首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A novel Schiff base, (S,Z)‐4‐(methylthio)‐2‐((3‐oxo‐2,3‐dihydro‐1H‐inden‐1‐ylidene)amino)butanoic acid (L) and four M(II) complexes (where M = Co, Cu, Ni and Zn) were synthesized and characterized. The DNA‐binding characteristics of the complexes were investigated using various spectroscopic methods and viscosity measurements. Analysis of the results suggests that all the complexes bind to calf thymus DNA via intercalation. Among the four, Cu(II) complex was found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365 nm. These complexes also exhibit good antioxidant activities against 2,2‐diphenyl‐1‐picrylhydrazyl radical. In vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents.  相似文献   

2.
The new chiral macrocyclic complexes [1,2-bis(1H-benzimidazol-2-yl)-1-(1,8-dihydro-1,3,5,8,10,12-hexaazacyclotetradecane)-2-hydroxyethanolate] copper(II) and -nickel(II) perchlorate, 3 and 4, respectively, were synthesized by the reaction of 1,2-bis(1H-benzimidazol-2-yl)ethane-1,2-diol (L) and (1,8-dihydro-1,3,5,8,10,12-hexaazacyclotetradecane)copper(II) and -nickel(II) diperchlorate complexes, 1 and 2, respectively. All complexes were characterized by various spectroscopic techniques. Molar-conductance measurements showed that all of the complexes are ionic in nature. In complexes 3 and 4, the metal center is encapsulated by the ligand L in a pentacoordinated environment. The optical-rotation values ([alpha](D)) of 3 and 4 at 25 degrees indicate that the complexes are chiral. Absorption- and fluorescence-spectral studies, cyclic voltammetry, and viscosity measurements have been carried out to assess the comparative binding of complexes 1 and 3 with calf thymus (CT)-DNA. Analysis of the results suggests that the new chiral complex 3 binds to CT-DNA through a partial intercalation mode that is different from the binding mode of parent achiral complex 1. The complexes 1 and 3 bind to CT-DNA with binding constants K(b) of 2.7 x 10(4) and 6.6 x 10(4) M(-1), respectively. Circular-dichroism (CD) studies have been further employed to ascertain the binding mode of complex 3, which is consistent with the other spectral studies.  相似文献   

3.
We report the synthesis of the Schiff base ligands, 4-[(4-bromo-phenylimino)-methyl]-benzene-1,2,3-triol (A1), 4-[(3,5-di-tert-butyl-4-hydroxy-phenylimino)-methyl]-benzene-1,2,3-triol (A2), 3-(p-tolylimino-methyl)-benzene-1,2-diol (A3), 3-[(4-bromo-phenylimino)-methyl]-benzene-1,2-diol (A4), and 4-[(3,5-di-tert-butyl-4-hydroxy-phenylimino)-methyl]-benzene-1,3-diol (A5), and their Cd(II) and Cu(II) metal complexes, stability constants and potentiometric studies. The structure of the ligands and their complexes was investigated using elemental analysis, FT-IR, UV-Vis, 1H and 13C NMR, mass spectra, magnetic susceptibility and conductance measurements. In the complexes, all the ligands behave as bidentate ligands, the oxygen in the ortho position and azomethine nitrogen atoms of the ligands coordinate to the metal ions. The keto-enol tautomeric forms of the Schiff base ligands A1-A5 have been investigated in polar and non-polar organic solvents. Antimicrobial activity of the ligands and metal complexes were tested using the disc diffusion method and the strains Bacillus megaterium and Candida tropicalis.Protonation constants of the triol and diol Schiff bases and stability constants of their Cu2+ and Cd2+ complexes were determined by potentiometric titration method in 50% DMSO-water media at 25.00 ± 0.02 °C under nitrogen atmosphere and ionic strength of 0.1 M sodium perchlorate. It has been observed that all the Schiff base ligands titrated here have two protonation constants. The variation of protonation constant of these compounds was interpreted on the basis of structural effects associated with the substituents. The divalent metal ions of Cu2+ and Cd2+ form stable 1:2 complexes with Schiff bases.The Schiff base complexes of cadmium inhibit the intense chemiluminescence reaction in dimethylsulfoxide (DMSO) solution between luminol and dioxygen in the presence of a strong base. This effect is significantly correlated with the stability constants KCdL of the complexes and the protonation constants KOH of the ligands; it also has a nonsignificant association with antibacterial activity.  相似文献   

4.
A new cytotoxic copper(II) complex with Schiff base ligand [CuII(5-Cl-pap)(OAc)(H2O)]·2H2O (1) (5-Cl-pap = N-2-pyridiylmethylidene-2-hydroxy-5-chloro-phenylamine), was synthesized and structurally characterized by X-ray diffraction. Single-crystal analysis revealed that the copper atom shows a 4 + 1 pyramidal coordination, a water oxygen appears in the apical position, and three of the basal positions are occupied by the NNO tridentate ligand and the fourth by an acetate oxygen. The interaction of Schiff base copper(II) complex 1 with DNA was investigated by UV-visible spectra, fluorescence spectra and agarose gel electrophoresis. The apparent binding constant (Kapp) value of 6.40 × 105 M− 1 for 1 with DNA suggests moderate intercalative binding mode. This copper(II) complex displayed efficient oxidative cleavage of supercoiled DNA, which might indicate that the underlying mechanism involve hydroxyl radical, singlet oxygen-like species, and hydrogen peroxide as reactive oxygen species. In addition, our present work showed the antitumor effect of 1 on cell cycle and apoptosis. Flow cytometric analysis revealed that HeLa cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that complex 1 can induce apoptosis of HeLa cells, whose process was mediated by intrinsic mitochondrial apoptotic pathway owing to the activation of caspase-9 and caspase-3.  相似文献   

5.
Previous studies on copper(II) complexes with oxindole-Schiff base ligands have shown their potential antitumor activity towards different cells, inducing apoptosis through a preferential attack to DNA and/or mitochondria. Herein, we better characterize the interactions between some of these copper(II) complexes and DNA. Investigations on its binding ability to DNA were carried out by fluorescence measurements in competitive experiments with ethidium bromide, using plasmidial or calf-thymus DNA. These results indicated an efficient binding process similar to that observed with copper(II)-phenanthroline species, [Cu(o-phen)2]2+, with binding constants in the range 3 to 9 × 102 M− 1. DNA cleavage experiments in the presence and absence of distamycin, a recognized binder of DNA, indicated that this binding probably occurs at major or minor groove, leading to double-strand DNA cleavage, and being modulated by the imine ligand. Corroborating these data, discrete changes in EPR spectra of the studied complexes were observed in the presence of DNA, while more remarkable changes were observed in the presence of nucleotides (AMP, GMP, CMP or UMP). Additional evidence for preferential coordination of the copper centers to the bases guanine or cytosine was obtained from titrations of these complexes with each nucleotide, monitored by absorption spectral changes. Therefore, the obtained data point out to their action as groove binders to DNA bases, rather than as intercalators or covalent cross-linkers. Further investigations by SDS PAGE using 32P-ATP or 32P-oligonucleotides attested that no hydrolysis of phosphate linkage in DNA or RNA occurs, in the presence of such complexes, confirming their main oxidative mechanism of action.  相似文献   

6.
Nickel is considered a weak carcinogen. Some researches have shown that bound proteins or synthetic ligands may increase the toxic effect of nickel ions. A systematic study of ligand effects on the interaction between nickel complexes and DNA is necessary. Here, we compared the interactions between DNA and six closely related Schiff base tetraazamacrocyclic oxamido nickel(II) complexes NiL(1-3a,1-3b). The structure of one of the six complexes, NiL(3b) has been characterized by single crystal X-ray analysis. All of the complexes can cleave plasmid DNA under physiological conditions in the presence of H(2)O(2). NiL(3b) shows the highest DNA cleavage activity. It can convert supercoiled DNA to nicked DNA then linear DNA in a sequential manner as the complex concentration or reaction time is increased. The cleavage reaction is a typical pseudo-first-order consecutive reaction with the rate constants of 3.27+/-0.14h(-1) (k(1)) and 0.0966+/-0.0042h(-1) (k(2)), respectively, when a complex concentration of 0.6mM is used. The cleavage mechanism between the complex and plasmid DNA is likely to involve hydroxyl radicals as reactive oxygen species. Circular dichronism (CD), fluorescence spectroscopy and gel electrophoresis indicate that the complexes bind to DNA by partial intercalative and groove binding modes, but these binding interactions are not the dominant factor in determining the DNA cleavage abilities of the complexes.  相似文献   

7.
[C20H17N3O2] and cobalt (II) complex [Co(L2)(MeOH)2].ClO4, (L2 = 4-((E)-1-((2-(((E)-pyridin-2-ylmethylene) amino) phenyl) imino) ethyl) benzene-1, 3-diol) novel Schiff base has been synthesiszed and chracterized by Fourier transform infrared, UV–vis, 1H-NMR spectroscopy, and elemental analysis techniques. The interaction of Co(II) complex with DNA and BSA was investigated by electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism, and thermal denaturation studies. Our experiments indicate that this complex could strongly bind to CT-DNA via minor groove mechanism. In addition, fluorescence spectrometry of BSA with the complex showed that the fluorescence quenching mechanism of BSA was of static type. The complex exhibited significant in vitro cytotoxicity against three human cancer cell lines (JURKAT, SKOV3, and U87). The molecular docking experiment effectively proved the binding of complex to DNA and BSA. Finally, antibacterial assay over gram-positive and gram-negative pathogenic bacterial strains was studied.  相似文献   

8.
A novel copper (II) complex of Schiff base prepared through condensation between 2-formyl-17-deoxyestrone and d-glucosamine was synthesized and characterized. Fluorescence spectroscopy was conducted to assess their binding ability with CT-DNA. The results showed that the copper (II) complex could bind to DNA with a weak intercalative mode. The interaction between the copper (II) complex and DNA was also investigated by gel electrophoresis. Interestingly, we found that the complex could cleave plasmid DNA (pUC19) to nicked and linear forms through an oxidative mechanism without the use of exogenous agents.  相似文献   

9.
Reversed-phase (RP) chromatographic behaviour of a series of acid-sensitive cationic alkylcobalt(III) chelates with both [N2O] Schiff base and ethylenediamine has been studied. Their retention times depend on the water content of the mixed eluents in an unusual parabolic manner, which is ascribed to the biphylic nature of the structures in question. Optimal conditions for RP HPLC quantitative analysis of these rather labile organocobalt complexes have been developed. Their decomposition in solutions under ambient conditions has been surveyed using this technique.  相似文献   

10.
Considering the important role of antioxidants in biological systems, the group of copper(II) complexes derived from salicylaldehyde and alpha- or beta-alanine and its thiourea derivative and copper(II) complexes derived from pyruvic acid and beta-alanine were studied. The antiradical activity of the tested compounds was studied by both in vitro and in vivo methods. The chemical methods based on inhibition of INT-formazane or 3-nitrotyrosine formation were used for the evaluation of SOD-mimic and antiperoxynitrite activity, respectively. In the case of in vivo activity evaluation, an alloxan-induced diabetes mellitus model in mice was used, the mechanism of action of alloxan being closely connected with the formation of free radicals selectively damaging the pancreatic beta-cells. Since all the substances studied showed different positive effects, it is obvious that they have not acted only as a source of copper(II) ions but their effect is related to their specific chelate structure. The obtained results are a contribution to the knowledge of copper(II) Schiff base complexes with ligands of aldimine or ketimine type and form the basis for further preclinical tests of these bioactive agents in biological models of oxidative stress.  相似文献   

11.
Iron(III) complexes [Fe(L)2]Cl (1-3), where L is monoanionic N-salicylidene-arginine (sal-argH for 1), hydroxynaphthylidene-arginine (nap-argH for 2) and N-salicylidene-lysine (sal-lysH for 3), were prepared and their DNA binding and photo-induced DNA cleavage activity studied. Complex 3 as its hexafluorophosphate salt [Fe(sal-lysH)2](PF6)·6H2O (3a) was structurally characterized by single crystal X-ray crystallography. The crystals belonged to the triclinic space group P-1. The complex has two tridentate ligands in FeN2O4 coordination geometry with two pendant cationic amine moieties. Complexes 1 and 2 with two pendant cationic guanidinium moieties are the structural models for the antitumor antibiotics netropsin. The complexes are stable and soluble in water. They showed quasi-reversible Fe(III)/Fe(II) redox couple near 0.6 V in H2O-0.1 M KCl. The high-spin 3d5-iron(III) complexes with μeff value of ∼5.9 μB displayed ligand-to-metal charge transfer electronic band near 500 nm in Tris-HCl buffer. The complexes show binding to Calf Thymus (CT) DNA. Complex 2 showed better binding propensity to the synthetic oligomer poly(dA)·poly(dT) than to CT-DNA or poly(dG)·poly(dC). All the complexes displayed chemical nuclease activity in the presence of 3-mercaptopropionic acid as a reducing agent and cleaved supercoiled pUC19 DNA to its nicked circular form. They exhibited photo-induced DNA cleavage activity in UV-A light and visible light via a mechanistic pathway that involves the formation of reactive hydroxyl radical species.  相似文献   

12.
The reaction of Zn(ClO4)2 · 6H2O and Cu(ClO4)2 · 6H2O with H3Sas (H3Sas = N-(2-hydroxybenzyl)-L-aspartic acid in water afforded the complexes [Zn6(Sas)4(H2O)8]·5H2O (1) and [Cu(HSas)(H2O)] (2), respectively, which were characterized by infrared spectroscopy, elemental analysis, thermogravimetry and single-crystal X-ray crystallography. In 1, the pentanuclear clusters formed by four H3Sas ligands and five Zn(II) metal ions are bridged by the “[Zn(H2O)4]2+” cations to form 1D polymeric chains. While in 2, the mononuclear [Cu(HSas)(H2O)] repeating units form a 1D zigzag chain and further extended by strong intermolecular hydrogen bonds to form a 2D sheet. The different coordination geometries of Cu(II) and Zn(II) show significant influence on the polymeric structures.  相似文献   

13.
Summary For the first time, Co(II), Ni(II) and Zn(II) complexes have been synthesized involving an intermediate Schiff base, indane-1,3-dione-2-imine-N-acetic acid the condensed product of ninhydrin and glycine. These coloured complexes were characterised by elemental analysis, molar conductivity, thermogravimetric analyses/differential thermal analysis, infrared, magnetic susceptibility, NMR and electronic spectral studies. Mechanisms for their formation have been proposed. The experimental studies reveal that the complexes possess octahedral stereochemistry whereas the Schiff base behaves as a monobasic tridentate ligand. A molecular structure for the metal complexes is also proposed. A comparative study of the antimicrobial activity of ninhydrin and the corresponding metal complexes againstEscherichia coli, Proteus mirabilis, Staphylococcus aureus andStreptococcus faecalis has been undertaken and the results are discussed.  相似文献   

14.
A series of copper(II) and zinc(II) complexes involving a tridentate O,N,O'-donor Schiff base derived from salicylaldehyde and beta-alanine {i.e. N-salicylidene-beta-alanine(2-), (L)}, having the composition [Cu(2)(L)(2)(H(2)O)].H(2)O (1), [Cu(L)(H(2)O)](n) (2), and [Zn(L)(H(2)O)](n) (3), have been prepared and characterized by elemental analyses, UV-visible (UV-VIS), FT-IR and ESI-MS spectra, and thermal analyses. Complexes 1 and 2 have been investigated by single crystal X-ray analysis and also by temperature dependent magnetic susceptibility measurements (294-80K). All prepared complexes have been evaluated by the antiperoxynitrite activity assay and alloxan-induced diabetes model. The significant antioxidant and antidiabetic activities have been found in the case of both copper(II) complexes 1 and 2. In spite of first two complexes, the zinc(II) complex 3, as well as the potassium salt of the ligand (KHL) showed only insignificant protective effect against the tyrosine nitration in vitro.  相似文献   

15.
The unusual dinucleating properties of a simple bidentate Schiff base (LH, 1) in the presence of weakly coordinating methanol solvent lead to the self-assembly of (2) (b and t refer to bridging and terminally bound ligands, respectively). Complex 2 is the first diiron(II) species in which the two metal centers are triply bridged by single atoms in an asymmetric fashion, involving both μ-OPh and μ-OHMe bridges. This binding mode produces an Fe?Fe distance of 3.139(1) Å. Dinucleation appears to be driven by a combination of ligand deficiency and solvent-mediated chemistry reminiscent of host-guest interactions. The presence of a μ-MeOH ligand is unprecedented in iron chemistry. Parallel-mode EPR spectra of complex 2 recorded at 4 K show an intense negative signal at g≈16, suggesting the dimeric form exists in solution.  相似文献   

16.
Two copper(II) complexes, 1 and 2 with L1 and L2 [L1 = 2-hydroxybenzyl(2-(pyridin-2-yl)ethylamine); L2 = 2-hydroxybenzyl(2-(pyridin-2-yl)methylamine)] ligands, respectively, have been synthesized and characterized. The interaction of both the complexes with DNA has been studied to explore their potential biological activity. The DNA binding properties of the complexes with calf thymus (CT) DNA were studied by spectroscopic titration. The complexes show binding affinity to CT DNA with binding constant (Kb) values in the order of 105 M−1. Thermal denaturation and circular dichroism studies suggest groove binding of the complexes to CT DNA. Complexes also exhibit strong DNA cleavage activity in presence of reducing agents like 3-mercaptopropionic acid and β-mercaptoethanol. Mechanistic studies reveal the involvement of reactive hydroxyl radicals for their DNA cleavage activity.  相似文献   

17.
Copper(II) and nickel(II) complexes of potentially N2O4 Schiff base ligands 2-({[2-(2-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}ethoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L1) and 2-({[2-(4-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}butoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L2) prepared of 5-phenylazo salicylaldehyde (1) and two various diamines 2-[2-(2-aminophenoxy)ethoxy]aniline (2) and 2-[4-(2-aminophenoxy)butoxy]aniline (3) were synthesized and characterized by a variety of physico-chemical techniques. The single-crystal X-ray diffractions are reported for CuL1 and NiL2. The CuL1 complex contains copper(II) in a near square-planar environment of N2O2 donors. The NiL2 complex contains nickel(II) in a distorted octahedral geometry coordination of N2O4 donors. In all complexes, H2L1 behaves as a tetradentate and H2L2 acts as a hexadentate ligand. Cyclic voltammetry of copper(II) complexes indicate a quasi-reversible redox wave in the negative potential range.  相似文献   

18.
The 1:1 condensation of 1,2-diaminopropane and 1-phenylbutane-1,3-dione at high dilution gives a mixture of two positional isomers of terdentate mono-condensed Schiff bases 6-amino-3-methyl-1-phenyl-4-aza-2-hepten-1-one (HAMPAH) and 6-amino-3,5-dimethyl-1-phenyl-4-aza-2-hexen-1-one (HADPAH). The mixture of the terdentate ligands has been used for further condensation with pyridine-2-carboxaldehyde or 2-acetylpyridine to obtain the unsymmetrical tetradentate Schiff base ligands. The tetradentate Schiff bases are then allowed to react with the methanol solution of copper(II) and nickel(II) perchlorate separately. The X-ray diffraction confirms the structures of two of the complexes and shows that the condensation site of the diamine with 1-phenylbutane-1,3-dione is the same.  相似文献   

19.
Copper(II) complexes [Cu(satp)(L)] (1-3) of a Schiff base thiolate (salicylidene-2-aminothiophenol, H2satp) and phenanthroline bases (L), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz in 3), were prepared, characterized and their anaerobic DNA photocleavage activity and hypoxic photocytotoxicity studied. The redox active complexes show the Cu(II)-Cu(I) couple near − 0.5 V for 1 and near 0.0 V vs. SCE (saturated calomel electrode) for 2 and 3. The one-electron paramagnetic complexes (~ 1.85 μB) are avid DNA binders giving Kb values within 1.0 × 105 − 8.0 × 105 M− 1. Thermal melting and viscosity data along with molecular docking calculations suggest DNA groove and/or partial intercalative binding of the complexes. The complexes show anaerobic DNA cleavage activity in red light under argon via type-I pathway, while DNA photocleavage in air proceeds via hydroxyl radical pathway. The DFT (density functional theory) calculations reveal a thyil radical pathway for the anaerobic DNA photocleavage activity and suggest the possibility of generation of a transient copper(I) species due to bond breakage between the copper and sulfur to generate the thyil radical. An oxidation of the copper(I) species is likely by oxygen in an aerobic medium or by the buffer medium in an anaerobic condition. Complex 3 exhibits significant photocytotoxicity in HeLa cells (IC50 = 8.3(± 1.0) μM) in visible light, while showing lower dark toxicity (IC50 = 17.2(± 1.0) μM). A significant reduction in the dark toxicity is observed under hypoxic cellular conditions (IC50 = 30.0(± 1.0) μM in dark), while retaining its photocytotoxicity (IC50 = 8.0(± 1.0) μM).  相似文献   

20.
The 1:1 condensation of 1-benzoylacetone and 1,2-diaminopropane yields 6-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one (HL). When copper(II) perchlorate is added to the methanolic solution of HL, followed by triethylamine in 1:2:1 molar ratio, an unusual copper(II) complex, [Cu(L)(HL)]ClO4, is separated out where the deprotonated ligand, L, is coordinated in the usual chelating tridentate manner but HL is coordinated to Cu(II) only through the amine N, i.e. it acts as a pendant ligand. The complex is characterized by X-ray crystal structure analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号