首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sardon T  Peset I  Petrova B  Vernos I 《The EMBO journal》2008,27(19):2567-2579
The centrosomal kinase Aurora A (AurA) is required for cell cycle progression, centrosome maturation and spindle assembly. However, the way it participates in spindle assembly is still quite unclear. Using the Xenopus egg extract system, we have dissected the role of AurA in the different microtubule (MT) assembly pathways involved in spindle formation. We developed a new tool based on the activation of AurA by TPX2 to clearly define the requirements for localization and activation of the kinase during spindle assembly. We show that localized AurA kinase activity is required to target factors involved in MT nucleation and stabilization to the centrosome, therefore promoting the formation of a MT aster. In addition, AurA strongly enhances MT nucleation mediated by the Ran pathway through cytoplasmic phosphorylation. Altogether, our data show that AurA exerts an effect as a key regulator of MT assembly during M phase and therefore of bipolar spindle formation.  相似文献   

3.
Formation of a new centriole adjacent to a pre-existing centriole occurs only once per cell cycle. Despite being crucial for genome integrity, the mechanisms controlling centriole biogenesis remain elusive. Here, we identify RBM14 as a novel suppressor of assembly of centriolar protein complexes. Depletion of RBM14 in human cells induces ectopic formation of centriolar protein complexes through function of the STIL/CPAP complex. Intriguingly, the formation of such structures seems not to require the cartwheel structure that normally acts as a scaffold for centriole formation, whereas they can retain pericentriolar material and microtubule nucleation activity. Moreover, we find that, upon RBM14 depletion, a part of the ectopic centriolar protein complexes in turn assemble into structures more akin to centrioles, presumably by incorporating HsSAS-6, a cartwheel component, and cause multipolar spindle formation. We further demonstrate that such structures assemble in the cytoplasm even in the presence of pre-existing centrioles. This study sheds light on the possibility that ectopic formation of aberrant structures related to centrioles may contribute to genome instability and tumorigenesis.  相似文献   

4.
Pharmacological inhibition of Drosophila Polo kinase with BI2536 has allowed us to re-examine the requirements for Polo during Drosophila male gametogenesis. BI2536-treated spermatocytes persisted in a pro-metaphase state without dividing and had condensed chromosomes that did not separate. Centrosomes failed to recruit γ-tubulin and centrosomin (Cnn) and were not associated with microtubule arrays that were abnormal and did not form proper bipolar spindles. Centrioles, which usually separate during the anaphase of the first meiosis, remained held together in a V-shaped configuration suggesting that Polo kinase regulates the proteolysis that breaks centriole linkage to ensure their disengagement. Despite these defects spermatid differentiation proceeds, leading to axoneme formation.  相似文献   

5.
Drosophila male meiosis offers unique opportunities for mutational dissection of cytokinesis. This system allows easy and unambiguos identification of mutants defective in cytokinesis through the examination of spermatid morphology. Moreover, cytokinesis defects and protein immunostaining can be analyzed with exquisite cytological resolution because of the large size of meiotic spindles. In the past few years several mutations have been isolated that disrupt meiotic cytokinesis in Drosophila males. These mutations specify genes required for the assembly, proper constriction or disassembly of the contractile ring. Molecular characterization of these genes has identified essential components of the cytokinetic machinery, highlighting the role of the central spindle during cytokinesis. This structure appears to be both necessary and sufficient for signaling cytokinesis. In addition, many data indicate that the central spindle microtubules cooperatively interact with elements of the actomyosin contractile ring, so that impairment of either of these structures prevents the formation of the other.  相似文献   

6.
Spindles and centrosomes during male meiosis in Drosophila melanogaster   总被引:1,自引:0,他引:1  
We have studied the spatial distribution of chromosomes, spindle fibers and centrosomes throughout the first meiotic division in males of Drosophila melanogaster. There seem to be two different types of spindle fibers: those which connect the poles to the chromosomes, and others arranged as cup-shaped hemispheres that reach from the poles to an unstained area on the equator of the cell. These pole-equator fibers could be responsible for positioning the nucleus and distributing cytoplasmic organelles around the nucleus during prophase, so that after meiosis, the daughter cells are provided with equal amounts of preorganized cytoplasmic organelles. These fibers remain until after the daughter nuclei have formed during telophase. An antigen associated with the centrosomes of mitotic spindles appears during meiosis as dispersed particles surrounding the nucleus; these particles might provide the developing spermatids with microtubule-organizing centers.  相似文献   

7.
We have achieved, for the first time, the selective patterning of centrosomes onto solid substrates. The use of such patterned centrosome arrays as templates for the directed polymerization of microtubules was also demonstrated. Centrosomes are small organelles in animal cells that serve as nucleation and organization centers of microtubules. Directed assembly of microtubules on the patterned centrosome arrays provides a new route to control the positions and directions of microtubules on surfaces. Combining the patterning of the isolated centrosomes and the directed growth of microtubules may lead to the generation of desired microtubule networks for bio-based nanodevices.  相似文献   

8.
Proper regulation of microtubule dynamics during mitosis is essential for faithful chromosome segregation. In fact, recently we discovered increased microtubule plus end assembly rates that are frequently observed in human cancer cells as an important mechanism leading to whole chromosome missegregation and chromosomal instability (CIN). However, the genetic alterations responsible for increased microtubule polymerization rates in cancer cells remain largely unknown. The identification of such lesions is hampered by the fact that determining dynamic parameters of microtubules usually involves analyses of living cells, which is technically difficult to perform in large-scale screening settings. Therefore, we sought to identify alternative options to systematically identify regulators of microtubule plus end polymerization. Here, we introduce a simple and robust phenotypic screening assay that is based on the analyses of monopolar mitotic spindle structures that are induced upon inhibition of the mitotic kinesin Eg5/KIF11. We show that increased microtubule polymerization causes highly asymmetric monoasters in the presence of Eg5/KIF11 inhibition and this phenotype can be reliably assessed in living as well as in fixed cells. Using this assay we performed a siRNA screen, in which we identify several microtubule plus end binding proteins as well as centrosomal and cortex associated proteins as important regulators of microtubule plus end assembly. Interestingly, we demonstrate that a subgroup of these regulators function in the regulation of spindle orientation through their role in dampening microtubule plus end polymerization.  相似文献   

9.
Meiotic spindles in males of higher Lepidotera are unusual in that the bulk of the spindle microtubules (MTs) ends about halfway between the equatorial plate and the centrosomes in metaphase. It appears worthwhile to determine how the MTs are nucleated, while their pole proximal ends are distant from the centrosomes. To this end, spermatocytes of Phragmatobia fuliginosa (Arctiidae), collected in the field, were double-labeled with antibodies to beta- and gamma-tubulin. The former antibody reveals the entire microtubular cytoskeleton, and the latter is directed against a newly-discovered tublin isoform that is prevalent in microtubule-organizing centers (MTOCs). The immunocytochemical work was supplemented by a fine structural analysis of MTOCs and spindles. Gamma-tubulin was clearly detected at the spindle poles, and prominent microtubular asters originated from these sites. Additionally, MT arrays at both sides of the equatorial plate in metaphase spermatocytes contained gamma-tubulin. The staining persisted in late anaphase, when kinetochore MTs are depolymerized. This indicates that at least nonkinetochore MTs contain gamma-tubulin. The analysis of ultrathin sections through spindles revealed large amounts of pericentriolar material at the spindles poles, in prometaphase through anaphase. The spindle MTs appeared as regular, straight elements in longitudinal sections. We assume that gamma-tubulin is located at the pole proximal ends of the MTs and/or is associated with the spindle MTs throughout their lengths. In order to distinguish between these possibilities, testes of Ephestia kuehniella (Pyralidae), a laboratory species, were cold-treated prior to double-labeling with antibodies to beta- and gamma-tubulin. The treatment was expected to depolymerize MTs. Astral MTs, which were nucleated end-on by gamma-tubulin-containing material, indeed depolymerized. In contrast, the gamma-tubulin-containing spindle MTs persisted. It is, therefore, conceivable that gamma-tubulin is associated with MTs throughout their lengths in male meiosis of Lepidoptera species. It is plausible that this association stabilizes the MTs against cold-induced disassembly. © 1996 Wiley-Liss, Inc.  相似文献   

10.
The synaptic stages of meiosis in Drosophila melanogaster females are very resistant to the induction of dominant lethal mutations by ionizing radiation. It is assumed that dominant lethals result from interstitial chromatid deletions, and that almost all potential chromatid breaks are repaired in synaptic cells. The type of dose response curve shown by oocytes at later developmental stages is a function of the degree of chromatid coiling and the presence or absence of an investing nuclear envelope.  相似文献   

11.
In fission yeast, meiotic mono-orientation of sister kinetochores is established by cohesion at the core centromere, which is established by a meiotic cohesin complex and the kinetochore protein Moa1. The cohesin subunit Psm3 is acetylated by Eso1 and deacetylated by Clr6. We show that in meiosis, Eso1 is required for establishing core centromere cohesion during S phase, whereas Moa1 is required for maintaining this cohesion after S phase. The clr6-1 mutation suppresses the mono-orientation defect of moa1Δ cells, although the Clr6 target for this suppression is not Psm3. Thus, several acetylations are crucial for establishing and maintaining core centromere cohesion.  相似文献   

12.
During cell division, a bipolar array of microtubules forms the spindle through which the forces required for chromosome segregation are transmitted. Interestingly, the spindle as a whole is stable enough to support these forces even though it is composed of dynamic microtubules, which are constantly undergoing periods of growth and shrinkage. Indeed, the regulation of microtubule dynamics is essential to the integrity and function of the spindle. We show here that a member of an important class of microtubule-depolymerizing kinesins, KLP10A, is required for the proper organization of the acentrosomal meiotic spindle in Drosophila melanogaster oocytes. In the absence of KLP10A, microtubule length is not controlled, resulting in extraordinarily long and disorganized spindles. In addition, the interactions between chromosomes and spindle microtubules are disturbed and can result in the loss of contact. These results indicate that the regulation of microtubule dynamics through KLP10A plays a critical role in restricting the length and maintaining bipolarity of the acentrosomal meiotic spindle and in promoting the contacts that the chromosomes make with microtubules required for meiosis I segregation.  相似文献   

13.
Aurora/Ipl1-related kinases are a conserved family of enzymes that have multiple functions during mitotic progression. Although it has been possible to use conventional genetic analysis to dissect the function of aurora, the founding family member in Drosophila (Glover, D.M., M.H. Leibowitz, D.A. McLean, and H. Parry. 1995. Cell. 81:95-105), the lack of mutations in a second aurora-like kinase gene, aurora B, precluded this approach. We now show that depleting Aurora B kinase using double-stranded RNA interference in cultured Drosophila cells results in polyploidy. aurora B encodes a passenger protein that associates first with condensing chromatin, concentrates at centromeres, and then relocates onto the central spindle at anaphase. Cells depleted of the Aurora B kinase show only partial chromosome condensation at mitosis. This is associated with a reduction in levels of the serine 10 phosphorylated form of histone H3 and a failure to recruit the Barren condensin protein onto chromosomes. These defects are associated with abnormal segregation resulting from lagging chromatids and extensive chromatin bridging at anaphase, similar to the phenotype of barren mutants (Bhat, M.A., A.V. Philp, D.M. Glover, and H.J. Bellen. 1996. Cell. 87:1103-1114.). The majority of treated cells also fail to undertake cytokinesis and show a reduced density of microtubules in the central region of the spindle. This is accompanied by a failure to correctly localize the Pavarotti kinesin-like protein, essential for this process. We discuss these conserved functions of Aurora B kinase in chromosome transmission and cytokinesis.  相似文献   

14.
Shugoshins (Sgo) are conserved proteins that act as protectors of centromeric cohesion and as sensors of tension for the machinery that eliminates improper kinetochore-microtubule attachments. Most vertebrates contain two Sgo proteins, but their specific functions are not always clear. Xenopus laevis Sgo1, XSgo1, protects centromeric cohesin from the prophase dissociation pathway. Here, we report the identification of XSgo2 and show that it does not regulate cohesion. Instead, we find that it participates in bipolar spindle assembly. Both Sgo proteins interact physically with the Chromosomal Passenger Complex (CPC) containing Aurora B, a key regulator of mitosis, but the functional consequences of such interaction are distinct. XSgo1 is required for proper localization of the CPC while XSgo2 positively contributes to its activation and the subsequent phosphorylation of at least one key substrate for bipolar spindle assembly, the microtubule depolymerizing kinesin MCAK (Mitotic Centromere-Associated Kinesin). Thus, the two Xenopus Sgo proteins have non-overlapping functions in chromosome segregation. Our results further suggest that this functional specificity could rely on the association of XSgo1 and XSgo2 with different regulatory subunits of the PP2A complex.  相似文献   

15.
Cell division requires the regulation of karyokinesis and cytokinesis, which includes an essential role of the achromatic spindle. Although the functions of centrosomes are well characterised in somatic cells, their role during vertebrate spermatogenesis remains elusive. We have studied the dynamics of the meiotic centrosomes in male mouse during both meiotic divisions. Results show that meiotic centrosomes duplicate twice: first duplication occurs in the leptotene/zygotene transition, while the second occurs in interkinesis. The maturation of duplicated centrosomes during the early stages of prophase I and II are followed by their separation and migration to opposite poles to form bipolar spindles I and II. The study of the genetic mouse model Plk1(Δ/Δ) indicates a central role of Polo‐like kinase 1 in pericentriolar matrix assembly, in centrosome maturation and migration, and in the formation of the bipolar spindles during spermatogenesis. In addition, in vitro inhibition of Polo‐like kinase 1 and Aurora A in organotypic cultures of seminiferous tubules points out to a prominent role of both kinases in the regulation of the formation of meiotic bipolar spindles.  相似文献   

16.
Spermatogenesis in Drosophila melanogaster serves as an excellent model system for the isolation and analysis of genes required in the control of chromosome segregation and cytokinesis. We report here the isolation and molecular characterization of a novel P-element induced allele of the des-1 gene, which leads to male sterility as a consequence of the failure of central spindle assembly in meiotic spermatocytes and the formation of aberrant meiotic end products characteristic of cytokinesis failure. We have raised affinity-purified antibodies against a Des-1 fusion protein, and localized the Des-1 protein in Drosophila spermatocytes. We show that the Des-1 protein is colocalized with mitochondria throughout male meiosis, becoming intimately associated with mitochondria along the spindle apparatus during anaphase and telophase, and with the Nebenkern, or mitochondrial derivative, of the meiotic end products. In addition, a significant association of Des-1 with the contractile ring is observed during anaphase and telophase of meiosis. These observations, together with the presence of six potential transmembrane domains in the Des-1 protein, raise the possibility that Des-1 may act as part of an anchoring mechanism that links membrane-bounded cellular compartments to components of the cytoskeleton.  相似文献   

17.
18.
19.
20.
Two successive rounds of chromosome segregation following a single round of DNA replication enable the production of haploid gametes during meiosis. In the fission yeast Schizosaccharomyces pombe, karyogamy is the process where the nuclei from 2 haploid cells fuse to create a diploid nucleus, which then undergoes meiosis to produce 4 haploid spores. By screening a collection of S. pombe deletion strains, we found that the deletion of 2 genes, mal3 and mto1, leads to the production of asci containing up to 8 spores. Here, we show that Mal3, the fission yeast member of the EB1 family of conserved microtubule plus-end tracking proteins, is required for karyogamy, oscillatory nuclear movement, and proper segregation of chromosomes during meiosis. In the absence of Mal3, meiosis frequently initiates before the completion of karyogamy, thus producing up to 8 nuclei in a single ascus. Our results provide new evidence that fission yeast can initiate meiosis prior to completing karyogamy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号