analyses show that the vanadium atoms in complexes 1-5 are all in a distorted-octahedral environment with the N4O2 donor set, and intra- or inter-hydrogen bonding linkages have been also observed in each complex. Bromination reaction activity of the complexes has been evaluated by the method with phenol red as organic substrate in the presence of H2O2, Br and phosphate buffer, indicating that they can be considered as potential functional model vanadium-dependent haloperoxidases. In addition, thermal analysis and quantum chemistry calculations were also performed and discussed in detail.  相似文献   

7.
The reaction of the dihydrido iridium(III) precursor [IrH2(Cl)(PiPr3)2] (5) with internal alkynes RCC(CO2Me) (R = Me, CO2Me) afforded the five-coordinate hydrido(vinyl) complexes [IrH(Cl){(E)-C(R)CH(CO2Me)}(PiPr3)2] (6, 7), via insertion of the alkyne into one of the IrH bonds. Compounds 6 and 7 are also accessible by careful hydrogenation of the alkyne iridium(I) derivatives trans-[IrCl{RCC(CO2Me)}(PiPr3)2] (9, 10), the latter being prepared from in situ generated trans-[IrCl(C8H14)(PiPr3)2] and RCC(CO2Me). UV irradiation of 6 (R = CO2Me) led to the formation of the isomer [IrH(Cl){κ2(C,O)-C(CO2Me)CHC(OMe)O}(PiPr3)2] (3) having the vinyl ligand coordinated in a bidentate fashion. While 6 reacted with acetonitrile and CO to afford the six-coordinate iridium(III) compounds [IrH(Cl){(E)-C(CO2Me)CH(CO2Me)}(L′)(PiPr3)2] (11, 12), treatment of 6 with LiC5H5 gave the half-sandwich-type complex [(η5-C5H5)IrH{(E)-C(CO2Me)CH(CO2Me)}(PiPr3)] (13) by, the loss of one PiPr3. The reaction of 3 with CO under pressure resulted in the formation of [IrH(Cl){(Z)-C(CO2Me)CH(CO2Me)}(CO)(PiPr3)2] (14) in which, in contrast to the stereoisomer 12, the two CO2Me substituents are trans disposed.  相似文献   

8.
The reaction of quadruply bonded dimolybdenum complex, [Mo2(μ-OAc)4] (1), with lithiated amidinato, Li[(NiPr)2CR] (R = tBu; 2a, Me; 2b, Ph; 2c), was investigated. The reaction of 1 with 2a afforded the dark-red solid, whereas the product was so highly unstable that the product was not able to be characterized. In the case of acetamidinato 2b, lantern-type mixed-ligand quadruply bonded dimolybdenum complex, [Mo2(μ-OAc){μ-(NiPr)2CMe}3] (3), was obtained as a yellow solid. In the reaction with benzamidinato 2c, symmetrical lantern-type dimolybdenum complex, [Mo2(μ-OAc)2 {μ-(NiPr)2CPh}2] (4), was isolated as a yellow solid. In the latter reaction, intermediary red compound (5), which is considered to be stereoisomer of 4 possessing non-lantern-type skeleton, was formed. However, isolation of 5 as a single component was not successful due to isomerization to 4. Complex 5 readily reacted with dry oxygen to give dimolybdenum(V) complex, [{Mo(η-(NiPr)2CPh)oxo}2 (μ-OAc)2(μ-oxo)] (6), as a red solid. These complexes were characterized spectroscopically as well as, in some cases, by X-ray analyses.  相似文献   

9.
Reaction of NiI2 with the PCP-ligand {1-Et-2,6-(CH2PiPr2)2-C6H3} (1) results in selective activation of the strong sp2-sp3 aryl-ethyl bond to afford the aryl-nickel complex [Ni{2,6-(CH2PiPr2)2-C6H3}I] (2), whereas reaction of NiI2 with {1,3,5-(CH3)3-2,6-(CH2PiPr2)2-C6H} (4) leads to the formation of the benzylic complex [Ni{1-CH2-2,6-(CH2PiPr2)2-3,5-(CH3)2-C6H}I] (5) by selective C-H bond activation. Thermolysis of 5 results in formation of [Ni{2,6-(CH2PiPr2)2-3,5-(CH3)2-C6H}I] (6) by activation of the sp2-sp3 C-C bond. The identity of the new 16-electron complexes 2 and 6 was confirmed by reaction of NiI2 with {1,3-(CH2PiPr2)2-C6H4} (3) and {1,3-(CH3)2-4,6-(CH2PiPr2)2-C6H2} (7), respectively, lacking the aryl-alkyl groups between the “phosphines arms” (alkyl=ethyl, methyl). Complexes 2 and 5 have been fully characterized by X-ray analysis. Nickel-based activation of an unstrained C-O single bond was observed as well. Reaction of the aryl-methoxy bisphosphine {1-OMe-2,6-(CH2PiPr2)2-C6H3} (8) with NiI2 results in the formation of the phenoxy complex [Ni{1-O-2,6-(CH2PiPr2)2-C6H3}I] (9) by selective sp3-sp3 C-O bond activation.  相似文献   

10.
Dioxo-MoVI complexes of general formula TpMoO2(p-SC6H4Dn) (6a-6c) (where Tp = hydrotris(3,5-dimethyl-pyrazol-1-yl)borate and Dn = dendritic unit) have been synthesized and characterized by spectroscopy and mass spectrometry. 1H NMR spectra of the metal complexes indicate that the Cs local symmetry about the metal core does not change by the incorporation of dendritic functionality at the thiophenolato ring. Electrochemical data show a ∼20 mV change in the redox potential in the complexes with dendritic ligands suggesting a very small perturbation in the redox orbital, which is also supported by small changes in the electronic spectra. The peak-to peak separation (ΔEp) increases from 125 mV in 6(a) to 240 mV in 6(c), suggesting sluggish electron transfer in molecules with larger dendritic ligands.  相似文献   

11.
The reaction of Cu(II) or Cd(II) salts with 2,4,6-iPr3C6H2PO3H2, 2,4,6-iPr3C6H2CH2PO3H2 or 2,6-iPr2C6H3OPO3H2 in the presence of strong chelating nitrogen ligands such as 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 2-pyridylpyrazole (pypz) or 3,5-dimethyl pyrazole (dmpz) as the ancillary ligands afforded dinuclear copper or cadmium complexes [Cu2(2,4,6-iPr3C6H2PO3H)4(bpy)2] (4), [Cu2(2,6-iPr2C6H3OPO3H)2(bpy)2(OAc)2(CH3OH)2]·(CH3OH) (5), [Cd2(2,6-iPr2C6H3OPO3H)4 (bpy)2(CH3OH)2]·2(CH3OH) (6), [Cd2(2,6-iPr2C6H3OPO3H)4(phen)2] (7), [Cu2(2,6-iPr2C6H3OPO3H)2(PyPz)2(CH3OH)2] (8) and [Cu2(2,4,6-iPr3C6H2CH2PO3H)2(DMPz)2Cl2]·(CH3OH) (9) The molecular structures of 4-7 are grossly similar. The common structural features in these complexes are that the two metal centers are bridged by two bidentate [RPO2(OH)] ligands generating a central eight-membered ring. Each of the metal centers also contains a chelating nitrogen ligand and a monodentate phosphonate or a phosphate ligand. In 5 and 6 other terminal ancillary ligands are also present. In compound 8, each of the two copper centers contains a monodentate [RPO2(OH)] ligand along with a molecule of methanol. The two coppers are bridged by two monoanionic pyridylpyrazole ligands. The molecular structure of 9 is similar to that of 4-7. However, in 9 each of the two copper centers contain only terminal monodentate ligands in the form of two chlorides and a pyrazole. Magnetic studies on all of these copper complexes reveal an anti-ferromagnetic behavior at low temperatures. In addition, these complexes were found to be artificial nucleases and can convert supercoiled pBR322 DNA form I into nick form II in 1 min in the presence of an external oxidant through a hydrolytic and/or an oxidative pathway.  相似文献   

12.
Some cobalt carboxylate (both mononuclear as well as binuclear) complexes have been prepared by using hindered hydrotris(3,5-diisopropyl-1-pyrazolyl)borate (TpiPr2) as supporting ligand. The reaction of [TpiPr2Co(NO3)] (2) with sodium benzoate resulted in the formation of acetonitrile coordinated complex [TpiPr2Co(OBz)(CH3CN)] (3) whereas the reaction of 2 with sodium fluorobenzoate gave coordinately unsaturated five coordinate complex of the type [TpiPr2Co(F-OBz)] (4). The oxidation of compound 4 in the presence of 3,5-diisopropylpyrazole resulted in the formation of a unique compound (5) where only one methine carbon of isopropyl group on pyrazole ring of hydrotris(3,5-diisopropyl-1-pyrazolyl)borate oxidized and coordinated with cobalt center. In compound 5, the binding behavior of fluorobenzoate also changes from bidentate to monodentate and the nonbonded oxygen atom formed intramolecular hydrogen bond with the hydrogen atom of the NH fragment of the coordinated . X-ray crystallography and IR studies confirmed the existence of hydrogen bonding in complex 5. The pyrazolato bridged binuclear cobalt(II) complex (6) was prepared by the reaction of hydrated cobalt(II) nitrate, 3,5-diisopropylpyrazole and sodium nitrobenzoate where, each cobalt is four coordinate. The X-ray structure of 6 showed that the NH fragment of terminally coordinated formed intramolecular hydrogen bonding with nonbonded oxygen atom of monodentately coordinated nitrobenzoate.  相似文献   

13.
Complexes TptolRh(C2H4)2 (1a) and TptolRh(CH2C(Me)C(Me)CH2) (1b) have been prepared by reaction of KTptol with the appropriate [RhCl(olefin)2]2 dimer (Tptol means hydrotris(3-p-tolylpyrazol-1-yl)borate). The two complexes show a dynamic behaviour that involves exchange between κ2 and κ3 coordination modes of the Tptol ligand. The iridium analogue, TptolIr(CH2C(Me)CHCH2) (2) has also been synthesized, and has been converted into the Ir(III) dinitrogen complex [(κ4-N,N’,N’’,C-Tptol)Ir(Ph)(N2) (3) by irradiation with UV light under a dinitrogen atmosphere. Compound 3 constitutes a rare example of Ir(III)-N2 complex structurally characterized by X-ray crystallography. Its N2 ligand can be easily substituted by acetonitrile or ethylene upon heating and denticity changes in the Tptol ligand, from κ4-N,N’,N’’,C (monometallated Tptol, from now on represented as Tptol′) to κ5-N,N′,N″,C,C″ (dimetallated Tptol ligand, represented as Tptol) have been observed. When complex 3 is heated in the presence of acetylene, dimerization of the alkyne takes place to yield the enyne complex [(κ5-N,N′,N′′,C,C′-Tptol)Ir(CH2CHCCH), 7¸ in which the unsaturated organic moiety is bonded to iridium through the carbon-carbon double bond.  相似文献   

14.
A new type of multidentate ligand with both acetylacetonate and bis(2-pyridyl) units on the 1,3-dithiole moiety, 3-[2-(dipyridin-2-yl-methylene)-5-methylsulfanyl-[1,3]dithiol-4-ylsulfanyl]-pentane-2, 4-dione (L), has been prepared. Through reactions of the ligand with Re(CO)5X (X = Cl, Br), new rhenium(I) tricarbonyl complexes ClRe(CO)3(L) (2) and BrRe(CO)3(L) (3), have been obtained. With the use of 2 or 3 as the precursors, the further reactions with (TpPh2)Co(OAc)(HpzPh2) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate); HpzPh2 = 3,5-diphenyl-pyrazole) or M(OAc)2(M = Mn, Zn), afford four new heteronuclear complexes: ClRe(CO)3(L)Co(TpPh2) (4), BrRe(CO)3(L)Co(TpPh2) (5), [ClRe(CO)3(L)]2Mn(CH3OH)2 (6) and [ClRe(CO)3(L)]2Zn(CH3OH)2 (7), respectively. Crystal structures of complexes 2 and 4-7 have been determined by X-ray diffraction. Their absorption spectra, photoluminescence and magnetic properties have been studied.  相似文献   

15.
Polynuclear homoleptic pyrazolate-bridged group 11 metal(I) complexes with three different alkyl substituted pyrazolate anions, 3,5-diisopropylpyrazolate (3,5-iPr2pz = L1), 3-tert-butyl-5-isopropylpyrazolate (3-tBu-5-iPrpz = L3), and 3,5-di-tert-butylpyrazolate (3,5-tBu2pz = L4), i.e. [Cu(μ-3,5-iPr2pz)]3 (CuL1), [Ag(μ-3,5-iPr2pz)]3 (AgL1), [Au(μ-3,5-iPr2pz)]3 (AuL1), [Cu(μ-3-tBu-5-iPrpz)]4 (CuL3), [Ag(μ-3-tBu-5-iPrpz)]3 (AgL3), [Au(μ-3-tBu-5-iPrpz)]4 (AuL3), [Cu(μ-3,5-tBu2pz)]4 (CuL4), [Ag(μ-3,5-tBu2pz)]4 (AgL4), and [Cu(μ-3,5-tBu2pz)]4 (AuL4), were systematically synthesized in order to investigate the influence of pyrazole bulkiness on their structures and physicochemical properties. The structural characterization indicates that the geometries are greatly influenced by the steric hindrance exerted by the substituent groups of the pyrazolyl rings and the differences of the central metal (I) ionic radius (Cu+ < Au+ < Ag+). These complexes were also characterized by spectroscopic techniques, namely, UV-Vis, IR/far-IR, Raman, and luminescence spectroscopy.  相似文献   

16.
Addition of KTpPh2 to a solution of NiX2 (X = Cl, Br, NO3, OAc and acac) or NiBr(NO)(PPh3)2 in THF yields the structurally characterized series [NiCl(HpzPh2)TpPh2] (1) and [NiXTpPh2] (X = Br 2, NO 3, NO34, OAc 5 and acac 6) including the first example of a tris(pyrazolyl)borate nickel nitrosyl complex. IR spectroscopy confirms that all the TpPh2 ligands are κ3 coordinated and that the NO ligand in 3 is linearly bound. Electronic spectra are consistent with four- or five-coordinate species in solution. NMR spectroscopic studies indicate that the complexes are paramagnetic, with the exception of 3. This is confirmed by magnetic susceptibility studies, which suggest that complexes 1, 2 and 4-6 are paramagnetic with two unpaired electrons. X-ray crystallographic studies of 5 reveal a distorted trigonal bipyramidal nickel centre with a symmetrically coordinated acetate ligand.  相似文献   

17.
The reactions of the Fe(II) and Ru(II) halogenide complexes [Fe(PPh3)2Br2], [Fe(NCCH3)2Br2], [Ru(PPh3)3Cl2], and [Ru(dmso)4Cl2] with GaCp and AlCp, respectively, are investigated. The reactions of [FeBr2L2] with ECp exclusively proceed via Cp transfer, leading to [FeCp(GaCp)(GaBr2)(PPh3)] (1) (L = PPh3, E = Ga), [FeCp(GaCp)2 (GaBr2)] (2) (L = NCCH3, E = Ga) and [FeCp(μ3-H)(κ2-(C6H4)PPh2)(AlCp)(AlBr2)] (3) (L = PPh3, E = Al), the latter of which is formed via orthometallation of one PPh3 ligand. The reaction of [Ru(dmso)4Cl2] leads to the homoleptic complex [Ru(GaCp)6Cl2] (4) in high yields, while [Ru(PPh3)3Cl2] gives 4 in rather low yields. The reason for this difference in reactivity is investigated and it is shown that Cp transfer and orthometallation are the limiting side reactions of the reaction of [Ru(PPh3)3Cl2] with GaCp. All compounds were characterized by NMR spectroscopy, and single crystal X-ray diffraction studies were performed for 1, 3, and 4.  相似文献   

18.
The labile iridium(I) precursor trans-[IrCl(C8H14)(PiPr3)2] (2), prepared in situ from [IrCl(C8H14)2]2 (1) and PiPr3, reacted with equimolar amounts of 1,4-C6H4(CCSiMe3)2 (3) at 60 °C to give the mononuclear vinylidene complex trans-[IrCl(CC(SiMe3)C6H4CCSiMe3)(PiPr3)2] (4). From 2 and 3 in the molar ratio of 2:1, the dinuclear compound trans,trans-[(PiPr3)2ClIr(CC(SiMe3)C6H4C(SiMe3)C)IrCl(PiPr3)2] (5) was obtained. Reaction of 4 with [RhCl(PiPr3)2]2 (6) at room temperature afforded the heterodinuclear alkyne(vinylidene) complex trans,trans-[(PiPr3)2ClIr(CC(SiMe3)C6H4CCSiMe3)RhCl(PiPr3)2] (7), which on heating at 45 °C was converted to the bis(vinylidene) isomer trans,trans-[(PiPr3)2ClIr(CC(SiMe3)C6H4C(SiMe3)C)RhCl(PiPr3)2] (8).  相似文献   

19.
The [RhCl3(N-N)(DMSO)] complexes, the N-N being 2,2′-bipyridine (1), 1,10-phenanthroline (2), 4,7-diphenyl-1,10-phenanthroline (3), 4,4′-dimethyl-2,2′-bipyridine (4) and 1,10-phenanthroline-5,6-dione (5), have been synthesized and characterized with spectroscopic methods. The compounds 2-5 adopt mer- and complex 1fac-structure. The molecular and electronic structure studies of mer- and fac-complexes with bpy and phen ligands at the DFT B3LYP level with 3-21G∗∗ basis set showed that mer-isomers are more stable. The cytostatic activity of the [RhCl3(N-N)(DMSO)] complexes against Caco-2 and A549 tumor cells have been studied. Their antibacterial activity have also been investigated. It has been found that the very promising biological activity show complexes 2, 3 and 4.  相似文献   

20.
The synthesis and characterization of (TptBu,Me)Yb(BH4)(THF)n (n = 0, 3; n = 1, 4) complexes are reported. The compounds represent rare examples of lanthanide (II) tetrahydroborate complexes. The X-ray crystal structure of complex 4 has been determined and it shows a monomeric, formally seven coordinate ytterbium center, bearing one κ3 bonded TptBu,Me ligand, a tetrahydroborate ligand and a coordinated THF molecule. The tetrahydroborate ligand binds in a κ3 fashion, via three bridging hydrogen atoms. IR spectroscopy data are consistent with the solid-state structure and the corresponding BD4 analog of 4 shows the expected IR isotope shifts. The 1H NMR spectra of 3 and 4 shows one set of resonances each for the BH4 and the pyrazolylborate ligands indicating dynamic solution behavior. For complex 3, although X-ray quality crystals could not be obtained, the IR and NMR data are consistent with its formulation as the solvent-free analog of complex 4 with κ3-bonded BH4 ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号