首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Hypoxic conditions occur frequently during hot, dry summers in the small lentic waterbodies (billabongs) that occur on the floodplains of the Murray‐Darling River system of Australia. Behavioural responses to progressive hypoxia were examined for the native and introduced floodplain fish of the Ovens River, an unregulated tributary of the Murray River in south‐east Australia. 2. Given the high frequency of hypoxic episodes in billabongs on the Ovens River floodplain, it was hypothesised that all species would exhibit behaviours that would confer a degree of hypoxia‐tolerance. Specifically, it was hypothesised that as hypoxia progressed, gill ventilation rates (GVRs) would increase and aquatic surface respiration (ASR) would become increasingly frequent. Fish were subjected to rapid, progressive hypoxia from normoxia to anoxia in open tanks. 3. All tested species exhibited behaviours consistent with their use of potentially hypoxic habitats. As hypoxia progressed, GVRs increased and all species, with the exception of oriental weatherloach, began to switch increasingly to ASR with 90% of individuals using ASR at various oxygen concentrations below 1.0 mg O2 L−1. Australian smelt, redfin perch and flat‐headed galaxias were the first three species to rise to ASR, with 10% of individuals using ASR by 2.55, 2.29 and 2.21 mg O2 L−1 respectively. Goldfish and common carp were the last two species to rise to ASR, with 10% of individuals using ASR by 0.84 and 0.75 mg O2 L−1 respectively. In contrast to other species, oriental weatherloach largely ceased gill ventilation and used air‐gulping as their primary means of respiration during severe hypoxia and anoxia. 4. Australian smelt, redfin perch and flat‐headed galaxias were unable to maintain ASR under severe hypoxia, and began exhibiting erratic movements, termed terminal avoidance behaviour, and loss of equilibrium. All other species continued to use ASR through severe hypoxia and into anoxia. Following a rise to ASR, GVRs either remained steady or decreased slightly indicating partial or significant relief from hypoxic stress for these hypoxia‐tolerant species. 5. Behavioural responses to progressive hypoxia amongst the fish species of the Ovens River floodplain indicate a generally high level of tolerance to periodic hypoxia. However, species‐specific variation in hypoxia‐tolerance may have implications for community structure of billabong fish communities following hypoxic events.  相似文献   

2.
Physiological mechanisms involved in acclimation to variable salinity and oxygen levels and their interaction were studied in European flounder. The fish were acclimated for 2 weeks to freshwater (1 per thousand salinity), brackish water (11 per thousand) or full strength seawater (35 per thousand) under normoxic conditions (water Po(2) = 158 mmHg) and then subjected to 48 h of continued normoxia or hypoxia at a level (Po(2) = 54 mmHg) close to but above the critical Po(2). Plasma osmolality, [Na(+)] and [Cl(-)] increased with increasing salinity, but the rises were limited, reflecting an effective extracellular osmoregulation. Muscle water content was the same at all three salinities, indicating complete cell volume regulation. Gill Na(+)/K(+)-ATPase activity did not change with salinity, but hypoxia caused a 25% decrease in branchial Na(+)/K(+)-ATPase activity at all three salinities. Furthermore, hypoxia induced a significant decrease in mRNA levels of the Na(+)/K(+)-ATPase alpha1-subunit, signifying a reduced expression of the transporter gene. The reduced ATPase activity did not influence extracellular ionic concentrations. Blood [Hb] was stable with salinity, and it was not increased by hypoxia. Instead, hypoxia decreased the erythrocytic nucleoside triphosphate content, a common mechanism for increasing blood O(2) affinity. It is concluded that moderate hypoxia induced an energy saving decrease in branchial Na(+)/K(+)-ATPase activity, which did not compromise extracellular osmoregulation.  相似文献   

3.
In this study, the hypoxia tolerance of three Everglades fishes, two native centrarchids ( Lepomis gulosus and Lepomis marginatus ) and a recently introduced cichlid ( Hemichromis letourneuxi ), were documented. Aquatic surface respiration (ASR) thresholds were lowest for H. letourneuxi , followed by L. gulosus , then L. marginatus . The ASR thresholds for L. marginatus were within ranges reported for small, freshwater tropical fishes, while those for L. gulosus were similar to swamp-adapted fishes. For H. letourneuxi , ASR thresholds were some of the lowest reported. All three species showed excellent tolerance of low dissolved oxygen levels when allowed access to the surface. When denied surface access, L. marginatus lost equilibrium at a higher oxygen tension than the other species. Overall, although all species easily tolerated hypoxia, H. letourneuxi appeared to be best equipped to deal with hypoxia, followed by L. gulosus , then L. marginatus . Hemichromis letourneuxi also exhibited more aggressive behaviours than the centrarchids. These results suggest that hypoxia is not likely to prevent H. letourneuxi from exploiting the seasonally inundated wetlands of south Florida while expanding its range there.  相似文献   

4.
Many estuarine habitats are characterized by episodes of hypoxia, the frequency and severity of which may vary seasonally. Accordingly, resident fish species may show seasonal differences in their capacity to tolerate hypoxia. We have tested this hypothesis in the gulf killifish, Fundulus grandis, sampled from the Lake Pontchartrain estuary (Louisiana) at different times of the year. We measured 2 indicators of hypoxia tolerance, the frequency of aquatic surface respiration (ASR) during gradual reduction in dissolved oxygen (D.O.) and survival time during severe hypoxic stress, and found both to be significantly affected by season. Fish collected during the summer did not engage in ASR until the D.O. concentration dropped to values lower than that required to elicit ASR by fish collected during other seasons. Laboratory acclimation of fish to low oxygen did not change the relationship between ASR behavior and D.O., suggesting that the observed seasonal effect on ASR was not simply due to previous exposure of summer fish to environmental hypoxia. Furthermore, fish collected during the summer and winter had significantly longer survival times during exposure to severe hypoxia than fish collected during the fall. Survival analysis indicated that the condition of fish was positively associated with survival time, and seasonal variation in condition accounted for about half of the observed difference between survival times of fish collected during the summer and fall. Seasonal variation in ASR and survival, when taken together, demonstrate that hypoxia tolerance in F. grandis may be subject to acclimatization. An increase in hypoxia tolerance during the summer could increase survivorship of fish when exposed to elevated temperatures and low oxygen concentrations which prevail during the summer months.  相似文献   

5.
A total of 966 cichlids, Cichlasoma urophthalmus , was sampled from three karstic water bodies ('cenotes') in the Yucatan Peninsula. Sex ratio was not different from 1. Specimens with ripe eggs were found during the dry and rainy seasons in the inland cenote and during the dry, rainy, and north winds seasons in the two wetland cenotes. With respect to relative fecundity, data show the C . urophthalmus inland population as two- to three-fold greater (53.1 ± 27.7) than the wetland populations (15.7 ± 5.1 and 18.2 ± 3.1). This is attributable to the different breeding strategies of C . urophthalmus populations inhabiting these two types of cenotes. In particular, the ichthyofauna from the two wetlands showed not only higher species richness (17 and 16 species) but also a higher number of potential predators (nine and eight species) as compared to the inland cenote (six species; two potential predators). It is hypothesized that C . urophthalmus adjusts its clutch size and extends its breeding periods as a response to riskier sites as compared to more secure ones; a higher competition for breeding sites and to increased fishing mortality.  相似文献   

6.
This study quantifies the behavioral response of the widespread mouth brooding African cichlid Pseudocrenilabrus multicolor victoriae to progressive hypoxia. We exposed four gender/stage classes of P. multicolor (males, brooding females, females that had just released young, and non-brooding females) to progressive hypoxia and recorded the percent time spent using aquatic surface respiration (surface skimming, ASR) and gill ventilation rates. This was done for fish collected from three sites in Uganda (lake, swamp, and river) after long-term acclimation to normoxia. There was no effect of site of origin on response to hypoxia, but ASR thresholds did differ between gender/stage classes. The oxygen level (threshold) at which spent 10, 50, and 90% of their time at the surface using ASR was much higher for brooding females than for males, whereas ASR thresholds did not differ between non-brooding females and males. Similarly, the level at which ASR was initiated was much higher in brooding females than males, but did not differ between males and non-brooders, or between males and females than had just released young. The rate of gill ventilation dropped significantly in males and all stages of females after initiation of ASR, suggesting that surface skimming increases efficiency of oxygen acquisition. These results suggest that mouth brooding in female P. multicolor ASR improves oxygen uptake but imposes a cost in terms of time spent at the water surface, and this may affect maternal predation risk in low-oxygen habitats.  相似文献   

7.
Oxygen consumption (o2) and respiratory variables were measured in the Prochilodontid fish, Prochilodus scrofa exposed to graded hypoxia after changes in temperature. The measurements were performed on fish acclimated to 25°C and in four further groups also acclimated to 25°C and then changed to 15, 20, 30 and 35°C. An increase in o2 occurred with rising temperature, but at each temperature o2 was kept constant over a wide range of O2 tensions of inspired water ( Pi o2). The critical oxygen tensions ( Pc o2) were Pi o2= 22 mmHg for 25°C acclimated specimens and after transfer from 25°C to 15, 20, 30 and 35°C the Pc o2 changed to Pi o2= 28, 22, 24 and 45 mmHg, respectively. Gill ventilation ( G ) increased or decreased following the changes in o2 as the temperature changed and was the result of an accentuated increase in breath frequency. During hypoxia the increases in G were characterized by larger increases in breath volume. Oxygen extraction was kept almost constant at about 63% regardless of temperature and ambient oxygen tensions in normoxia and moderate hypoxia ( P o2∼70 mmHg). P. scrofa showed high tolerance to hypoxia after abrupt changes in temperature although its survival upon transfer to 35°C could become limited by the capacity of ventilatory mechanisms to alleviate hypoxic stress.  相似文献   

8.
The genus Oreochromis is among the most popular of the tilapiine cichlid tribe for aquaculture. However, their temperature and hypoxia tolerance, if tested at all, is usually tested at temperatures of 20–25°C, rather than at the considerably higher temperatures of 30–35°C typical of tropical aquaculture. We hypothesized that both larvae and adults of the heat and hypoxia-adapted Tabasco-line of the Nile tilapia Oreochromis niloticus would be relatively hypoxia-tolerant. Oxygen consumption rate (), Q10 and aquatic surface respiration (ASR) was measured using closed respirometry at 2 (c. 0.2 g), 30 (c. 2–5 g), 105 c. (10–15 g) and 240 (c. 250 g) days of development, at 25°C, 30°C and 35°C. at 30°C was inversely related to body mass: c. 90 μM O2 g−1/h in larvae down to c. 1 μM O2 g−1/h in young adults. Q10 for was typical for fish over the range 25–35°C of 1.5–2.0. ASR was exhibited by 50% of the fish at pO2 of 15–50 mmHg in a temperature-dependent fashion. However, the largest adults showed notable ASR only when pO2 fell to below 10 mmHg. Remarkably, pcrit for was 12–17 mmHg at 25–30°C and still only 20–25 mmHg across development at 35°C. These values are among the lowest measured for teleost fishes. Noteworthy is that all fish maintain equilibrium, ventilated their gills and showed routine locomotor action for 10–20 min after ceased at near anoxia and when then returned to oxygenated waters, all fish survived, further indicating a remarkable hypoxic tolerance. Remarkably, data assembled for from >30 studies showed a > x2000 difference, which we attribute to calculation or conversion errors. Nonetheless, pcrit was very low for all Oreochromis sp. and lowest in the heat and hypoxia-adapted Tabasco line.  相似文献   

9.
Physiological, anatomical and behavioural adaptations enable the Australian desert goby, Chlamydogobius eremius, to live in mound springs and temporary aquatic habitats surrounding the south-eastern rim of the Lake Eyre drainage basin in the harsh inland of Australia. This study describes the desert goby's respiratory and metabolic responses to hypoxic conditions and its use of buccal air bubbles for gas exchange at the water surface. Oxygen consumption for C. eremius is significantly higher in water than in air under normoxic and hypoxic conditions. In water, total oxygen consumption (V(O(2))) increases from normoxic conditions (253 microl g(-1) h(-1)) to 8% ambient O(2) concentration (377 microl g(-1) h(-1)), then decreases with increasing hypoxia of 4% O(2) (226 microl g(-1) h(-1)) and at 2% O(2) (123 microl g(-1) h(-1)). In air (fish were moist but out of water), V(O(2)) progressively decreases from normoxic conditions to hypoxic conditions (21% O(2), V(O(2)) is 169 microl g(-1) h(-1) to 39 microl g(-1) h(-1) at 2% O(2)). These data indicate oxygen-conforming patterns with increasing hypoxia both in air and in water below 8% O(2). In water, opercular movement rates remain unchanged with increasing hypoxia (139 min(-1) at 21% O(2), 154 min(-1) at 8%, 156 min(-1) at 4% and 167 min(-1) at 2%) but in air, opercular movement rates are significantly lower than in water, corresponding with the lower metabolic rate (71 min(-1) at 21% O(2), 53 min(-1) at 8%, 96 min(-1) at 4% and 64 min(-1) at 2%). Chlamydogobius eremius can use a buccal air bubble for aerial O(2) uptake, most probably in response to increased aquatic hypoxia. In air, C. eremius relies more on the buccal bubble as an oxygen source with increasing hypoxia up to an ambient O(2) of 4% (7.1% of V(O(2)) at 21% O(2); 14.5% at 8% O(2); and 27.1% at 4% O(2)), then when the available supply of O(2) is further reduced, it decreases (15% of V(O(2)) at 2% O(2)) and respiration across the skin again makes a higher relative contribution. The Australian desert goby has a higher metabolic rate in higher salinities (336 microl g(-1) h(-1) in 35 ppt, 426 microl g(-1) h(-1) in 70 ppt) than in freshwater (235 microl O(2) g(-1) h(-1)), presumably because of the increased metabolic cost of osmoregulation. There was no significant difference in V(O(2)) for fish in air that had come from varying salinities.  相似文献   

10.
The salinity tolerance of 62 strains of Pfiesteria and Pfiesteria‐like heterotrophic dinoflagellates was measured. All strains were acclimated at 12 psu for at least 1 year before experimentation. Strains isolated from the Chesapeake Bay and Neuse River systems tolerated lower salinities than strains isolated from the Wilmington River system (P< 0.005). Swimming cells were still observed after 5 days at 0.5 psu for one strain, and at 1 psu for most other Chesapeake Bay and Neuse River strains. Swimming cells for the Wilmington River were still observed after 5 days at 3–5 psu, but no swimming cells were observed at ≤ 2 psu. With regard to the upper salinity tolerance, the Wilmington River strains tolerated higher salinities than the Chesapeake Bay and Neuse River systems (P< 0.005). Most Wilmington River strains were swimming after 5 days at salinities ≥ 50 psu, whereas the Chesapeake Bay and Neuse River system strains rarely had swimming cells at salinities exceeding 35–45 psu. For all three water systems and for both lower and higher salinities, cells apparently encysted in many instances. However, when salinities were returned to 12 psu, swimming cells often re‐appeared. Statistically significant geographic differences in salinity tolerance suggest a geographic adaptation has occurred and that salinity tolerance is under genetic control. The results also suggest there is diversity among the strains.  相似文献   

11.
This study demonstrates that short-term behavioral and physiological responses may permit the sailfin molly Poecilia latipinna to cope successfully with extreme hypoxia and suggests an interaction between behavioral response (aquatic surface respiration [ASR]) and physiological compensation. Poecilia latipinna acclimated to chronic hypoxia (6 wk at 1.0 mg L(-1) O(2)) exhibited higher hemoglobin and red blood cell concentrations and a 17%-19% lower critical oxygen tension than fish acclimated to normoxia. Ventilation frequency increased twofold under acclimation to hypoxia, a response that did not diminish with time. However, the use of ASR was an immediate response to hypoxia that decreased over the acclimation period. This suggests that gradual physiological compensation decreases the threshold for ASR. There was no consistent effect of hypoxia on mortality and no effect of hypoxia treatment on the number of gestating females, suggesting that plastic behavioral and physiological responses in P. latipinna compensate for hypoxia to a degree that mitigates a decrease in survivorship and facilitates continued reproduction in a laboratory setting. However, there may be predation costs in the field related to ASR.  相似文献   

12.
Hypothermia before and/or during no-flow ischemia promotes cardiac functional recovery and maintains mRNA expression for stress proteins and mitochondrial membrane proteins (MMP) during reperfusion. Adaptation and protection may occur through cold-induced change in anaerobic metabolism. Accordingly, the principal objective of this study was to test the hypothesis that hypothermia preserves myocardial function during hypoxia and reoxygenation. Hypoxic conditions in these experiments were created by reducing O2 concentration in perfusate, thereby maintaining or elevating coronary flow (CF). Isolated Langendorff-perfused rabbit hearts were subjected to perfusate (Po2 = 38 mmHg) with glucose (11.5 mM) and perfusion pressure (90 mmHg). The control (C) group was at 37 degrees C for 30 min before and 45 min during hypoxia, whereas the hypothermia (H) group was at 29.5 degrees C for 30 min before and 45 min during hypoxia. Reoxygenation occurred at 37 degrees C for 45 min for both groups. CF increased during hypoxia. The H group markedly improved functional recovery during reoxygenation, including left ventricular developed pressure (DP), the product of DP and heart rate, dP/dtmax, and O2 consumption (MVo2) (P < 0.05 vs. control). MVo2 decreased during hypothermia. Lactate and CO2 gradients across the coronary bed were the same in C and H groups during hypoxia, implying similar anaerobic metabolic rates. Hypothermia preserved MMP betaF1-ATPase mRNA levels but did not alter adenine nucleotide translocator-1 or heat shock protein-70 mRNA levels. In conclusion, hypothermia preserves cardiac function after hypoxia in the hypoxic high-CF model. Thus hypothermic protection does not occur exclusively through cold-induced alterations in anaerobic metabolism.  相似文献   

13.
The ability to tolerate hypoxia in some haplochromine cichlid fishes contributes to the richness of habitats occupied by the lineage and may be important in interlacustrine dispersal through swampy channels. Lacustrine members of the genus Astatotilapia tend to be ecologically plastic but are rarely encountered in the interior of dense swamps. A notable exception is seen in the swamp corridor that joins Lake Kabaleka with Lake George, Uganda, where one species (Astatotilapia wrought-iron) is abundant, and a second species, A. aeneocolor, is rare. Both species are abundant in the open waters of the main lake. In this paper, we compare physiological (oxygen consumption) and behavioral indicators of hypoxia tolerance between A. wrought-iron from swamp and open-water habitats and between the two species of Astatotilapia. When exposed to progressive hypoxia, all fish used aquatic surface respiration (ASR); however, swamp-dwelling A. wrought-iron showed lower gill ventilation rates prior to the initiation of ASR, higher pre-ASR aggression rates, higher swimming speed during ASR, and a higher rate of bubble exchange than both the open-water group of A. wrought-iron and A. aeneocolor. These differences may reflect interpopulational variation in selection pressure for low-oxygen tolerance between swamp and open-water habitats. Several lines of evidence suggest that A. wrought-iron was in general more hypoxia tolerant than A. aeneocolor. These include a lower ASR90 threshold, a drop in gill ventilation rate with the onset of ASR, and lower rate of equilibrium loss under extreme hypoxia in A. wrought-iron. The routine metabolic rate and critical oxygen tension did not differ between swamp-dwelling and open-water A. wrought-iron, or between A. wrought-iron and A. aeneocolor. Comparative data on the ASR thresholds and critical oxygen tensions of the Astatotilapia species from Lake Kabaleka and other East African cichlids suggest intermediate hypoxia tolerance. Nevertheless, our study suggests that some generalized lacustrine haplochromines may leak through swamp corridors even under relatively extreme conditions.  相似文献   

14.
ASR(ABA, stress, ripening induced protein)是一类响应植物干旱胁迫的关键转录因子, 在许多植物中已有报道, 然而尚未见香蕉(Musa acuminata)中ASR与抗旱作用的相关研究。该实验从香蕉果实cDNA文库中筛选出1个ASR基因, 即MaASR1(登录号为AY628102)。干旱胁迫下, 该基因在叶片中的表达量高于根部。将MaASR1转入拟南芥(Arabidopsis thaliana), Southern检测确定了两株独立表达的转基因株系(命名为L14和L38)。表型观察发现, 此两转基因株系的叶片变小且变厚; Northern和Western检测结果表明, MaASR1在L14和L38中表达。控水处理后, L14和L38的存活率及脯氨酸含量均高于野生型。经干旱胁迫和外源ABA处理后, 对MaASR1转基因株系中ABA/胁迫响应基因的表达分析, 发现MaASR1可增强转基因株系对ABA信号的敏感度, 但不能增强植株依赖于ABA途径的抗旱性。  相似文献   

15.
Planktonic larvae of estuarine crabs are commonly exported to the continental shelf for development and then return to coastal and estuarine areas as postlarvae (megalopae). Megalopae returning to estuaries must be adapted to survive in brackish water whereas those of coastally distributed species should not need such adaptations. We investigated 1) whether megalopae of the estuarine crab Callinectes sapidus and the coastal crab Callinectes similis undergo changes in salinity tolerance upon entry into an estuary and 2) what factors induce those changes. Megalopae were collected at a coastal site and a nearby estuarine site and exposed to a range of salinities (5, 10, 15, 20 and 30) for 6 h. Percent survival was determined after 24 h reintroduction to the collection site water. We also investigated 1) whether increased salinity tolerance was induced by reduced salinity or estuarine chemical cues, 2) the time to acclimation and 3) the salinity necessary for acclimation. C. sapidus megalopae from the estuarine site were more likely to survive exposure to low salinities than those from the coastal site. C. sapidus megalopae from the coastal site exhibited increased survival after acclimation to salinities of 27 and 23 for 12 h. Estuarine chemical cues had no effect on salinity tolerance. C. similis megalopae were less likely to survive at low salinities and did not exhibit an acclimation response upon exposure to reduced salinities. These results suggest that megalopae of C. sapidus are physiologically adapted to recruit to estuaries whereas megalopae of C. similis are unable to acclimate to low salinity conditions.  相似文献   

16.
Deborah M. Dexter 《Hydrobiologia》1993,267(1-3):203-209
The copepod Apocyclops dengizicus is a key item in the food chain of the Salton Sea where the salinity is currently 45 g 1–1. The salinity of the Salton Sea may reach 90 g 1 –1 within the next 20 years. This study examined the salinity tolerance of this copepod.Large copepodite and adult A. dengizicus were introduced into various salinities with and without acclimation. The 96 h LC50 without acclimation was 101 g 1–1. Mortality (at 96 h) without acclimation was low at salinities of 90 g 1 –1 or less.Copepod cultures were maintained, with successful reproduction of at least one new generation, at salinities of from 0.5 to 68 g 1 –1 for at least 120 days. Copepods maintained at higher salinities, up to 79 g 1 –1, remained alive up to 90 days, but a new generation was not produced. In laboratory studies of larval production and survivorship, few nauplii were released at salinities of 68 g 1 –1 or higher, and none survived to the copepodite stage.  相似文献   

17.
Atlantic salmon Salmo salar with amoebic gill disease (AGD) were exposed to a graded hypoxia (135–40 mmHg water P O2) and blood samples analysed for respiratory gases and pH at 119, 79·5 and 40 mmHg water P O2. There were no differences in the rate of oxygen uptake between infected and control fish. However, arterial P O2, and pH were significantly lower in the infected fish whereas P CO2 was significantly higher in infected fish compared with controls prior to hypoxia and at 119 mmHg water P O2. At 79·5 and 40 mmHg water P O2 saturation, there were no significant differences in blood P O2 or pH although blood P CO2 was elevated in AGD affected fish at 50% hypoxia (79·5 mmHg water P O2). The elevated levels of P CO2 in fish affected by AGD resulted in a persistent respiratory acidosis even during hypoxic challenge. These data suggest that even though the fish were severely affected by AGD, the presence of AGD while impairing gas transfer under normoxic conditions, did not contribute to respiratory failure during hypoxia.  相似文献   

18.
When placed in a temperature gradient, most ectotherms have a strict thermal preference that is lowered on exposure to hypoxia. Branchiopods, small aquatic crustaceans, are known to synthesise haemoglobin (Hb) when exposed to hypoxia; hypoxia can occur diurnally and seasonally in ponds. The effect of Hb on behavioural thermoregulation in the branchiopod Daphnia carinata following exposure to both normoxia and hypoxia was examined. Control animals raised in normoxia (Po2=150 mmHg, [Hb]=0.026+/-0.007 mg g dry wt-1) and Hb-rich animals raised in hypoxia (Po2=70 mmHg, [Hb]=0.080+/-0.017 mg g dry wt-1) were placed (N=30) in a tube (length=500 mm, diameter=8 mm) filled with pond water. In the absence of a thermal gradient, control and Hb-rich animals in normoxic water were uniformly distributed along the tube. The presence of a thermal gradient (13 degrees -28 degrees C) elicited clustering at a preferred temperature, T approximately 23 degrees C for both groups. Exposure to hypoxic water in a thermal gradient resulted in a behavioural shift: T approximately 16 degrees C for controls and T approximately 19 degrees C for Hb-rich animals. Measurements of oxygen consumption (V&d2;o2) at fixed temperatures revealed that Hb is associated with a metabolic acclimation to hypoxia.  相似文献   

19.
Individuals of 28 species of cyprinodontoid fishes have been reported from estuaries/salt marshes of the Atlantic and Gulf coasts of North America. Some species show limited latitudinal distributions and/or occupy a limited range of habitats; others are widely distributed and/or occupy a wide range of habitats.A literature survey was made of conditions of water temperature, dissolved-oxygen (DO) concentrations, and salinities at sites where individuals of each species had been collected, and of laboratory-determined tolerances or lethal limits and other responses to those abiotic conditions. Individuals of Cyprinodon variegatus showed the widest overall range of tolerance of environmental temperatures, −1.9–45.4°C, with Gambusia rhizophorae showing the highest lower temperature-tolerance limit, 17°C. The only species highly sensitive to hypoxia was Floridichthys carpio, which showed “stress” at DO levels of 6–8 mg kg−1. All showed use of aquatic surface respiration, except for Kryptolebias marmoratus, which uses aerial respiration in the presence of H2S, and/or under hypoxic conditions. Individuals of C. variegatus were found to tolerate ambient salinities ranging from < 0.5 to 125.2, or higher, and several species of the genus Fundulus were found to tolerate concentrations ranging from <0.5 to ≥100. However, some of the species discussed cannot tolerate salinities beyond those of dilute brackish waters. In most instances, laboratory-determined tolerance limits of temperature and salinity were wider than conditions under which individuals of these species had been found in nature. The majority of available information related to adult individuals, with few studies focused on immature stages; however, existing information permitted a brief review of spawning, incubation, and early development features in Fundulus heteroclitus.Suggestions were made, based on existing information, as to species that would be most likely to show altered population distributions resulting from continued global warming. These included five species that have tropical/subtropical, or subtropical/temperate distributions. Also, a few others were included that show extensive latitudinal distributions, most extending northward into cooler temperate regions of the Atlantic coast. At present, none of these species has shown a range alteration that can be attributed to global warming.  相似文献   

20.
Synopsis Oxygen uptake (VO2) during graded hypoxia, rate of hypoxia acclimation, breathing frequency (fR), breath volume (VS, R) and gill ventilation (VG) were measured in Hoplias malabaricus. Normoxia and hypoxia acclimated fish had similar and constant VO2 and VG in a range of water PO2 from 150 to 25 mmHg. Hypoxia acclimated fish showed significantly higher VO2 in severe hypoxia (PO2 <15 mmHg). Normoxia acclimated fish showed symptoms similar to hypoxic coma after 1 h of exposure to water PO2 of 10 mmHg whereas the same symptoms were observed only at PO2 of 5 mmHg for fish acclimated to hypoxia. Fish required 14 days to achieve full acclimation to hypoxia (PO2 ≥25 mmHg). Lowering of water PO2 from 150 to 25 mmHg resulted in normoxic fish showing a 3–2 fold increase in VG. The increase was the result of an elevation in VS, R rather than fR. Among normoxia acclimated specimens, small fish showed a higher VG per unit weight than the large ones in both normoxia (PO2 =150 mmHg) and hypoxia (PO2 = 15 mmHg). A decrease in the ventilatory requirement (VG/VO2) with increased body weight was recorded in hypoxia (PO2 = 15 mmHg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号