首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bis(alkoxy)allenylidene complexes, [(CO)5MCCC(OR′)OR], as well as mono(alkoxy)allenylidene complexes, [(CO)5MCCC(OR′)Ph], of chromium and tungsten are accessible from propynones [HCCC(O)Ph] or propynoic acid esters [HCCC(O)OR; R = Et, (−)-menthyl, endo-bornyl] by the following reaction sequence: (a) deprotonation of the alkynes, (b) reaction with [(CO)5M-THF] (M = Cr, W), and (c) alkylation of the resulting alkynyl metallate, [(CO)5MCCC(O)R], with Meerwein salts. Vinylidene complexes, [(CO)5MCC(R′)C(O)OR], are formed as a by-product by Cβ-alkylation of the alkynyl metallate. Dimethylamine displaces one alkoxy substituent of the bis(alkoxy)allenylidene complexes to give dimethylamino(alkoxy)allenylidene complexes, [(CO)5MCCC(OR)NMe2]. The analogous reaction of dimethylamine with a mono(alkoxy)-substituted allenylidene complex affords the aminoallenylidene complex [(CO)5CrCCC(NMe2)Ph]. When the amine is used in large excess, the α,β-unsaturated aminocarbene complex [(CO)5CrC(NMe2)C(H)C(NMe2)Ph] is additionally formed by addition of the amine across the CαCβ-bond of the allenylidene ligand. The reaction of [(CO)5MCCC(OEt)2] with dimethyl ethylenediamine offers access to bis(amino)allenylidene complexes, in which Cγ is part of a five-membered heterocycle. Photolysis of bis(alkoxy)allenylidene complexes in the presence of triphenylphosphine yields tetracarbonyl- and tricarbonyl{bis(phosphine)}allenylidene complexes. Diethylaminopropyne inserts into the CβCγ bond of [(CO)5MCCC(OEt)OMethyl] to give alkenylallenylidene complexes. Subsequent acid-catalyzed intramolecular cyclization affords a pyranylidene complex.  相似文献   

2.
The reactions of [κ2(C1,C4)-CRCRCRCR](PPh3)2Ir(Cl) (9, R = CO2Me) with propargyl alcohol derivatives (2-propyn-1-ol, 2-methyl-3-butyn-2-ol, 1-ethynylcyclopentanol, and 1-ethynylcyclooctanol), in the presence of water leads to the formation of iridium(III)-vinyl complexes bearing the general structure [κ2(C1,C4)-CRCRCRCR](PPh3)2Ir(CO)(κ1-vinyl) where vinyl = -CHCH2, -(E)-CHCHMe, -CHC(CH2)4, or -CHC(CH2)7. In these, the CO ligand was derived from the terminal carbon of the starting alkyne and the oxygen atom from water. Under anhydrous conditions, 9 undergoes reaction with 2-propyn-1-ol to give trimethyl 1,3-dihydro-3-oxo-4,5,6-isobenzofurantricarboxylate, the result of a cycloaromatization/transesterification involving the buta-1,3-dien-1,4-diyl ligand in 9 and 2-propyn-1-ol.  相似文献   

3.
The Schiff base, 2-chlorophenylsalicylaldimine (HL1), is formed readily from salicylaldehyde and 2-chloroaniline. After deprotonation, this ligand is found to react as a bidentate mixed-donor chelate with the complexes [RuRCl(CO)(BTD)(PPh3)2] (R = H, CHCHC6H5, CHCHC6H4Me-4, CHCHtBu, CCCPhCHPh; BTD = 2,1,3-benzothiadiazole) to form the compounds [RuR(L1)(CO)(PPh3)2] through displacement of the chloride and BTD ligands. An analogous reaction occurs with the osmium complex [OsHCl(CO)(BTD)(PPh3)2] to provide [OsH(L1)(CO)(PPh3)2]. The compound [Ru(CHCHC6H4Me-4)(L2)(CO)(PPh3)2] is formed through reaction of salicylaldehyde (HL2) with [Ru(CHCHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] in the presence of base. Two further ligands were investigated to extend the study to encompass 5- and 4-membered chelates; 8-hydroxyquinoline (HL3) and 2-hydroxy-4-methylquinoline (HL4) react with [Ru(CHCHPh)Cl(CO)(BTD)(PPh3)2] and [Ru(CHCHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] in the presence of base to yield the complexes [Ru(CHCHPh)(L3)(CO)(PPh3)2] and [Ru(CHCHC6H4Me-4)(L4)(CO)(PPh3)2], respectively. The crystal structure of [Ru(CHCHC6H4Me-4)(L1)(CO)(PPh3)2] is reported.  相似文献   

4.
The tetragonal-pyramidal VO2+ complexes [VO{(RSC-S)N-NX}2] (1-6) were synthesised by the reactions of VO(OCHMe2)3 with the dithiocarbazate ligands RSC(S)-NH-NX, where X = cyclo-pentyl, cyclo-hexyl or 4-Me2N-C6H4-CH, and R = CH3 or CH2C6H5. The compounds were characterised by elemental analysis, IR- and mass spectrometries, and in cases of compounds 1, 3, 4 and 5, by X-ray diffraction. The chiral compound 4 (X = cyclo-hexyl, R = CH2C6H5) crystallises in the C configuration. In compound 5, the VO moiety is disordered (83.3:16.7%) with respect to the plane spanned by the four equatorial ligand functions.  相似文献   

5.
The aminoallenylidene(pentacarbonyl)chromium complexes [(CO)5CrCCC(NR1R2)Ph] (1a-c) react with dimethylamine by addition of the amine to the C1C2 bond of the allenylidene ligand to give alkenyl(amino)carbene complexes [(CO)5CrC(NMe2)CHC(NR1R2)Ph] (2a-c) (R1 = Me: R2 = Me (a), Ph (b); R1 = Et: R2 = Ph (c)). In contrast, addition of a large excess (usually 20 equivalents) of ammonia or primary amines, H2NR, to solutions of [(CO)5CrCCC(NMe2)Ph] (1a) affords the aminoallenylidene complexes [(CO)5CrCCC(NHR)Ph] (1d-w) in which the dimethylamino group is replaced by NH2 or NHR, respectively. In addition to simple amines such as methylamine, butylamine, and aniline, amines carrying a functional group (allylamine, propargylamine) and amino acid esters as well as amino terpenes and amino sugars can be used to displace the NMe2 substituent. Usually the Z isomer (with respect to the partial C3-N double bond) is formed exclusively. Products derived from addition of H2NR to the C1C2 bond of 1a are not observed. The amino group in 1d-w is rapidly deprotonated by excess of amine to form iminium alkynyl chromates [1d-w], thus protecting 1d-w from addition of free amine to either C3 or across the C1C2 bond. The iminium alkynyl chromates are readily reprotonated by acids or by chromatography on wet SiO2 to reform 1d-w.  相似文献   

6.
A series of triphenylphosphine coordinated silver α,β-unsaturated carboxylates of type [Ag(O2CR)(PPh3)n: n = 1, R = CH3CHCH (2a), (CH3)2CCH (2b), CH3CH2CHCH (2c), CH3CH2CH2CHCH (2d), PhCHCH (2e), CH2CH (2f); n = 2, CH3CHCH (3a), (CH3)2CCH (3b), CH3CH2CHCH (3c), CH3CH2CH2CHCH (3d)] were prepared by reaction of relative silver carboxylates (1a-1f) with triphenylphosphine in chloroform. These complexes were obtained in high yields and characterized by elemental analysis, 1H NMR, 13C NMR, 31P NMR and IR spectroscopy. Thermal stability of the complexes has been determined by TG analysis. The molecular structure of [Ag((O2CCHC(CH3)2))(PPh3)2] (3b) shows that the senecioato ligand is chelated with silver atom and generate, a distorted tetrahedron.  相似文献   

7.
Bis(ferrocenyl)-substituted allenylidene complexes, [(CO)5MCCCFc2] (1a-c, Fc = (C5H4)Fe(C5H5), M = Cr (a), Mo (b), W (c)) were obtained by sequential reaction of Fc2CO with Me3Si-CCH, KF/MeOH, n-BuLi, and [(CO)5M(THF)]. For the synthesis of related mono(ferrocenyl)allenylidene chromium complexes, [(CO)5CrCCC(Fc)R] (R = Ph, NMe2), three different routes were developed: (a) reaction of the deprotonated propargylic alcohol HCCC(Fc)(Ph)OH with [(CO)5Cr(THF)] followed by desoxygenation with Cl2CO, (b) Lewis acid induced alcohol elimination from alkenyl(alkoxy)carbene complexes, [(CO)5CrC(OR)CHC(NMe2)Fc], and (c) replacement of OMe in [(CO)5CrCCC(OMe)NMe2] by Fc. Complex 1a was also formed when the mono(ferrocenyl)allenylidene complex [(CO)5CrCCC(Fc)NMe2] was treated first with Li[Fc] and the resulting adduct then with SiO2. The replacement route (c) was also applied to the synthesis of an allenylidene complex (7a) with a CC spacer in between the ferrocenyl unit and Cγ of the allenylidene ligand, [(CO)5CrCCC(NMe2)-CCFc]. The related complex containing a CHCH spacer (9a) was prepared by condensation of [(CO)5CrCCC(Me)NMe2] with formylferrocene in the presence of NEt3. The bis(ferrocenyl)-substituted allenylidene complexes 1a-c added HNMe2 across the Cα-Cβ bond to give alkenyl(dimethylamino)carbene complexes and reacted with diethylaminopropyne by regioselective insertion of the CC bond into the Cβ-Cγ bond to afford alkenyl(diethylamino)allenylidene complexes, [(CO)5MCCC(NEt2)CMeCFc2]. The structures of 5a, 7a, and 9a were established by X-ray diffraction studies.  相似文献   

8.
Rhodium(III) and iridium(III) octahedral complexes of general formula [MCl3{R2PCH2C(But)NNC(But)CH2PR2}] (M = Rh, Ir; R = Ph, c-C6H11, Pri, But; not all the combinations) were prepared either from the corresponding diphosphinoazines and RhCl3 · 3H2O or by the oxidation of previously reported bridging complexes [{MCl(1,2-η:5,6-η-CHCHCH2CH2CHCHCH2CH2)}2{μ-R2PCH2C(But)NNC(But)CH2PR2}] with chlorine-containing solvents. Depending on the steric properties of the ligands, complexes with facial or meridional configuration were obtained. Crystal and molecular structures of three facial and two meridional complexes were determined by X-ray diffraction. Hemilability of ligand in the complex fac-[RhCl3{(C6H11)2PCH2C(But)NNC(But)CH2P(C6H11)2}] consisting in reversible decoordination of the phosphine donor group in the six-membered ring was observed as the first step of isomerization between fac and mer isomers.  相似文献   

9.
Transmetallation reactions of ortho-mercurated iminophosphoranes (2-ClHgC6H4)Ph2PNR with [AuCl4] gives new cycloaurated iminophosphorane complexes of gold(III) (2-Cl2AuC6H4)Ph2PNR [R = (R,S)- or (S)-CHMePh, p-C6H4F, tBu], characterised by NMR and IR spectroscopies, ESI mass spectrometry and an X-ray structure determination on the chiral derivative R = (S)-CHMePh. The chloride ligands of these complexes can be readily replaced by the chelating ligands thiosalicylate and catecholate; the resulting derivatives show markedly higher anti-tumour activity versus P388 murine leukaemia cells compared to the parent chloride complexes. Reaction of (2-Cl2AuC6H4)Ph2PNPh with PPh3 results in displacement of a chloride ligand giving the cationic complex [(2-Cl(PPh3)AuC6H4)Ph2PNPh]+, indicating that the PN donor is strongly bonded to the gold centre.  相似文献   

10.
Molecular structures of dimethylbis(trimethylsilylketyl)silane (Me2Si[C(SiMe3)CO]2), dimethylbis(trimethylgermylketyl)silane (Me2Si[C(GeMe3)CO]2), and dimethylbis(trimethylstannylketyl)germane (Me2Ge[C(SnMe3)CO]2) have been studied in the gas phase by electron diffraction accompanied by high level ab initio and DFT calculations. Extensive theoretical conformational analyses of the molecules in the vapour predicted a possibility of existence of two types of conformers with small energy differences. The first type had gauche-gauche arrangements of the ketenyl groups in the central C(CO)XC(CO) fragments directed away from each other. The second type had nearly syn-gauche arrangements of the ketenyl groups. In addition, the energy differences were found to depend on the level of computations used. The experimental analysis, in turn, was unable to distinguish between different conformers due to the large number of similar overlapping distances. The experimental data were fitted by an averaged single-conformer model, which nevertheless allowed reliable determination of bonds and bonded angles in the molecules. Main experimental (rh1) structural parameters for Me2Si[C(SiMe3)CO]2, Me2Si[C(GeMe3)CO]2, and Me2Ge[C(SnMe3)CO]2, i.e. Me2X[C(YMe3)CO]2 (X,Y = Si, Ge, Sn), are (X-C)mean 187.7(1) pm, 194.6(2) pm, 216.1(3) pm; (Y-C)mean, 187.7(1) pm, 188.8(8) pm, 194.6(4) pm; (CC)mean, 135.3(5) pm, 131.6(5) pm, 131.5(13) pm; (CO)mean, 117.0(7) pm, 117.4(7) pm, 119.0(11) pm; (C-H)mean, 110.6(7) pm, 110.0(4) pm, 109.1(13) pm; (X(Y)-CC)mean, 114.4(2)°, 115.6(1)°, 115.6(2)°; (C-X(Y)-CMe)mean, 108.3(3)°, 108.4(3)°, 108.9(13)°; C(2)-C(1)-Y(4)-C(10), −19(6)°, 5(4)°, −9(10)°; C(7)-C(6)-Y(9)-C(38),−22(7)°, −32(3)°, −9(10)°; C(2)-C(1)-X(5)-C(6), 128(4)°, 142(1)°, 108(9)°; C(7)-C(6)-X(5)-C(1), 92(6)°, 115(2)°, 108(9)°, respectively.  相似文献   

11.
《Inorganica chimica acta》2004,357(14):4165-4171
Cationic palladium(II) complexes [PdCl{PR2CH2C(But)NNC(But)CH2PR2}]Cl, where R = isopropyl, cyclohexyl or tert-butyl, were synthesized by the reactions of the corresponding diphosphinoazines with bis(acetonitrile)palladium(II) dichloride. When bis(benzonitrile)palladium(II) dichloride was used instead, in the molar ratio of 2:1 to the diphosphinoazine, a new complex was isolated with the isopropyl ligand showing a previously unknown (E,E) tetradentate coordination mode. Crystal and molecular structure was determined by X-ray diffraction. The solid complex was a racemate of two axially chiral enantiomers and the chirality was preserved in solution. Reactions of the cationic complexes with triethylamine gave complexes [PdCl{PR2CHC(But)NNC(But)CH2PR2}], containing deprotonated diphosphinoazines in ene-hydrazone unsymmetrical pincer-like configuration. The complexes represent several of the still rare examples of Pd(II) amido bis(phosphine) complexes with a chlorine atom covalently bonded trans to the amide nitrogen.  相似文献   

12.
[AuTl(C6F5)2(en)] (en = ethylenediamine) reacts with cyclic ketones as cyclopentanone (Cy5O), cyclohexanone (Cy6O) or cycloheptanone (Cy7O) in 1:1 or 1:2 molar ratio leading to products of stoichiometry [AuTl(C6F5)2{CyxN(CH2)2NH2}] (x = 5 1, 6 2 or 7 3), or [AuTl(C6F5)2{CyxN(CH2)2NCyx}] (x = 5 4, 6 5 or 7 6). Addition of ethylenediamine to the ketimine complexes in chloroform regenerates [AuTl(C6F5)2(en)], the starting material, and the free ketimines, as their NMR and mass spectra evidenced. The ketimine complexes display luminescence in solid state at room temperature and at 77 K at higher wavelengths than the diamine starting product (505 nm). The excited states responsible for this behaviour are assigned to orbitals due to the gold-thallium interactions.  相似文献   

13.
The reactions of the fluorovinyl-substituted phosphines PPh2(CFCF2) and PPh2(CClCF2), with K2PtX4 (X = Br, I) have been investigated. The resulting complexes have been characterized by a combination of 19F and 31P{1H} NMR, IR and Raman spectroscopy. The reactions of these phosphines with K2PtBr4 yield the monomeric complexes cis-[PtBr2{PPh2(CFCF2)}2] (1) and trans-[PtBr2{PPh2(CClCF2)}2] (2), respectively, whilst the reactions with K2PtI4 yield both the monomeric species trans-[PtI2{PPh2(CXCF2)}2], {X = F (3), Cl (4)}, and the dimeric species [PtI(μ-I){PPh2(CXCF2)}]2, {X = F (5), Cl (6)}. The dimers 5 and 6 represent the first crystallographically characterised platinum(II) iodide-bridged phosphine complexes, and both adopt the symmetric-trans structure.  相似文献   

14.
The reaction of the chelating P,N ligand RNC(But)CH(R)PPh2 (R = SiMe3) (1) with CuCl and CuCl2 (probably by way of reduction to Cu(I) by the phosphine ligand) or Cu(NCCH3)4ClO4 yielded the dimeric 1:1 complex [Cu{PPh2CH(R)C(But)NR}Cl]2 (2) or the monomeric 2:1 complex [Cu{PPh2CH(R)C(But)NR}2]ClO4 (3), respectively. The presence of trace amounts of water during the reaction resulted in the successive cleavage of the two trimethylsilyl groups of the ligand and the formation of the monomeric chelate complexes [Cu{PPh2CH(R)C(But)NH}2]ClO4 (4) and [Cu{PPh2CH2C(But)NH}2]ClO4 (5). Oxidation of 5 by atmospheric oxygen led to small quantities of the blue Cu(II) complex [Cu{(O)PPh2CH2C(But)NH}2](ClO4)2 (6). The dimeric gold complexes [Au{PPh2CH2C(But)NH}]2X2 (X = BF4, ClO4) (7) were similarly obtained from the previously described Au{PPh2CH(R)C(But)NR}Cl by replacing the covalently bound chlorine with the weakly coordinating anions in the presence of small quantities of water. The solution and solid state structures (except 5) of all complexes were determined by NMR spectroscopy and X-ray crystallography.  相似文献   

15.
The addition reactions of zinc(II) chloride to N-substituted pyridine-2-carbaldimines [Py-CHNR, R = Me (1a), Ph (1b), Bz (1c), allyl (1d)] lead to different complexes dependent on the N-bound substituent R. The 1:1 complexes show molecular structures of the type [(Py-CHNR)ZnCl2] for R = methyl (2a), phenyl (2b), and allyl (2d) with a distorted tetrahedral environment for the zinc atom. The zinc complex with the N-methylated pyridine-2-carbaldimine also forms a dimer of the type [(Py-CHNR)ZnCl2]2 (2a)2 with a square pyramidal coordination sphere of zinc. A 3:2 stoichiometry is observed for R = benzyl and an ion pair of the type [Zn(Py-CHNR)3]2+ [ZnCl4]2− (2c) is found in the solid state.  相似文献   

16.
In this paper it is reported the synthesis of the phosphonium salts [Ph2P(CH2)n(Ph)2PCH2COOMe]Br (n = 1 (1), 2 (2)) and [Ph2P(CH2COOMe)(CH2)n(Ph)2PCH2COOMe]Br2 (n = 3 (3)) derived from the reactions of the diphosphines dppm, dppe and dppp with methyl bromoacetate. By reaction of the monophosphonium salt of dppm and dppe with the strong base Na[N(SiMe3)2] the corresponding carbonyl stabilized ylides Ph2P(CH2)n(Ph)2PCHCOOMe (n = 1 (4), 2 (5)) were obtained. The Ph2P(CH2)2(Ph)2PCHCOOMe (5) ylide was reacted with Pd(II) and Pt(II) substrates. From these reactions were isolated exclusively complexes in which the ylide was chelated to the metal through the free phosphine group and the ylidic carbon atom. A further reaction of the Ph2P(CH2)2(Ph)2PCHCOOMe (5) ylide with 1.5 equiv. of Na[N(SiMe3)2] gives the bifunctionalized ketenylidene Ph2P(CH2)2(Ph)2PCCO (6) system. This cumulenic ylide reacts with Pt(II) complexes to form a chelated derivative in which IR and NMR spectra suggest the breaking of the CC bond of the -CCO group.  相似文献   

17.
Using different organomercury substrates, two isomeric cycloaurated complexes derived from the stabilised iminophosphorane Ph3PNC(O)Ph were prepared. Reaction of Ph3PNC(O)Ph with PhCH2Mn(CO)5 gave the manganated precursor (CO)4Mn(2-C6H4C(O)NPPh3), metallated on the C(O)Ph substituent, which yielded the organomercury complex ClHg(2-C6H4C(O)NPPh3) by reaction with HgCl2 in methanol. Transmetallation of the mercurated derivative with Me4N[AuCl4] gave the cycloaurated iminophosphorane AuCl2(2-C6H4C(O)NPPh3) with an exo PPh3 substituent. The endo isomer AuCl2(2-C6H4Ph2PNC(O)Ph) [aurated on a PPh3 ring] was obtained by an independent reaction sequence, involving reaction of the diarylmercury precursor Hg(2-C6H4P(NC(O)Ph)Ph2)2 [prepared from the known compound Hg(2-C6H4PPh2)2 and PhC(O)N3] with Me4N[AuCl4]. Both of the isomeric iminophosphorane derivatives were structurally characterised, together with the precursors (2-HgClC6H4)C(O)NPPh3 and (CO)4Mn(2-C6H4C(O)NPPh3). The utility of 31P NMR spectroscopy in monitoring reaction chemistry in this system is described.  相似文献   

18.
The iridium 1,1,1-tris(diphenylphosphinomethyl)ethane (triphos) complexes [{κ2(C1,C4)-CRCRCRCR}{CH3C(CH2PPh2)3}Ir(NCMe)]BF4 (2-NCMe, R = CO2Me) and [{κ2(C1,C4)-CRCRCRCR}{CH3C(CH2PPh2)3}Ir(CO)]BF4 (2-CO, R = CO2Me) serve as models for proposed iridium-vinylidene intermediates of relevance to the [2 + 2 + 1] cyclotrimerization of alkynes. The solid-state structures of 2-NCMe, 2-CO, and [κ2(C1,C4)-CRCRCRCR]{CH3C(CH2PPh2)3}Ir(Cl) (2-Cl), were determined by X-ray crystallography.  相似文献   

19.
Reaction of the disilylcyclopentadiene 1,1-[SiMe2(CH2CHCH2)]2C5H4 with NbCl5 gave the new allylsilyl-substituted monocyclopentadienyl niobium complex [Nb{η5-C5H4SiMe2(CH2CHCH2)}Cl4]. This compound was reacted with LiNHtBu or NH2tBu to give the imido derivative [Nb{η5-C5H4SiMe2(CH2CHCH2)}(NtBu)Cl2], which was further alkylated to the imido alkyl complexes [Nb{η5-C5H4SiMe2(CH2CHCH2)}(NtBu)R2] (R = Me, CH2Ph) and [Nb{η5-C5H4SiMe2(CH2CHCH2)}(NtBu)Cl (CH2Ph)]. Reaction of the imido complexes with the corresponding lithium cyclopentadienides gave the dicyclopentadienyl-imido complexes [M(η5-C5R5){η5-C5H4SiMe2(CH2CHCH2)}(NtBu)Cl] (M = Nb, Ta; R = H, Me). Metallocene dichlorides [M(η5-C5R5){η5-C5H4SiMe2(CH2CHCH2)}Cl2] (M = Nb, Ta; R = H, Me) were easily prepared by reduction with Na/Hg and simultaneous transmetallation of [Ta(η5-C5R5)Cl4] with Li[C5H4SiMe2(CH2CHCH2)] and of [Nb{η5-C5H4SiMe2(CH2CHCH2)}Cl4] with Li(C5R5). All of the new compounds have been characterized by elemental analysis, and IR and NMR spectroscopy.  相似文献   

20.
A series of new five-coordinate acyl vinyl cobalt(III) complexes Co{η1-C(CCPh)CHPh}[C(O)CCO] L2(L = PMe3) (6-10) were prepared via formal insertion of diphenylbutadiyne into Co-H function of mer-octahedral hydrido-acyl(phenolato)-cobalt(III) complexes. The complexes are diamagnetic. One square pyramidal structure of complex 6 was confirmed by X-ray diffraction analysis. These complexes are stable in solid state. In solution, six-coordinate acyl vinyl carbonyl cobalt(III) complex 11 is approved through the reaction of complex 7 with CO and the structure of complex 11 was determined by X-ray method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号