首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The synthesis and characterization of the new didentate ligand diethyl (pyridin-3-ylmethyl) phosphonate (3-pmpe) and three of its Zn(II) complexes are described. IR and X-ray analyses show that in the reaction of ZnCl2 with 3-pmpe in methanol three crystalline polymorphs are formed: [Zn(3-pmpe)Cl2]2 (1) and [Zn(3-pmpe)Cl2]n (2 and 3). In these crystals 3-pmpe acts as a didentate N,O-bridging ligand and Zn(II) are in a slightly distorted tetrahedral ZnNOCl2 environment. Zn2+ ions in 1 are doubly bridged by the 3-pmpe ligands, resulting in the formation of dinuclear species. In polymeric compounds 2 and 3 Zn2+ ions are singly bridged by the 3-pmpe, resulting in the formation of one-dimensional chains. Small differences in the conformation of the ligand in 1 and 2 have been found. The infrared spectra are in agreement with the structural data.  相似文献   

2.
The hydrothermal reaction of ZnCl2 with 5-(4-pyridyl)tetrazole afforded the 2D metal-organic coordination framework [Zn(OH)(4-ptz)] (1) and the mononuclear complex [Zn(4-ptz)2(H2O)4]?2(H2O) (2) [4-ptz = 5-(4-pyridyl)-tetrazolate]. Compound 1 consists of a zig-zag bidimensional network formed by rectangular (4,4) grid sheets. Molecules of 2 form a 3D extended network of hydrogen bonding involving water molecules and the tetrazolate ligand. In addition, compound 1 exhibits strong fluorescence at room temperature in the solid state.  相似文献   

3.
Three water-soluble zinc complexes, [Zn(Cbp)2Br2] (1) (Cbp = N-(4-carboxybenzyl)pyridinium), {[Zn(BCbpy)2(H2O)4]3Br6·2(BCbpy)·2(4,4′-bipy)} (2) (BCbpy = 1-(4-carboxybenzyl)-4,4′-bipyridinium) and {[Zn4(Bpybc)6(H2O)12](OH)8·9H2O}2n (3) (Bpybc = 1,1′-bis(4-carboxybenzyl)-4,4′-bipyridinium), were synthesized and characterized by IR, elemental analysis and single-crystal X-ray crystallography. In complex 1, the central Zn atom adopts a distorted tetrahedral coordination geometry that is formed from two unidentate Cbp ligands and two Br atoms. For complex 2, the Zn atom in [Zn(BCbpy)2(H2O)4]2+ is strongly coordinated by four water molecules and two N atoms from two BCbpy ligands, hence forming an octahedral geometry. In complex 3, each Bpybc ligand bridges two [Zn(H2O)3]2+ units through two terminal carboxylate groups in a monodentate coordination mode, thus forming a flowerlike two-dimensional network. Agarose gel electrophoresis (GE) and ethidium bromide (EB) displacement experiments indicated that complex 3 was capable of converting pBR322 DNA into open circular (OC) and linear forms, and exhibited high binding affinity toward calf-thymus DNA. MTT assay showed that complex 3 displayed inhibitory activities toward the proliferation of lung adenocarcinoma A549 and mouse sarcoma S-180 cells, with the IC50 values being 27.3 and 48.8 μM, respectively.  相似文献   

4.
The redox-functionalised diimine ligand 3,8-di-n-pentyl-4,7-di(ferrocenylethinyl)-1,10-phenanthroline (3) was synthesised and used for the preparation of the homoleptic zinc complex [Zn(3)2][PF6]2, whose cyclic voltammogram shows non-interacting ferrocenyl units, affording the hexacationic [Zn(3)2]6+ in a four-electron oxidation.  相似文献   

5.
The complexes of Cu(I), Cu(II), Ni(II), Zn(II) and Co(II) with a new polypyridyl ligand, 2,3-bis(2-pyridyl)-5,8-dimethoxyquinoxaline (L), have been synthesized and characterized. The crystal structures of these complexes have been elucidated by X-ray diffraction analyses and three types of coordination modes for L were found to exist in them. In the dinuclear complex [Cu(I)L(CH3CN)]2·(ClO4)2 (1), L acts as a tridentate ligand with two Cu(I) centers bridged by two L ligands to form a box-like dimeric structure, in which each Cu(I) ion is penta-coordinated with three nitrogen atoms and a methoxyl oxygen atom of two L ligands, and an acetonitrile. In [Cu(II)L(NO3)2]·CH3CN 2, the Cu(II) center is coordinated to the two nitrogen atoms of the two pyridine rings of L which acts as a bidentate ligand. The structures of [Ni(II)L(NO3)(H2O)2]·2CH3CN·NO3 (3), [Zn(II)L(NO3)2 (H2O)]·2CH3CN (4) and [Co(II)LCl2(H2O)] (5) are similar to each other in which L acts as a tridentate ligand by using its half side, and the metal centers are coordinated to a methoxyl oxygen atom and two bipyridine nitrogen atoms of L in the same side. The formation of infinite quasi-one-dimensional chains (1, 4 and 5) or a quasi-two-dimensional sheet (2) assisted by the intra- or intermolecular face-to-face aryl stacking interactions and hydrogen bonds may have stabilized the crystals of these complexes. Luminescence studies showed that 1 exhibits broad, structureless emissions at 420 nm in the solid state and at 450 nm in frozen alcohol frozen glasses at 77 K. Cyclic voltammetric studies of 1 show the presence of an irreversible metal-centered reduction wave at approximately −0.973 V versus Fc+/0 and a quasi-reversible ligand-centered reduction couple at approximately −1.996 V versus Fc+/0. The solution behaviors of these complexes have been further studied by UV-Vis and ESR techniques.  相似文献   

6.
The alkoxo-bridged dinuclear copper(II) complexes [Cu2(ap)2(NO2)2] (1), [Cu2(ap)2(C6H5COO)2] (2) and [Cu2(ap)2μ-1,3-C6H4(COO)2(dmso)2]·dmso (3) (ap = 3-aminopropanolato and dmso = dimethyl sulfoxide) have been synthesized via self-assembly from copper(II) perchlorate, 3-aminopropanol as main chelating ligand and nitrite and isophthalate anions as spacers and benzoate anion as auxiliary ligand. Complexes 1 and 3 crystallize as 2D and 1D coordination polymers, respectively, and their structures consist of dinuclear [Cu2(ap)2]2+ units connected with nitrite and isophthalate ligands. The adjacent dinuclear units of 2 and 1D polymers of 3 are further connected by hydrogen bonds resulting in the formation of 2D layers. The variable temperature crystallographic measurements of 1 at 100, 173 and 293 K indicate the static Jahn-Teller distortion with librational disorder in the nitrite group. Experimental magnetic studies showed that complexes 1-3 exhibit strong antiferromagnetic couplings. The values of the magnetic exchange coupling constant for 1-3 are well reproduced by the theoretical calculations.  相似文献   

7.
A new family of mononuclear Zn(II) complexes [Zn(Pyimpy)2](ClO4)2 (1), [Zn(Pyimpy)(Cl)2] (2), [Zn(Pyimpy)(SCN)2] (3) and [Zn(Pyimpy)(N3)2] (4) were synthesized using designed tridentate ligand Pyimpy having NNN donors (Pyimpy: (2-((2-phenyl-2-(pyridin-2-l)hydazono)methyl)pyridine)). Complexes were characterized by different spectroscopic studies and it has been found out that all complexes exhibited strong fluorescent emission at room temperature. Molecular structures of [Zn(Pyimpy)2](ClO4)2·C6H5CH3·0.5H2O (1·C6H5CH3·0.5H2O) and [Zn(Pyimpy)(Cl)2]·CH3CN (2·CH3CN) were determined by X-ray crystallography and ligand coordinated Zn(II) ions was described as distorted octahedral and distorted square pyramidal, respectively. DNA binding properties of these complexes were investigated by absorption spectral, fluorescence quenching and circular dichroism spectral studies.  相似文献   

8.
The Schiff base benzaldehyde-N(4),N(4)-dimethylthiosemicarbazone (LH) and its complexes [Hg(NO3)(LH)2]NO3 (1), [Hg(L)2] (2), [Hg(LH)2(μ-X)2HgX2] [X = Cl (3), Br (4)], [HgI(LH)(μ-I)2HgI(LH)] (5) and [HgI2(LH)] (6) have been synthesized and characterized by IR, mass spectrometry, 1H and 13C NMR and by single crystal X-ray diffraction. All the complexes were obtained in ethanol and complex 2, in which the ligand is deprotonated, in addition needs the presence of basic medium. From mercury(II) iodide two complexes with the same molar ratio but with different structures were isolated. In all the complexes the ligand acts as a NS chelate, except in complex 5 in which is only S-donor. The coordination number of the mercury ion and the structures of the complexes depend on the counterion. Complexes 1, 2 and 6 are monomeric species but with different coordination spheres: N2S2O2 with a distorted octahedral arrangement in complex 1, and N2S2 or NSI2 in a pseudo-tetrahedral geometry in complexes 2 and 6, respectively. However, 3, 4 and 5 are binuclear complexes with two halido bridges, but they show two different structures. In 3 and 4, each mercury ion has a different environment giving an asymmetric structure, one is bonded to two NS-ligands and two halido bridges in a distorted octahedral geometry, and the other one has a tetrahedral environment formed by four halido ligands. In complex 5 both mercury ions are equivalent with a SI3 distorted tetrahedral coordination sphere, formed by one S-bonded ligand, one terminal iodido and two iodido bridges.  相似文献   

9.
Two benzoate complexes namely tetrakis(μ2-benzoato-O,O)-bis(μ2-benzoato-O,O)-bis(nicotinamide-N)-tri-zinc(II), [Zn3(benz)6(nia)2] (I) and bis(benzoato-O)-bis(methyl-3-pyridylcarbamate-N)-zinc(II), [Zn(benz)2(mpcm)2] (II) (benz=benzoate anion, nia=nicotinamide, mpcm=methyl-3-pyridylcarbamate) were prepared and characterised by elemental analysis, IR spectroscopy, thermal analysis and X-ray structure determination. The structure of the complex I is centrosymmetric, formed by a linear array of three zinc atoms. The central zinc atom shows octahedral coordination and is bridged to each of the terminal zinc atoms by three benzoate anions. Two of them act as bidentate, one as monodentate ligand. By additional coordination of the nia ligand, the terminal Zn atoms adopt tetrahedral surrounding. The structure of complex II contains two crystallographically independent [Zn(benz)2(mpcm)2] molecules. In each molecule, the zinc atom is tetrahedrally coordinated by two monodentate benzoate and two methyl-3-pyridylcarbamate ligands. Intermolecular hydrogen bonds of the N-H?O type connect molecules in the structures of complexes I and II to form a two-dimensional network. The three different types of carboxylate binding found in the complexes were distinguished also by values of carboxylate stretching vibrations in FT-IR spectra as well as by thermal decomposition of the complexes in nitrogen.  相似文献   

10.
Three coordination complexes of formula [Ni(L1)2(H2O)4].4H2O (1), [Mn(L2)2(H2O)4] (2) and [Mn(L2)2(H2O)2]n (3) [L1H = 6-methylpyridine-3-carboxylic acid, L2H = 3-(3-pyridyl)acrylic acid] have been synthesized and structurally characterized by X-ray single crystal analysis. A 3D network is achieved through H-bonding in 1 and 2, while crystal packing of complex 3 shows a 3D supramolecular coordination polymer. Thermal properties have been investigated by thermogravimetric analysis. Luminescence study features the presence of LMCT and metal purterbed ligand centered emission bands.  相似文献   

11.
A new easily synthetic route with a 96% yield of ligand 2-(3,5-diphenyl-1H-pyrazol-1-yl)ethanol (L) is obtained. The reactivity of L against Pd(II), Zn(II) and Cu(II) leads to [PdCl2(L)2] (1), [ZnCl2(L)] (2) and [CuCl(L′)]2 (3) (L′ is the ligand L without alcoholic proton), respectively. According to the different geometries imposed by the metallic centre and the capability of L to present various coordination links, it has been obtained complexes with square planar (1 and 3) or tetrahedral (2) geometry and different nuclearity: monomeric (1 and 2) or dimeric (3). Complete characterisation by analytical and spectroscopic methods, resolution of L and 1-3 by single-crystal X-ray diffraction and magnetic studies for complex 3 are presented.  相似文献   

12.
Six new 1-3D coordination polymers of an unsymmetrical angular ligand 3-pyridin-4-ylbenzoate (L), namely, [Ni(L)2(C2H6O2)]n (1), [Cd(L)2(H2O)2]n·4H2O (2), [Zn2(OH)(L)3]n (3), [Fe2(OH)(L)3]n (4), [Ni(L)2(H2O)]n (5) and [Cd(L)2(H2O)]n (6) were hydro(solvo)thermally synthesized. They have abounding structure chemistry ranging from one-dimensional ribbons (1 and 2), and two-dimensional novel helical double-layered frameworks (3 and 4) to three-dimensional CdSO4-topological porous interpenetrating architectures with hydrophilic and hydrophobic channels regularly arraying (5 and 6). The labile conformations and coordination modes of ligand L, which were finely tuned by reaction conditions, perhaps play the key role in the construction of various architectures. Very interestingly, the slight difference in solvent system or temperature resulted in the distinct architectures of nickel(II) complexes 1 and 5 or cadmium(II) complexes 2 and 6. As expected, the unsymmetrical ligand L has a trend to construct metal-organic helixes as observed in 3 and 4. Thermogravimetric analysis of 5 shows the main framework retains stability until a higher temperature 379 °C. The 3D microporous network of 5 can slightly absorb for N2 and Ar. Compounds 2, 3 and 6 emit ligand-centered photoluminescence but with obviously different intensities owing to the structural diversities and coordinating water molecules.  相似文献   

13.
Hydrothermal synthesis of orotic acid (H3L) with Ni(OAc)2·4H2O gives a green 1D co-ordinative network of composition [Ni(HL)(H2O)3] (3). The kinetic product [Ni(HL)·(H2O)4]H2O (4) can be prepared by conventional crystallisation. When boiled in water it is transformed into the thermodynamically favoured trihydrate 3. An unstable blue phase 5 that could not be characterised was also observed. Hydrothermal synthesis of orotic acid and M(OAc)2·4H2O (M=Ni, Co, Mn or Zn) and either 2,2-bipyridyl (bipy), 2,2-dipyridylamine (dpa), phenanthroline (phen), methyl-3-(2-pyridyl)pyrazole (pypz) or 2,9-dimethyl-1,10-phenanthroline (dmphen) gave infinite 1D co-ordinative networks of composition [M(HL)bipy(H2O)] (M=Co or Mn) (6-7) and complexes of composition [Ni(HL)bipy (H2O)2]2H2O (8); [Ni(HL)(dpa)(H2O)2]H2O (9); [Ni(HL)(phen)(H2O)2]·2H2O (10); [Ni(HL)(C9H9N3)(H2O)2]·2H2O (11); [Ni(HL)(dmphen)(H2O)] (12); [Zn(HL)bipy(H2O)] (13) and [Ni(HL)(dpa)2]·0.5H2O (14).  相似文献   

14.
Four new coordination complexes [Cd(DPBA-3)2(H2O)2](ClO4)2·2H2O (1), [Cd(DPBA-3)(DMF)(NO3)2]·DMF (2), [Cd3(DPBA-3)2(SCN)6]·2DMF·4H2O (3) and [Zn(DPBA-3)(SCN)2] (4) [DPBA-3 = N,N′-di(pyridin-3-yl)pyridine-3,5-dicarboxamide] have been synthesized and characterized by elemental analysis, IR and single crystal X-ray diffraction. Complexes 1, 3 and 4 exhibit three different types of one-dimensional (1D) chain structures constructed by the metal ions and DPBA-3 ligands, and the Cd(II)-DPBA-3 1D chains in 3 are further linked by bridging SCN ligands to afford a three-dimensional (3D) framework. Complex 2 possesses a (6,3) two-dimensional (2D) layer structure. In 1-4, the hydrogen bonds involving the amide groups play important role to stabilize the resultant frameworks. The photoluminescence properties of the DPBA-3 and the complexes were studied in the solid state at room temperature.  相似文献   

15.
Two new linear and V-shaped tetradentate ligands, namely 1,4-bis(2-hexahydropyrimidyl)benzene (L) and 1,3-bis(2-hexahydropyrimidyl)benzene (L), and their silver(I) complexes, [Ag2L(μ-ONO2)](NO3) · 2H2O (1), [Ag2L(μ-pn)](NO3)2 (2), [Ag2L(μ-pn)](ClO4)2 (3) and [Ag4L2(H2O)](NO3)4 · 5H2O (4) (pn=1,3-diaminopropane) have been synthesized in situ and structurally characterized by single-crystal X-ray diffraction. 1 and 2 were obtained from the same reaction solution but different crystallization conditions. 1 is an one-dimensional chain featuring cuboid tetranuclear silver(I) units interconnected through monoatomic nitrate bridges. Both 2 and 3 are ribbon-like helical compounds in which each L ligand acts in a tetradentate bridging mode to interconnect four metal atoms, and each pn ligand functions in a bidentate bridging mode to link a pair of metal atoms. 4 shows a truncated square-pyramidal tetranuclear motif arose by the V-shaped L ligand. Close Ag?Ag separations (2.901-2.939 Å) assisted by bis(hexahydropyrimidine) bridges were observed in 1 and 4, indicating metal-metal interactions. Photoluminescence of 1-4 has also been observed in the solid state and solution at room temperature and low temperature, respectively.  相似文献   

16.
Three distinct coordination complexes, viz. {[Cu(μ-L)2] · (H2O)4}n (1), [Ni(L)2(CH3OH)2] (2), and [Zn(L)2(H2O)2] · (H2O)2 (3), have been prepared by the reactions of metal nitrates with isoquinoline-3-carboxylic acid (HL). X-ray single-crystal diffraction suggests that 1 is a 1D chain coordination polymer in which the CuII ions are connected by carboxylates, whereas complexes 2 and 3 represent discrete mononuclear species. In all the cases, the coordination entities are further organized via hydrogen-bonding interactions to generate multifarious supramolecular networks. Remarkably, a well-resolved 1D water morphology is observed for the first time in the crystalline lattice of 1 along [1 0 0], which consists of edge-sharing tetrameric subunits and stabilized by the metal-organic host surroundings.  相似文献   

17.
A series of coordination polymers have been prepared by the combination of flexible ligand 1,1′-biphenyl-2,2′-dicarboxylic acid (H2dpa) and different types of nitrogen-containing ligands, with various metal ions such as Co(II), Zn(II) and Cd(II). The single-crystal structure analyses reveal that the above complexes possess different structure features with the introduction of different nitrogen-containing ligands. When auxiliary linear ligand 4,4′-bipyridine (4,4′-bpy) is introduced, two-dimensional layered complex, [Co2(dpa)2(4,4′-bpy)2(H2O)]n (1) is formed. Whereas if chelating ligand, 1,10-phenanthroline (1,10′-phen) and 2,2′-bipyridine (2,2′-bpy) are introduced, one-dimensional complex [Zn(dpa)(1,10′-phen)]n (2) and discrete complexes [Co2(dpa)2(2,2′-bpy)2(H2O)2] (3), [Co3(dpa)3(1,10′-phen)6(H2O)2] (4), [Cd(dpa)(1,10′-phen)2][(H2dpa)2(H2O)2] (5) are synthesized. To our interest, 1 and 2 crystallize in homochiral spacegroup. Furthermore, the magnetic property of complex 1 and the fluorescent properties of complexes 2 and 5 are studied.  相似文献   

18.
Three new lanthanide-organic frameworks {[La(IP-py)(HIP-py)(H2O)2]·H2O}n (1), {[Sm2(IP-py)2(IP-pyH)2(H2O)2]·12H2O}n (2) and {[Tb3(IP-py)4(IP-pyH)(H2O)5]·9H2O}n (3) have been prepared by reactions of the corresponding lanthanide salt with 5-(isonicotinamido)isophthalic acid (H2IP-py). The complexes have been fully characterized by means of IR, elemental analyses and single-crystal X-ray diffraction. In compounds 1-3, the lanthanide centers are eight- and nine-coordinated with different coordination geometries and the carboxylate groups of the ligand show different coordination modes leading to the formation of different 2D network structures which are well-defined by the bulky and inert functional groups. Interestingly an unprecedented 2D network of water molecules was observed in complex 2. The luminescent properties of complexes 2 and 3 were investigated.  相似文献   

19.
Three new Zn(II) complexes based on different organic-carboxylic acids, [Zn(mba)2(2,2′-bipy)] (1), [Zn(mpdaH)2(H2O)4] · 4H2O (2) and [Zn(cda)2(H2O)2]n (3) (Hmba = 4-methylbenzoic acid, H2mpda = 2,6-dimethylpyridine-3,5-dicarboxylic acid and H2cda = chelidonic acid) have been synthesized successfully under hydrothermal conditions. X-ray single crystal diffractions show that compounds 1 and 2 are the mononuclear and 3 is one-dimensional chain, in which the Zn(II) centers have different coordination geometries with octahedron for 1 and 2 and tetrahedron for 3. Through π-π stacking and/or hydrogen bonding (O-H?O and O-H?N) interactions, different supramolecular structures are assembled, namely, 2D supramolecular layer for 1 and 3D supramolecular networks for 2 and 3. Furthermore, the IR, TGA and luminescent properties are also investigated in this work.  相似文献   

20.
Five novel heterometallic Ni/Zn coordination compounds [Ni(en)3][ZnCl4] (1), [Ni(en)(Hea)2][ZnCl4] (2), [Ni(dien)2][ZnCl4] (3), [Ni(en)3][ZnCl4] · 2DMSO (4) and [Ni(en)3][Zn(NCS)4] · CH3CN (5), where en = ethylenediamine (ethane-1,2-diamine), Hea = monoethanolamine (2-aminoethanol) and dien = diethylenetriamine (1,4,7-triazaheptane), have been synthesized by means of the open-air reaction of zinc oxide, nickel chloride (or nickel powder), NH4X (X = Cl, NCS) and ligand (en, dien, Hea) in non-aqueous solvents, such as DMSO, DMF, CH3OH and CH3CN. The choice of a counter-anion in the initial ammonium salt as well as selection of the ligand and solvent provides an effortless approach to the controlled assembly of two- or three-dimensional extended networks assisted by hydrogen bonding. Crystallographic investigations reveal that 1, 2 and 5 possess 3D, while 3 and 4 exhibit 2D H-bonded crystal structures. The structures of the compounds exhibit six-coordinated Ni(II) centers and four-coordinated Zn(II) centers in distorted octahedral and tetrahedral geometries, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号