首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The synthesis of new platinum bipy (bipy = 2,2′-bipyridyl) complexes containing phenoxide ligands is reported, together with kinetic studies of their oxidative addition reactions with MeI to produce phenoxo platinum(IV) complexes. Complexes of the form [(bipy)Pt(OC6H4-4-X)2] (X = OCH3, CH3, H, Br, Cl) are prepared by the reaction of the chloro complex [(bipy)PtCl2] with substituted phenols and KOH in a two phase system of water and chloroform in the presence of benzyl triphenylphosphonium chloride. Platinum(IV) complexes are formed by oxidative addition of MeI to the platinum(II) complexes obtained. The complexes are characterized by elemental analysis, UV-Vis, IR, mass spectrometry and 1H and 13C NMR spectroscopy.The reaction of methyl iodide with [(bipy)Pt(OC6H4-4-OMe)2] to give [(bipy)PtMe(I)(OC6H4-4-OMe)2] follows the rate law rate = k2[(bipy)Pt(OC6H4-4-OMe)2][MeI]. The values of k2 increase with increasing polarity of the solvent, suggesting a polar transition state for the reaction.  相似文献   

2.
Three new complexes [Pt(dpop)(Cl)2], [(Cl)2Pt(dpop)Pt(Cl)2] and [(bpy)2Ru(dpop)Pt(Cl)2](PF6)2 (dpop = dipyrido(2,3-a:3′,2′-h)phenazine) were prepared and studied. The electronic absorption spectra of the complexes display Pt dπ → dpop π* and Ru dπ → dpop π* MLCT transitions at longer wavelengths than for previously reported similar complexes. Results of cyclic voltammograms show reversible dpop centered reductions while for the mixed metal [(bpy)2Ru(dpop)Pt(Cl)2]2+ an irreversible Pt(II) oxidative wave precedes the Ru(II) oxidation/reduction couple. Spectroelectrochemical results show that all oxidative and reductive processes are completely reversible. The [(Cl)2Pt(dpop)Pt(Cl)2] complex cleaves in solution with pseudo-first order kinetics resulting in loss of the Pt dπ → dpop π* MLCT transition at 545 nm.  相似文献   

3.
Dimethyl platinum(II) complexes [PtMe2(NN)] {NN = bu2bpy (4,4′-di-tert-butyl-2,2′-bipyridine) (1a), bpy (2,2′-bipyridine) (1b), phen (1,10-phenanthroline) (1c)} reacted with commercial 3-bromo-1-propanol in the presence of 1,3-propylene oxide to afford cis, trans- [PtBrMe2{(CH2)3OH}(NN)] (NN = bu2bpy (2a), bpy (2b), phen (2c)). On the other hand, [PtMe2(NN)] (1a)-(1b) reacted with the trace of HBr in commercial 3-bromo-1-propanol to give [PtBr2(NN)] (NN = bu2bpy (3a), bpy (3b)). The reaction pathways were monitored by 1H NMR at various temperatures. Treatment of 1a-1b with a large excess of 3-bromo-1-propanol at −80 °C gave the corresponding methyl(hydrido)platinum(IV) complexes [PtBr(H)Me2(NN)] (NN = bu2bpy (4a), bpy (4b)) via the oxidative addition of dimethyl platinum(II) complexes with HBr. The complexes [PtBr(H)Me2(NN)] decomposed by reductive elimination of methane above −20 °C for bu2bpy and from −20 to 0 °C for bpy analogue to give methane and platinum(II) complexes [PtBrMe(NN)] (5a)-(5b) and then decomposed at about 0 °C to yield [PtBr2(NN)] and methane. When the reactions were performed at a molar ratio of Pt:RX/1:10, the corresponding complexes [PtBrMe(NN)] (5a)-(5b) were also obtained. The crystal structure of the complex 3b shows that platinum adopts square planar geometry with a twofold axis through the platinum atom. The Pt…Pt distance (5.164 Å) is considerably larger than the interplanar spacing (3.400 Å) and there is no platinum-platinum interaction.  相似文献   

4.
Chiral palladium and platinum complexes bearing non-symmetrical, PCN pincer ligand, 6-methoxy-3-(4′-isopropyl-2′-oxazolin-2′-yl)phenyl diphenylphosphinite [i-Pr-Phemox-OPPh2], are first synthesized via oxidative addition of (i-Pr-Phemox-OPPh2)Br 6 to Pd2(dba)3 · (CHCl3) or Pt(dba)2 and subsequent treatment with silver salts.  相似文献   

5.
A variety of platinum(II) complexes of methimazole (2-mercapto-1-methylimidazole; HImS = neutral form and ImS = thiolate form), coordinated in both thione and thiolate forms, have been isolated by reacting methimazole with [PtCl(terpy)]Cl (terpy = 2,2′:6′,2″ terpyridine), [PtCl2(bipy)] (bipy = bipyridine), [PtCl2(o-phen)] (o-phen = o-phenanthroline), [PtCl2(CH3CN)2] and [PtCl2(COD)] (COD = 1,5-cyclooctadiene). These complexes were characterized by electronic absorption, IR and NMR (1H, 13C, 195Pt) spectroscopies. Molecular structure of [Pt(bipy)(HImS)2]Cl2·3H2O (3a·3H2O) has been established by single crystal X-ray crystallography. Platinum thiolate complex, [Pt(ImS)2(HImS)2] (5), could be obtained by treatment of [Pt(HImS)4]Cl2 with sodium methoxide in methanol. The solution of 5 in organic solvents yielded bi- and tri-nuclear platinum complexes. The effect of diimine ligands on oxidation of methimazole moiety in the complexes has been studied by electrochemical oxidation and pulse radiolytic oxidation employing specific one-electron oxidant, radical.  相似文献   

6.
The thiocarbamates 4-RC6H4NHC(S)NR2′ (R = H, Cl; R′ = Me, Et), 4-ClC6H4NHC(S)NR (NR = 2-pyridylpiperazine) react with cis-[PtCl2(PTA)2] (PTA = 1,3,5-triaza-7-phosphaadamantane) in the presence of base to afford the monocationic platinum(II) complexes cis-[Pt{SC(NR2′) = NC6H4R}(PTA)2]+ (R = H, Cl; R′ = Me, Et), cis-[Pt{SC(NR) = NC6H4Cl}(PTA)2]+ (NR = 2-pyridylpiperazine), which were isolated as their PF6 salts in high yields. The complexes were fully characterised spectroscopically and also by X-ray crystallography. Cytotoxicity of these complexes was studied in vitro in three human cancer cell lines (CH1, A549 and SW480) using the MTT assay.  相似文献   

7.
The synthesis and characterization of several complexes of the composition [{M(terpy)}n(L)](ClO4)m (M = Pt, Pd; L = 1-methylimidazole, 1-methyltetrazole, 1-methyltetrazolate; terpy = 2,2′:6′,2″-terpyridine; n = 1, 2; m = 1, 2, 3) is reported and their applicability in terms of a metal-mediated base pair investigated. Reaction of [M(terpy)(H2O)]2+ with 1-methylimidazole leads to [M(terpy)(1-methylimidazole)](ClO4)2 (1: M = Pt; 2: M = Pd). The analogous reaction of [Pt(terpy)(H2O)]2+ with 1-methyltetrazole leads to the organometallic compound [Pt(terpy)(1-methyltetrazolate)]ClO4 (3) in which the aromatic tetrazole proton has been substituted by the platinum moiety. For both platinum(II) and palladium(II), doubly metalated complexes [{M(terpy)}2(1-methyltetrazolate)](ClO4)3 (4: M = Pt; 5: M = Pd) can also be obtained depending on the reaction conditions. In the latter two compounds, the [M(terpy)]2+ moieties are coordinated via C5 and N4. X-ray crystal structures of 1, 2, and 3 are reported. In addition, DFT calculations have been carried out to determine the energy difference between fully planar [Pd(mterpy)(L)]2+ complexes Ip-IVp (mterpy = 4′-methyl-2,2′:6′,2″-terpyridine; L = 1-methylimidazole-N3 (I), 1-methyl-1,2,4-triazole-N4 (II), 1-methyltetrazole-N3 (III), or 3-methylpyridine-N1 (IV)) and the respective geometry-optimized structures Io-IVo. Whereas this energy difference is larger than 70 kJ mol−1 for compounds I, II, and IV, it amounts to only 0.8 kJ mol−1 for the tetrazole-containing complex III, which is stabilized by two intramolecular C-H?N hydrogen bonds. Of all complexes under investigation, only the terpyridine-metal ion-tetrazole system with N3-coordinated tetrazole appears to be suited for an application in terms of a metal-mediated base pair in a metal-modified oligonucleotide.  相似文献   

8.
The multinuclear (1H, 15N, 31P and 195Pt) NMR spectroscopies, ES-MS and HPLC have been employed to investigate the structure-activity relationship for the reactions between guanosine 5′-monophosphate (5′-GMP) and the platinum(II)-triamine complexes of the general formulation cis-[Pt(NH3)2(Am)Cl]NO3 (where Am represents a substituted pyridine). The order of reaction rate of the reactions was found to be: 3-phpy > 4-phpy > py > 4-mepy > 3-mepy > 2-mepy. The two basic factors, steric and electronic, were attributed to the order of the binding rate constants. A possible mechanism of the reaction of cis-[Pt(NH3)2(Am)Cl]+ with 5′-GMP suggested that the reactions proceed via direct nucleophilic attack and no loss of ammonia. cis-[Pt(NH3)2(Am)Cl]+ binds to the N7 nitrogen of the guanine residue of 5′-GMP to form a coordinate bond with the Pt metal centre. This mechanism is apparently different from that of cisplatin. The pKa value of cis-[Pt(NH3)2(4-mepy)(H2O)](NO3)2 (5.63) has been determined at 298 K by the use of distortionless enhancement by polarization transfer (DEPT) 15N NMR spectroscopy and compared to the pKa value of cis-[PtCl(H2O)(NH3)2]+.  相似文献   

9.
The novel steroidal carrier ligand 17-α-[4′-ethynyl-dimethylbenzylamine]-17-β-testosterone (ET-dmba 1) and the steroid — C,N-chelate platinum(II) derivatives [Pt(ET-dmba)Cl(L)] (L = DMSO (2) and PTA (3; PTA = 1,3,5-triaza-7-phosphaadamantane)) have been prepared. Values of IC50 were calculated for the new platinum complexes 2 and 3 against a panel of human tumor cell lines representative of ovarian (A2780 and A2780cisR) and breast cancers (T47D). At 48 h incubation time complexes 2 and 3 show very low resistance factors (RF of < 2) against an A2780 cell line which has acquired resistant to cisplatin and were more active than cisplatin (about 4-fold for 3) in T47D (AR+, AR = androgen receptor). Compound 1 retains a moderate degree of relative binding affinity (RBA = 0.94%) for androgen receptors. The cytotoxicity of the non steroidal platinum analogues [Pt(dmba)Cl(L)] (dmba = dimethylbenzylamine; L = DMSO (4) and PTA (5)) has also been studied for comparison purposes. Theoretical calculations at the BP86/def2-TZVP level of theory on complex 3 have been undertaken.  相似文献   

10.
The oxidative addition reactions between two different [Ir(cod)(LL′)] complexes (LL′ = hpt and AnMetha) and iodomethane was kinetically investigated. The rate of oxidative addition was determined as 2.2(2) × 10−2 and 2.69(6) × 10−2 M−1 s−1 for [Ir(cod)(hpt)] and [Ir(cod)(AnMetha)] in nitromethane respectively. The large negative entropy of activation for the above-mentioned reactions in different solvents clearly point to an associative mechanism. An intrinsic volume of activation of −30.5(3) and −28(3) cm3 mol−1 was determined for [Ir(cod)(hpt)] and [Ir(cod)(AnMetha)], respectively. A linear transition state with large charge separation and central ion contraction due to oxidation, contributes to the negative volume of activation.  相似文献   

11.
A bulky platinum triamine complex, [Pt(Me5dien)(NO3)]NO3 (Me5dien = N,N,N′,N′,N′′-pentamethyldiethylenetriamine) has been prepared and reacted in D2O with N-acetylmethionine (N-AcMet) and guanosine 5′-monophosphate (5′-GMP); the reactions have been studied using 1H NMR spectroscopy. Reaction with 5′-GMP leads to two rotamers of [Pt(Me5dien)(5′-GMP-N7)]+. Reaction with N-AcMet leads to formation of [Pt(Me5dien)(N-AcMet-S)]+. When a sample with equimolar mixtures of [Pt(Me5dien)(D2O)]2+, 5′-GMP, and N-AcMet was prepared, [Pt(Me5dien)(5′-GMP-N7)]+ was the dominant product observed throughout the reaction. This selectivity is the opposite of that observed for a similar reaction of [Pt(dien)(D2O)]2+ with 5′-GMP and N-AcMet. To our knowledge, this is the first report of a platinum(II) triamine complex that reacts substantially faster with 5′-GMP than with N-AcMet; the effect is most likely due to steric clashes between the methyl groups of the Me5dien ligand and the N-AcMet.  相似文献   

12.
Platinum(II) and platinum(IV) complexes with 3-amino-5-methyl-5-(4-pyridyl)-2,4-imidazolidenedione (L) with general formulaе cis-[PtL2X2nH2O and [PtL2Cl4], where X = Cl, Br, I and n = 2-4) were synthesized. The novel compounds were fully characterized by elemental analysis, IR, 1H, 13C, 195Pt NMR spectra, thermal analysis and molar conductivity. The geometry of Pt(II) complexes and of the organic ligand in the gas phase were optimized using the hybrid DFT method B3LYP with LANL2DZ and 6-31G** basis sets. Some physicochemical parameters as dipole moment, HOMO, LUMO energies and ESP charges were calculated. The comparison of the bond length and angles, obtained from the X-ray analysis and DFT calculations is realized. The cytotoxic effects of these complexes in human T-cell leukemia KE-37 (SKW-3) are reported.  相似文献   

13.
A series of novel platinum(II) complexes involving an asymmetric chelating diamine 2-morpholinoethylamine (MPEA) as the carrier, cis-[Pt(MPEA)X2] (X2 = 2Cl, oxalate, malonate, 1,1-cyclobutanedicarboxylate (CBDCA), 3-hydroxy-1,1-cyclobutanedicarboxylate (HO-CBDCA)), have been synthesized and characterized by elemental analysis and spectroscopic data along with X-ray crystal structure for a representative complex cis-[Pt(MPEA) (CBDCA)]. The Pt(II) is in a square planar environment and is coordinated by a chelating CBDCA and MPEA in cis position. The complexes with dicarboxylate are quite soluble (>25 mg/ml) and stable in water. The cytotoxicity of the complexes has been assessed in the human lung cancer cell lines A549 and A549/ATCC. One complex, cis-[Pt(MPEA)Cl2], is more active than carboplatin against both the sensitive and resistant cells, and has less cross-resistance with cisplatin.  相似文献   

14.
The novel N,N-type bidentate ligand precursors, diethyl, dipropyl esters of ethylenediamine-N,N′-diacetic acid dihydrochloride (HOOCCH2NHCH2CH2NHCH2COOH · 2HCl, H2edda · 2HCl), and the corresponding tetrachloroplatinum(IV) complexes, [PtCl4(R2edda)] · H2O (ROOCCH2NHCH2CH2NHCH2COOR, R = Me, Et, n-Pr), were synthesized. The esters coordinated as bidentate ligands via both N donor atoms. The esters, as well as the complexes, have been characterized by infrared, 1H and 13C NMR spectroscopy and elemental analysis. Solid state structures of both dimethyl and diethyl ester platinum(IV) complexes have been determined by X-ray crystallography. Quantum chemical calculations were performed in order to investigate diastereoselectivity in the formation of the platinum(IV) complexes. The in vitro cytotoxic evaluation of the investigated complexes in human tumor cell lines 1411HP, H12.1 (both testicular germ cell tumors), DLD-1 (colon carcinoma), 518A2 (melanoma), A549 (lung carcinoma) and liposarcoma showed a dose-dependent antiproliferative effect in all cell lines. Remarkably, the highest cytotoxic activity was observed in the cisplatin-resistant cell line 1411HP. In addition, at higher concentrations the treatment with these complexes led to the induction of apoptosis in all cell lines except for DLD-1.  相似文献   

15.
A series of flexible multidentate ligands containing N,P-donor, 2-[N-(diphenylphosphino)methyl]amino-pyridine (L1), 2-[N-bi-(diphenylphosphino) methyl]amino-pyridine (L2), 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L3) and 4-[(N-diphenylphosphino)methyl]amino-pyridine) (L4) have been synthesized. The mono- and dinuclear cyclometalated platinum(II) complexes [Pt(C^N^N)L1]ClO4 (HC^N^N = 6-phenyl-2,2′-bipyridine), [Pt2(C^N^N)2L1](ClO4)2, [Pt2(C^N^N)2L2](ClO4)2, [Pt(C^N^N)L3]ClO4 and [Pt2(C^N^N)2L4](ClO4)2 were prepared and their structures determined by X-ray crystal analysis. These complexes exhibit long-lived bright orange emissions ranging from 560 to 610 nm in the solid state at room temperature. In solution, dinuclear complexes have emissions with higher quantum yields than mononuclear complexes. This can be attributed to intramolecular interaction of free functional group with Pt(II) at axial position, resulting in the quenching of phosphorescence for platinum(II) complexes in the 3MLCT excited state.  相似文献   

16.
Neutral palladium(IV) complexes containing the bis(pyrazol-1-yl)borate ligand, PdMe3{(pz)2BH2}(L) [L=py-d5 (4), PMe2Ph (6)], are generated in solution by oxidative addition of iodomethane to [PdMe2{(pz)2BH2}] at −70 °C followed by addition of L; the Pd(IV) complexes reductively eliminate ethane above 0 °C. Stable Pt(IV) analogues of 4 and 6 have been isolated, and comparison of NMR spectra for Pd(IV) and Pt(IV) species support structural assignments for the unstable Pd(IV) complexes. The complex PtMe3{(pz)2BH2}(py) (1a) has been characterised by X-ray diffraction, together with Pt(mq)Me2{(pz)2BH2} (2) (mq=8-methylquinolinyl); both complexes show a fac-PtC3 configuration for Pt(IV), and for 2 the PtN distances are ∼0.03 Å shorter than in the isostructural Pd(IV) complex.  相似文献   

17.
Oxovanadium(IV) complexes [VO(L)(B)] (1-3), where H2L is a Schiff base ligand 2-(2-hydroxybenzylideneamino)phenol and B is 1,10-phenanthroline (phen for 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq for 2) or dipyrido[3,2-a:2′,3′-c]phenazine (dppz for 3), have been prepared, characterized and their DNA binding property and photo-induced DNA cleavage activity studied. Complex 3 which is structurally characterized by X-ray crystallography shows the presence of an oxovanadium(IV) moiety in a six coordinate VO3N3 coordination geometry. The complexes show a d-d band within 800-850 nm in DMF. The complexes display an oxidative response near 0.7 V versus SCE for V(V)-V(IV) and a reductive response within −1.1 to −1.3 V due to V(IV)-V(III) couple in DMF-0.1 M TBAP. The complexes are avid binders to calf thymus DNA giving binding constant values of 4.2 × 104 to 1.2 × 105 M−1. The complexes do not show any “chemical nuclease” activity in dark. The dpq and dppz complexes are photocleavers of plasmid DNA in UV-A light of 365 nm via 1O2 pathway and in near-IR light (752.5 to 799.3 nm IR optics) by HO pathway. Complex 3 exhibits significant photocytotoxicity in visible light in HeLa cells giving IC50 value of 13 μM, while it is less toxic in dark (IC50 = 97 μM).  相似文献   

18.
Reported herein are studies of the concentration and temperature dependent interactions with DNA of the stereochemically defined mixed-metal supramolecular complexes, [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 (tpy = 2,2′:6′,2′′-terpyridine and tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine). These metal complexes couple a ruthenium based light absorber (LA) to the bioactive platinum sites (BAS) using a tridentate bridging ligand (BL). The complexes exhibit intense Ru → tppz(π∗) metal to ligand charge transfer (MLCT) transitions in the visible region and adopt a square planar geometry around the Pt(II) center. The effect of incubating these metal complexes with DNA on the subsequent migration of DNA through an agarose gel was found to be more dramatic than that observed for the well known anticancer drug, cis-[Pt(NH3)2Cl2] (cisplatin). This effect was enhanced with increased incubation temperature. Unwinding of supercoiled plasmid DNA was found to be more pronounced for the trimetallic complex, [ClPt(tppz)Ru(tppz)PtCl](PF6)4, than for the bimetallic complex, [(tpy)Ru(tppz)PtCl](PF6)3.  相似文献   

19.
Metallocyclic platinum(II) complexes coordinating with 2-phenylpyridine (ppy) and a series of β-diketone ancillary OO ligands, (ppy)Pt(acac), (ppy)Pt(ba), (ppy)Pt(dbm), and (ppy)Pt(tta) (acac = acetylacetone, ba = benzoylacetone, dbm = dibenzoylmethane, tta = thenoyltrifluoroacetone) were synthesized. The crystal structure, absorption, emission, quantum yield and phosphorescence life time were characterized. As the conjugative π system of the OO ligand increases in the order acac < ba < dbm, or there is a group -CF3to attract the electron density of the tta ligand, the quantum yield decreases in the order (ppy)Pt(acac) > (ppy)Pt(ba) > (ppy)Pt(dbm) > (ppy)Pt(tta) due to an energy back-flow from ppy to the OO ligand, a trend also in contrast to the phosphorescence emission spectra and time decay (biexponentially, ∼0.7-13 μs).  相似文献   

20.
Terpyridine-platinum(II) (TP-Pt(II)) complexes are known to possess DNA-intercalating activity and have been regarded as potential antitumor agents. However, their cytotoxic mechanism remains unclear. To investigate the possible mechanism, a series of TP-Pt(II) compounds were prepared and their biological activities assessed. The DNA binding activities of the aromatic thiolato[TP-Pt(II)] complexes were stronger than the aliphatic 2-hydroxylethanethiolato(2,2′:6′,2′′-terpyridine)platinum(II) [TP(HET)]. TP-Pt(II) complexes inhibited topoisomerase IIα or topoisomerase I activity at IC50 values of about 5 μM and 10-20 μM, respectively, whereas the human thioredoxin reductase 1 (hTrxR1) activity was inhibited with IC50 values in the range of 58-78 nM. At the cellular level, they possessed cytotoxicity with IC50 values between 7 and 19 μM against HeLa cells. Additionally, using X-ray crystallography and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, we elucidated that the TP-Pt(II) complexes inhibited hTrxR1 activity by blocking its C-terminal active-site selenocysteine. Therefore, TP-Pt(II) complexes possess inhibitory activities against multiple biological targets, and they may be further studied as anticancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号