首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Silver(I) derivatives [Ag(L)(PiBu3)] (L = H2B(tz)2 (dihydrobis(1H-1,2,4-triazol-1-yl)borate), HB(tz)3 (hydrotris(1H-1,2,4-triazol-1-yl)borate), Tp (hydrotris(1H-pyrazol-1-yl)borate), Tp∗ (hydrotris(3,5-dimethyl-1H-pyrazol-1-yl)borate), TpMe (hydrotris(3-methyl-1H-pyrazol-1-yl)borate), TpCF3 (hydrotris(3-trifluoromethyl-1H-pyrazol-1-yl)borate), Tp4Br (hydrotris(4-bromo-1H-pyrazol-1-yl)borate), HB(btz)3 (hydrotris(1H-1,2,4-benzotriazol-1-yl)borate), Tm (hydrotris(3-methy-1-imidazolyl-2-thione)borate), pzTp (tetrakis(1H-pyrazol-1-yl)borate), pz0TpMe (tetrakis(3-methyl-1H-pyrazol-1-yl)borate) have been synthesized from the reaction of [Ag(NO3)(PiBu3)2] with ML (M = Na or K) and characterized both in solution (1H- and 31P{1H} NMR, ESI MS spectroscopy, conductivity) and in the solid state (IR, single crystal X-ray structure analysis). These complexes are air-stable and light-sensitive and non-electrolytes in CH2Cl2 and acetone in which they slowly decompose, even with the strict exclusion of oxygen and light, yielding metallic silver and/or azolate (Az) species of formula [Ag(Az)(PiBu3)x] upon breaking of the bridging B-N(azole) bond. The solid state structures of [Ag(Tp)(PiBu3)], [Ag(TpMe)(PiBu3)], [Ag(TpCF3)(PiBu3)], [Ag{HB(btz)3}(PiBu3)], and [Ag(Tm)(PiBu3)] show that the silver atom adopts a distorted tetrahedral coordination geometry. [Ag(L)(PPh3)] can be easily obtained from the reaction of [Ag(L)(PiBu3)] with excess PPh3, whereas from the reverse reaction of [Ag(L)(PPh3)] with PiBu3a mixture of [Ag(L)(PiBu3)] and [Ag(L)]2 and [Ag(L)(PPh3)] was recovered. 31P{1H} NMR variable temperature NMR studies showed that in the pz0Tpx derivatives the scorpionate ligand acts as a bidentate donor, whereas tridentate coordination is found for all tris(azolyl)borate derivatives, both in solution and in the solid state. ESI MS data suggest the existence in solution of species such as [Ag(PiBu3)2]+ upon dissociation of the L ligand, and also the formation of dimeric species of the form [Ag2(L)(PiBu3)2]+.  相似文献   

2.
The sterically hindered tetrakis-(3-(p-tolylpyrazolyl)borate [pz0Tpp-Tol] has been prepared and its reaction with CuX2.nH2O (X = Cl or acetate (OAc), M(NO3)2.6H2O (M = Ni, or Co) and MCl2 (M = Zn or Cd) has been investigated. [M(pz0Tpp-Tol)X(Hpzp-Tol)] (M = Cu, X = Cl or OAc; M = Ni or Co, X = NO3) and [M(pz0Tpp-Tol)Cl(Hpzp-Tol)2-n(H2O)n] have been synthesised and their spectroscopic properties described, the five-coordinated Cu species being also structurally characterized. The methyl groups in the para-tolyl fragments of the ligand strongly influences the stoichiometry and structure of the metal complexes.  相似文献   

3.
The development of a new class of single-site metal alkoxide catalysts employing trispyrazolyl ligands is described where the metal ions are Mg(2+), Zn(2+) and Ca(2+). A particularly promising ligand for the kinetically labile Ca(2+) ion is tris[3(-2-methoxy-1,1-dimethylpyrazolyl)] hydroborate, TpC∗. This ligand is capable of being extremely flexible in its coordination modes and its coordination with various group 1 and 2 metal ions is described. The complexes TpC∗MI exist as salts [TpC∗M]+I, where M = Mg and Ca, but TpC∗ZnI contains a four coordinate Zn(2+) center. The complexes TpC∗CaN(SiMe3)2 and TpC∗CaOC6H4-p-Me contain 5 and 7 coordinate Ca(2+) ions and serve as initiators for the ring-opening polymerization of lactide and ε-caprolactone. The compounds [TpC∗M]+[TpC∗], where M = Mg and Ca, exist as salts in the solid-state and in solution show exchange between coordinated and free TpC∗ ligands as determined by NMR spectroscopy.  相似文献   

4.
A series of oxo-vanadium(IV) complexes: TpVO(pzH)(CH3COO) (1), TpVO(pzH)(CCl3COO) (2), TpVO(pzH)(C6H5COO) (3), TpVO(pzH)(m-NO2-C6H4COO)·CH3CN (4) and [TpVO(pzH)(H2O)]+[m-NO2-C6H4-SO3]·CH3OH (5) (Tp = hydrotris(3,5-dimethylpyrazolyl)borate; pzH = 3,5-dimethylpyrazole) are synthesized in methanol solution under physiological conditions. They are characterized by elemental analysis, IR, UV-Vis and X-ray crystallography. Structural analyses show that the vanadium atoms in complexes 1-5 are all in a distorted-octahedral environment with the N4O2 donor set, and intra- or inter-hydrogen bonding linkages have been also observed in each complex. Bromination reaction activity of the complexes has been evaluated by the method with phenol red as organic substrate in the presence of H2O2, Br and phosphate buffer, indicating that they can be considered as potential functional model vanadium-dependent haloperoxidases. In addition, thermal analysis and quantum chemistry calculations were also performed and discussed in detail.  相似文献   

5.
Bis(azido)bis(phosphine)-Pd(II) and -Pt(II) complexes, [M(N3)2L2] {L = PMe3, PEt3, PMe2Ph, dppe = 1,2-bis(diphenylphosphino)ethane}, underwent 1,3-dipolar cycloaddition with organic chiral isothiocyanates (R-NCS: R = (S)-(+)-1-phenylethyl, (R)-(−)-1-phenylethyl, (±)-1-phenylethyl, (S)-(+)-1-indanyl) to give the corresponding tetrazole-thiolato Pd(II) and Pt(II) complexes, trans-[M{S[CN4(R)]}2L2] or [M{S[CN4(R)]}2(dppe)]. Spectroscopic (IR and NMR) and X-ray structural analyses of the products showed that the absolute configuration of the starting organic isothiocyanates is retained throughout the reaction. Further treatments of the isolated tetrazole-thiolato complexes with electrophiles such as HCl or benzoyl chloride produced heterocyclic compounds containing a tetrazole thione or a tetrazolyl sulfide group. In addition, organic tetrazole thiones, [S = {CN4H(R)}] containing a chiral moiety, were prepared from NaN3 and R-NCS in the presence of water.  相似文献   

6.
New Os(II) complexes including [Os(dpop′)2](PF6)2 (dpop′= dipyrido(2,3-a;3′,2′-j)phenazine) and a series of mixed ligand [Os(dpop′)(N-N)Cl]PF6 (N-N = 2,2′-bipyridine(bpy); 2,2′-bipyrimidine(bpm) and 2,3-bis(2-pyridyl)pyrazine(dpp)) were synthesized. The Os dπ → dpop′ π MLCT transitions for [Os(dpop′)2]2+ are observed at lower energy than for Os dπ → tpy π (tpy = 2,2′:6′,2″-terpyridine) and Os dπ → tppz π (tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine) (The ligand abbreviations tpd, tpp and tpypz have also appeared in the literature for 2,3,5,6- tetrakis(2-pyridyl)pyrazine in addition to tppz.) MLCT transitions in the comparative [Os(tpy)2]2+ and [Os(tppz)2]2+ complexes. The Os dπ → dpop′ π MLCT transitions are observed at lower energy in mixed bidentate ligand N-N systems compared with [Os(dpop′)2]2+. Cyclic voltammetry shows more positive osmium oxidation, and less negative ligand reduction potentials for [Os(dpop′)2]2+ as compared to [Os(tpy)2]2+ and [Os(tppz)2]2+ complexes. The osmium oxidation potentials in mixed ligand [Os(dpop′)(N-N)Cl]+ complexes are at less positive potential than for the [Os(dpop′)2]2+ ion. NMR results show different chemical shifts for ring protons either trans or cis to dpop′ in mixed ligand systems, and also show two geometrical isomers for the [Os(dpop′)(dpp)Cl]+ complex. The [Os(dpop′)(dpp)Cl]+ geometric isomer with the pyrazine ring of dpp trans to dpop′ is found more predominate by 1.0/0.7 over the isomer with the pyrazine ring of dpp cis to dpop′ and that inter-conversion of geometric isomers does not occur in room temperature solution on the NMR timescale.  相似文献   

7.
The coordination chemistry and reactivity of zinc(II) complexes supported by monoanionic hydrotris(pyrazolyl)borate ligands substituted by 3,3,3-mesityl groups (TpMs) and 3,3,5-mesityl groups (TpMs∗) have been investigated. Salt metathesis of ZnCl2, ZnEt2, and Zn(OAc)2 with Tl[TpMs] or Tl[TpMs∗] cleanly afforded the corresponding compounds TpMsZnCl (1), TpMsZnEt (2), TpMs∗ZnEt (3), and TpMsZnOAc (5). Compound 3 slowly disproportionates in benzene solution to afford the bis(ligand) complex (κ2-TpMs∗)2Zn (4). Acetate complex 5 as well as TpMsZnOCOPh (6) and [TpMs∗ZnOAc]2 (7) were alternatively prepared by acidolysis of the parent ethyl complexes (2, 3) with the corresponding carboxylic acid. No reaction was observed between 2 and 3 and alcohols (ROH; R = Et, iPr, Bn), while salt metathesis reactions of ZnEt(OR) with Tl[TpMs] led to 2 instead of the desired zinc-alkoxide complex. Compounds 1-7 were characterized by elemental analysis, 1H and 13C NMR spectroscopy, as well as by X-ray diffraction studies for 1, 2, 4, 5 and 7. The former compounds adopt a monomeric structure in the solid state while [TpMs∗ZnOAc]2 (7) exists as an anti-syn bridged acetate dimer. Complex 4 is four-coordinated, featuring a rare bidentate coordination mode of the TpMs∗ ligands. The results are rationalized in terms of the variable steric constraint around the zinc atom provided by the TpMs and TpMs∗ ligands.  相似文献   

8.
The new ligand hydrotris(3-(2′-furyl)-5-methylpyrazolyl)borate (TpFu,Me) was prepared by the usual procedure. With zinc salts, it forms the TpFu,MeZn-X complexes (X = Cl, Br, I, NCS, CH3COO, CF3COO). With zinc perchlorate, the bis-ligand complex Zn(TpFu,Me)2 is formed preferrably, but by carefully controlling the reaction conditions, the “enzyme model” TpFu,MeZn-OH could be obtained. The latter models carbonic anhydrase by inserting CO2 and CS2 in methanol producing TpFu,MeZn-OCOOMe and TpFu,MeZn-SCSOMe. It models hydrolases by the hydrolytic cleavage of tris(p-nitrophenyl)phosphate and γ-thiobutyrolactone. It does not hydrolyse trifluoroacetamide, but instead deprotonates it, yielding TpFu,MeZn-NHCOCF3.  相似文献   

9.
From the interaction between azole-type ligands L and AgX (X = NO3 or ClO4) or [AgX(PPh3)n] (X = Cl, n = 3; X = MeSO3, n = 2), new ionic mononuclear [Ag(L)2]X and [Ag(PPh3)3L][X] or neutral mono-([Ag(PPh3)nL(X)]) or di-nuclear ([{Ag(PPh3)(L)(μ-X)}2]) complexes have been obtained which have been characterized through elemental analysis, conductivity measurements, IR, 1H NMR and, in some cases, also by 31P{1H} NMR spectroscopy, and single-crystal X-ray studies. Stoichiometries and molecular structures are dependent on the nature of the azole (steric hindrance and basicity), of the counter ion, and on the number of the P-donor ligands in the starting reactants. Solution data are consistent with partial dissociation of the complexes, occurring through breaking of both Ag-N and Ag-P bonds.  相似文献   

10.
Dinaphthylmethylarsine complexes of palladium(II) and platinum(II) with the formulae [MX2L2] (M = Pd, Pt; L = di(1-naphthyl)methylarsine = Nap2AsMe and X = Cl, Br, I), [M2Cl2(μ-Cl)2L2], [PdCl(S2CNEt2)L], [Pd2Cl2(μ-OAc)2L2] and [MCl2(PR3)L] (PR3 = PEt3, PPr3, PBu3, PMePh2) have been prepared. These complexes have been characterized by elemental analyses, IR, Raman, NMR (1H, 13C, 31P) and UV-vis spectroscopy. The stereochemistry of the complexes has been deduced from the spectroscopic data. The crystal structures of trans-[PdCl2(PEt3)(Nap2AsMe)] and of [Pd(S2CNEt2)2], a follow-up product, were determined. The UV-vis spectra of [MX2L2] complexes show a red shift on going from X = Cl to X = I. The complexes [PdX2L2] and [PtX2L2] are strongly luminescent in fluid solution and in the solid at ambient temperature.  相似文献   

11.
New complexes have been synthesized of scorpionate ligands with cyano substituents in the 4-positions of the pyrazoles and tert-butyl substituents in the 3-positions of the pyrazoles. Reaction of Co2+, Mn2+, and Ni(cyclam)2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) with Tpt-Bu,4CN in a 1:2 ratio produced new octahedral metal complexes of the form (Tpt-Bu,4CN)2ML4 (L= (H2O)4, (H2O)2(MeOH)2, or cyclam). Unlike the sandwich complexes previously isolated with TpPh,4CN, the crystal structures showed none of the pyrazole nitrogen atoms coordinated to the metal. Rather, the metal is coordinated to one CN nitrogen atom from each ligand, with two Tp anions coordinated trans to each other around the metal center. This leaves the Tp pyrazole nitrogen atoms open for another metal to coordinate, which could to lead to heterometallic complexes, new coordination polymers, as well as the framework for supramolecular complexes.  相似文献   

12.
A mixed-ligand Cr(III) complex with 2-(2-hydroxyphenyl)benzimidazole, 1,10-phenanthroline and isophthalic acid, [Cr(pbm)2(phen)]X0.5 (1X0.5) (Hpbm = 2-(2-hydroxyphenyl)benzimidazole; phen = 1,10-phenanthroline; H2X = isophthalic acid) has been prepared by heating in aqueous solution and characterized, and the geometric structure and spectroscopic properties, investigated experimentally and theoretically by using the density functional theory level (DFT) and the time-dependent density functional theory level (TDDFT). The theoretical-experimental agreement is satisfactory. Further theoretical analyses of electronic structure and molecular orbitals have demonstrated that the low-lying absorption bands in UV-Vis spectrum are mainly π → π∗ ligand-to-ligand charge transfer transition (LLCT) and or π → (dz2-dx2-y2-dyz) ligand-to-metal charge transfer transition (LMCT) in nature.  相似文献   

13.
Previously we reported on the catalytic properties of species based on the {Mo(NO)(TpMe2)O2} moiety in the cathodic reduction of chloroform. Here, we have performed cyclic voltammetry and spectroscopic studies of the tungsten bis-alkoxide [W(NO)(TpMe2)(OEt)2], a novel chelate [W(NO)(TpMe2)O(CH2)4O], and a mono-alkoxide [W(NO)(TpMe2)Cl(OEt)] [TpMe2 = hydrotris(3,5-dimethylpyrazol-1-yl)borate]. All these complexes efficiently catalyse the cathodic reduction of chloroform which proceeds even at ca. −1.77 V versus Fc+/Fc in the presence of the chloro(ethoxy) complex. The chelate complex exhibits a quasi-reversible one-electron reduction at a potential 180 mV more anodic than its bis(ethoxy) counterpart. The UV-Vis spectrum of the former complex shows a red-shifted band (by 70 nm) in the visible region when compared with the latter.  相似文献   

14.
Addition of KTpPh2 to a solution of NiX2 (X = Cl, Br, NO3, OAc and acac) or NiBr(NO)(PPh3)2 in THF yields the structurally characterized series [NiCl(HpzPh2)TpPh2] (1) and [NiXTpPh2] (X = Br 2, NO 3, NO34, OAc 5 and acac 6) including the first example of a tris(pyrazolyl)borate nickel nitrosyl complex. IR spectroscopy confirms that all the TpPh2 ligands are κ3 coordinated and that the NO ligand in 3 is linearly bound. Electronic spectra are consistent with four- or five-coordinate species in solution. NMR spectroscopic studies indicate that the complexes are paramagnetic, with the exception of 3. This is confirmed by magnetic susceptibility studies, which suggest that complexes 1, 2 and 4-6 are paramagnetic with two unpaired electrons. X-ray crystallographic studies of 5 reveal a distorted trigonal bipyramidal nickel centre with a symmetrically coordinated acetate ligand.  相似文献   

15.
The synthesis of iron(II), cobalt(II) and nickel(II) complexes supported by chelating borate ligands containing one pyrazole and two thioethers, phenyl(pyrazolyl)bis((alkylthio)methyl)borates, [Ph(pz)BtR], is described. The six-coordinate complexes [Ph(pz)Bt]2M, M = Fe (1Fe), Co (1Co) and Ni (1Ni), form exclusively the cis isomers as confirmed by X-ray diffraction analyses. Whereas 1Co and 1Ni are high spin, 1Fe exhibits a room temperature magnetic moment, μeff = 4.1 μB, consistent with spin-crossover behavior. Quantitative analysis of the electronic spectrum of 2Ni leads to a value of Dq = 1086 cm−1, reflective of a ligand field strength somewhat weaker than those imposed by the related tridentate borate ligands Tp or PhTt. Replacement of the methylthioether substituent with the sterically more demanding tert-butylthioether leads to the isolation of [Ph(pz)BttBu]MX, M = Co, X = Cl (2Co); M = Ni, X = Cl (2Ni) or acac (3). The solid state structures of 2Co and 2Ni are chloride-bridged dimers. Additional high-spin cobalt(II) complexes, accessible under distinct preparative conditions, [κ2-Ph(pzH)BttBu] CoCl2·THF (4) and [κ2-Ph(pz)BttBu]2Co (5), have been fully characterized.  相似文献   

16.
The reactions of the Fe(II) and Ru(II) halogenide complexes [Fe(PPh3)2Br2], [Fe(NCCH3)2Br2], [Ru(PPh3)3Cl2], and [Ru(dmso)4Cl2] with GaCp and AlCp, respectively, are investigated. The reactions of [FeBr2L2] with ECp exclusively proceed via Cp transfer, leading to [FeCp(GaCp)(GaBr2)(PPh3)] (1) (L = PPh3, E = Ga), [FeCp(GaCp)2 (GaBr2)] (2) (L = NCCH3, E = Ga) and [FeCp(μ3-H)(κ2-(C6H4)PPh2)(AlCp)(AlBr2)] (3) (L = PPh3, E = Al), the latter of which is formed via orthometallation of one PPh3 ligand. The reaction of [Ru(dmso)4Cl2] leads to the homoleptic complex [Ru(GaCp)6Cl2] (4) in high yields, while [Ru(PPh3)3Cl2] gives 4 in rather low yields. The reason for this difference in reactivity is investigated and it is shown that Cp transfer and orthometallation are the limiting side reactions of the reaction of [Ru(PPh3)3Cl2] with GaCp. All compounds were characterized by NMR spectroscopy, and single crystal X-ray diffraction studies were performed for 1, 3, and 4.  相似文献   

17.
The synthesis and structural characterization of the two novel unsolvated heteroleptic ytterbium compounds DanipYb(TpMe,Me)Cl (1) and DanipYb(TpMe,Me)CH2SiMe3 (2) by simple salt metathesis reaction is reported [Danip = 2,6-di(o-anisol)phenyl); TpMe,Me = hydrotris(3,5-dimethyl-pyrazolyl)borate]. In the molecular structure of 2 a flexible bonding mode of the donor-functionalized terphenylic ligand is observed.  相似文献   

18.
The meagre (structurally defined) array of 1:2 silver(I) (pseudo-)halide:unidentate nitrogen base adducts is augmented by the single-crystal X-ray structural characterization of the 1:2 silver(I) thiocyanate:piperidine (‘pip’) adduct. It is of the one-dimensional ‘castellated polymer’ type previously recorded for the chloride: ?Ag(pip)2(μ-SCN)Ag(pip)2? a single bridging atom (S) linking successive silver atoms. By contrast, in its copper(I) counterpart, also a one-dimensional polymer, the thiocyanate bridges as end-bound SN-ambidentate: ?CuSCNCuSCN? A study of the 1:1 silver(I) bromide:quinoline (‘quin’) adduct is recorded, as the 0.25 quin solvate, isomorphous with its previous reported ‘saddle polymer’ chloride counterpart.Recrystallization of 1:1 silver(I) iodide:tris(2,4,6-trimethoxyphenyl)phosphine (‘tmpp’) mixtures from py and quinoline (‘quin’)/acetonitrile solutions has yielded crystalline materials which have also been characterized by X-ray studies. In both cases the products are salts, the cation in each being the linearly coordinated silver(I) species [Ag(tmpp)2]+, while the anions are, respectively, the discrete [Ag5I7(py)2]2− species, based on the already known but unsolvated [Cu5I7]2− discrete, and the polymeric, arrays, and polymeric . The detailed stereochemistry of the [Ag(tmpp)2]+ cation is a remarkably constant feature of all structures, as is its tendency to close-pack in sheets normal to their P-Ag-P axes.The far-IR spectra of the above species and of several related complexes have been recorded and assigned. The vibrational modes of the single stranded polymeric AgX chains in [XAg(pip)2](∞|∞) (X = Cl, SCN) are discussed, and the assignments ν(AgX) = 155, 190 cm−1 (X = Cl) and 208 cm−1 (X = SCN) are made. The ν(AgX) and ν(AgN) modes in the cubane tetramers [XAg(pip)]4 (X = Br, I) are assigned and discussed in relation to the assignments for the polymeric AgX:pip (1:2) complexes, and those for the polymeric [XAg(quin)](∞|∞) (X = Cl, Br) compounds. The far-IR spectra of [Ag(tmpp)2]2[Ag5I7(py)2] and its corresponding 2-methylpyridine complex show a single strong band at about 420 cm−1 which is assigned to the coordinated tmpp ligand in [Ag(tmpp)2]+, and a partially resolved triplet at about 90, 110 and 140 cm−1 which is assigned to the ν(AgI) modes of the [Ag5I7L2]2− anion. An analysis of this pattern is given using a model which has been used previously to account for unexpectedly simple ν(CuI) spectra for oligomeric iodocuprate(I) species.  相似文献   

19.
The white homoleptic high-spin iron(II) complexes Fe[TpMe2,4Cl]2 (1) was isolated in quantitative yield from reaction mixtures containing 1 equiv of FeCl2(THF)1.5 and 2 equiv of K[TpMe2,4Cl] (TpMe2,4Cl = hydrotris[(4-chloro-3,5-dimethyl-pyrazolyl)]borate). Its purple low-spin iron(III) counterparts 1[O3SCF3] and 1[PF6] were synthesized and isolated in 85% yields upon treatment of 1 with 1 equiv of silver triflate and silver hexafluorophosphate, respectively. The three paramagnetic compounds are air and thermally stable as solids and in solution; they were characterized by elemental analyses, IR, magnetic susceptibility measurements, 1H NMR, and Mössbauer spectroscopy. In addition, 1[PF6] was authenticated by a single-crystal X-ray diffraction. The two scorpionate ligands are κ3-N,N′,N′′ ligated to the central FeIII ion, forming an almost perfect FeN6 octahedron with an average Fe-N bond distance of 1.9551(18) Å. In addition, complex 1 which oxidizes reversibly at E1/2 = 0.483 V/SCE (ΔEp = 94 mV), remains high-spin (S = 2) when the temperature is lowered to 2 K.  相似文献   

20.
The octanuclear cyano-bridged cluster [(Tp)8Fe4Ni4(CN)12] · H2O · 24CH3CN (1) (Tp = hydrotris(1-pyrazolyl)borate) showing magnetic properties of single-molecule magnet has been synthesized by reaction of [fac-Fe(Tp)(CN)3] with {(Tp)Ni(NO3)} species formed from an equimolar reaction mixture of Ni(NO3)2 · 6H2O and KTp in MeCN. The X-ray analysis of 1 shows molecular cube structure in which FeIII and NiII ions reside in alternate corners. The average intramolecular Fe?Ni distance is 5.124 Å. Out-of-phase ac susceptibility and reduce magnetization measurements show that 1 is a single molecule magnet with ground spin state S = 6 and spin reversal energy barrier U = 14 K. Magnetic hysteresis loops were also observed by applying fast sweeping field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号