首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Voltage-gated sodium channels serve as a target for many neurotoxins that bind to several distinct, allosterically interacting receptor sites. We examined the effect of membrane potentials (incited by increasing external K+ concentrations) on the binding modulation by veratridine, brevetoxin, and tetrodotoxin of the scorpion α-toxin AaH II to receptor site 3 on sodium channels of rat brain synaptosomes. Depolarization is shown to differentially modulate neurotoxin effects on AaH II binding: Veratridine increase is potentiated, brevetoxin's inhibitory effect is reduced, and tetrodotoxin enhancement is evident mainly at resting membrane potential (5 m M K+). Both tetrodotoxin and veratridine apparently reverse the inhibition of AaH II binding by brevetoxin at resting membrane potential, but only veratridine is able to partially restore AaH II binding at 0 mV (135 m M K+). Thus, the allosteric interactions are grouped into two categories, depending on the membrane potential. Under depolarized conditions, the cooperative effects among veratridine and brevetoxin on AaH II binding fit the previously described two-state conformational model. At resting membrane potential, additional interactions are revealed, which may be explained by assuming that toxin binding induces conformational changes on the channel structure, in addition to being state-dependent. Our results provide a new insight into neurotoxin action and the complex dynamic changes underlying allosteric coupling of neurotoxin receptor sites, which may be related to channel gating.  相似文献   

2.
22Na influx was measured in the established muscle cell line L-6 and in primary rat skeletal muscle cultures following activation of sodium channels by veratridine and sea anemone toxin II. Inhibition of the activated channels by tetrodotoxin (TTX) was analyzed with computer-assisted fits to one- or two-site binding models. In L-6 cultures, two inhibitable sodium channel populations were resolved at all ages in culture: a TTX-sensitive (K = 0.6-5.0 X 10(-8) M) and an insensitive population (Ki = 3.3-4.9 X 10(-6) M). In primary rat muscle cultures, the sensitivity of the toxin-stimulated channels to TTX changed with time in culture. In 4-day-old cultures, a single sodium channel population was detected using TTX (Ki = 2.4 X 10(-7)M). A single population was also found in 6-day-old cultures (Ki = 5.3 X 10(-7) M). By day 7 in culture, the inhibition of 22Na influx by TTX could be resolved into two components with high- and low-affinity sites for the toxin (Ki = 1.3 X 10(-9) M and 9.6 X 10(-7) M). We conclude that a single, toxin-activated sodium channel population with low affinity for TTX exists at early stages, whereas a second, high-affinity population evolves with time in primary rat muscle cultures. The expression of a high-affinity site apparently does not require ongoing neuronal involvement and may reflect an intrinsic property of the muscle cells.  相似文献   

3.
The effect of ionizing radiation on neuronal membrane function was assessed by measurement of neurotoxin-stimulated 22Na+ uptake by rat brain synaptosomes. High-energy electrons and gamma photons were equally effective in reducing the maximal uptake of 22Na+ with no significant change in the affinity of veratridine for its binding site in the channel. Ionizing radiation reduced the veratridine-stimulated uptake at the earliest times measured (3 and 5 s), when the rate of uptake was greatest. Batrachotoxin-stimulated 22Na+ uptake was less sensitive to inhibition by radiation. The binding of [3H]saxitoxin to its receptor in the sodium channel was unaffected by exposure to ionizing radiation. The effect of ionizing radiation on the lipid order of rat brain synaptic plasma membranes was measured by the fluorescence polarization of the molecular probes 1,6-diphenyl-1,3,5-hexatriene and 1-[4-(trimethylammonium)phenyl]-6-phenyl-1,3,5-hexatriene. A dose of radiation that reduced the veratridine-stimulated uptake of 22Na+ had no effect on the fluorescence polarization of either probe. These results demonstrate an inhibitory effect of ionizing radiation on the voltage-sensitive sodium channels in rat brain synaptosomes. This effect of radiation is not dependent on changes in the order of membrane lipids.  相似文献   

4.
Tetrodotoxin (TTX) is a potent toxin that specifically binds to voltage gated sodium channels. TTX binding physically blocks the flow of sodium ions through the channel, thereby preventing action potential (AP) generation and propagation. TTX has different binding affinities for different sodium channel isoforms. These differences are imparted by amino acid substitutions. Such substitutions confer TTX resistance to a variety of species. Tetrodotoxin resistance, however, may come at a cost to performance caused by changes in the biophysical properties and/or ion selectivity of the TTX resistant sodium channels. We here review the properties of sodium channels and their interaction with TTX, and look at some special examples of TTX resistant channels wherein the benefit of toxin resistance may be offset by other behavioral costs.  相似文献   

5.
Incorporation of the saxitoxin receptor of the sodium channel solubilized with Triton X-100 and purified 250-fold from rat brain into phosphatidylcholine vesicles is described. Fifty to 80% of the saxitoxin receptor sites are recovered in the reconstituted vesicles (KD = 3 nM). Unlike the detergent-solubilized saxitoxin receptor, the reconstituted saxitoxin binding activity is stable to incubation at 36 degrees C. Approximately 75% of the reconstituted saxitoxin receptor sites are externally oriented and 25% are inside-out. The initial rate of 22Na+ uptake into reconstituted vesicles is increased up to 3- to 4-fold by veratridine with a K0.5 of 11 microM. Seventy per cent of this increase is blocked by external tetrodotoxin (TTX) with a Ki of 10 nM. All of the veratridine-stimulated 22Na+ uptake is blocked when TTX is present on both sides of the vesicle membrane, or when tetracaine is added to the external medium. The apparent binding constants for veratridine, saxitoxin, and TTX are essentially identical to those in intact rat brain synaptosomes. The results demonstrate reconstitution of sodium transport, as well as neurotoxin binding and action, from substantially purified sodium channel preparations.  相似文献   

6.
The binding of 125I-labeled derivatives of scorpion toxin and sea anemone toxin to tetrodotoxin-insensitive sodium channels in cultured rat muscle cells has been studied. Specific binding of 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin was each blocked by either native scorpion toxin or native sea anemone toxin. K0.5 for block of binding by several polypeptide toxins was closely correlated with K0.5 for enhancement of sodium channel activation in rat muscle cells. These results directly demonstrate binding of sea anemone toxin and scorpion toxin to a common receptor site on the sodium channel. Binding of both 125I-labeled toxin derivatives is enhanced by the alkaloids aconitine and batrachotoxin due to a decrease in KD for polypeptide toxin. Enhancement of polypeptide toxin binding by aconitine and batrachotoxin is precisely correlated with persistent activation of sodium channels by the alkaloid toxins consistent with the conclusion that there is allosteric coupling between receptor sites for alkaloid and polypeptide toxins on the sodium channel. The binding of both 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin is reduced by depolarization due to a voltage-dependent increase in KD. Scorpion toxin binding is more voltage-sensitive than sea anemone toxin binding. Our results directly demonstrate voltage-dependent binding of both scorpion toxin and sea anemone toxin to a common receptor site on the sodium channel and introduce the 125I-labeled polypeptide toxin derivatives as specific binding probes of tetrodotoxin-insensitive sodium channels in cultured muscle cells.  相似文献   

7.
A regulatory mechanism for neuronal excitability consists in controlling sodium channel density at the plasma membrane. In cultured fetal neurons, activation of sodium channels by neurotoxins, e.g., veratridine and alpha-scorpion toxin (alpha-ScTx) that enhance the channel open state probability induced a rapid down-regulation of surface channels. Evidence that the initial step of activity-induced sodium channel down-regulation is mediated by internalization was provided by using 125I-alpha-ScTx as both a channel probe and activator. After its binding to surface channels, the distribution of 125I-alpha-ScTx into five subcellular compartments was quantitatively analyzed by EM autoradiography. 125I-alpha-ScTx was found to accumulate in tubulovesicular endosomes and disappear from the cell surface in a time-dependent manner. This specific distribution was prevented by addition of tetrodotoxin (TTX), a channel blocker. By using a photoreactive derivative to covalently label sodium channels at the surface of cultured neurons, we further demonstrated that they are degraded after veratridine-induced internalization. A time-dependent decrease in the amount of labeled sodium channel alpha subunit was observed after veratridine treatment. After 120 min of incubation, half of the alpha subunits were cleaved. This degradation was prevented totally by TTX addition and was accompanied by the appearance of an increasing amount of a 90-kD major proteolytic fragment that was already detected after 45-60 min of veratridine treatment. Exposure of the photoaffinity-labeled cells to amphotericin B, a sodium ionophore, gave similar results. In this case, degradation was prevented when Na+ ions were substituted by choline ions and not blocked by TTX. After veratridine- or amphotericin B-induced internalization of sodium channels, breakdown of the labeled alpha subunit was inhibited by leupeptin, while internalization was almost unaffected. Thus, cultured fetal neurons are capable of adjusting sodium channel density by an activity-dependent endocytotic process that is triggered by Na+ influx.  相似文献   

8.
We have previously shown that the [3H]saxitoxin binding site of the sodium channel is expressed independently of the [125I]scorpion toxin binding site in chick muscle cultures and in rat brain. In the present work, we studied the development of the sodium channel protein during chemically induced differentiation of N1E-115 neuroblastoma cells, using [3H]saxitoxin binding, [125I]scorpion toxin binding, and 22Na uptake techniques. When grown in their normal culture medium, these cells are mostly undifferentiated, bind 90 +/- 10 fmol of [3H]saxitoxin/mg of protein and 112 +/- 14 fmol of [125I]scorpion toxin/mg protein, and, when stimulated with scorpion toxin and batrachotoxin, take up 70 +/- 5 nmol of 22Na/min/mg of protein. Cells treated with dimethyl sulfoxide (DMSO) or hexamethylene-bis-acetamide (HMBA) differentiate morphologically within 3 days. At this time, the [3H]saxitoxin binding, the [125I]scorpion toxin binding, and the 22Na uptake values are not very different from those of undifferentiated cells. With subsequent time in DMSO or HMBA, these values continue to increase, a result indicating that the main period of sodium channel expression occurs well after the cells have assumed the morphologically differentiated state. The data indicate that the expression of sodium channels and morphological differentiation are independently regulated neuronal properties, that the attainment of morphological differentiation is necessary but not in itself sufficient for full expression of the sodium channel proteins, and that, in contrast to the chick muscle cultures and rat brain, the [3H]saxitoxin site and [125I]scorpion toxin site appear to be coregulated in N1E-115 cells.  相似文献   

9.
The voltage-sensitive sodium channel of rat brain synaptosomes was solubilized with sodium cholate. The solubilized sodium channel migrated on a sucrose density gradient with an apparent S20,w of approximately 12 S, retained [3H]saxitoxin ([3H]STX) binding activity that was labile at 36 degrees C but no longer bound 125I-labeled scorpion toxin (125I-ScTX). Following reconstitution into phosphatidylcholine vesicles, the channel regained 125I-ScTX binding and thermal stability of [3H]STX binding. Approximately 50% of the [3H]STX binding activity and 58% of 125I-ScTX binding activity were recovered after reconstitution. The reconstituted sodium channel bound STX and ScTX with KD values of 5 and 10 nM, respectively. Under depolarized conditions, veratridine enhanced the binding of 125I-ScTX with a K0.5 of 20 microM. These KD and K0.5 values are similar to those of the native synaptosome sodium channel. 125I-ScTX binding to the reconstituted sodium channel, as with the native channel, was voltage dependent. The KD for 125I-ScTX increased with depolarization. This voltage dependence was used to demonstrate that the reconstituted channel transports Na+. Activation of sodium channels by veratridine under conditions expected to cause hyperpolarization of the reconstituted vesicles increased 125I-ScTX binding 3-fold. This increased binding was blocked by STX with K0.5 = 5 nM. These data indicate that reconstituted sodium channels can transport Na+ and hyperpolarize the reconstituted vesicles. Thus, incorporation of solubilized synaptosomal sodium channels into phosphatidylcholine vesicles results in recovery of toxin binding and action at each of the three neurotoxin receptor sites and restoration of Na+ transport by the reconstituted channels.  相似文献   

10.
1. Sodium uptake associated with the activation of voltage-sensitive sodium channels by alkaloid activators, batrachotoxin, veratridine, and aconitine in presynaptic nerve terminals isolated from the central nervous system of cockroach (Periplaneta americana) was investigated. 2. Batrachotoxin (K0.5, 0.2 microM) was full agonist as for most effective activator of Na+ uptake; veratridine (K0.5, 2.5 microM) and aconitine (K0.5, 7.6 microM) produced a maximal stimulation of 22Na+ uptake that were 71% and 43% respectively of that produced by batrachotoxin. 3. Veratridine-dependent 22Na+ uptake was completely inhibited by tetrodotoxin (I0.5, 11 nM), a specific inhibitor of the nerve membrane sodium channels. 4. The present study describes appropriate conditions for measuring neurotoxins--stimulated sodium transport in insect central nervous system synaptosomes. The data show that voltage-sensitive sodium channels as defined by specific activation by the alkaloid neurotoxins are qualitatively distinct in insect synaptosomes than those previously described for vertebrate brain synaptosomes, cultured neuronal cell, nerve membrane vesicles and neuroblastoma cells.  相似文献   

11.
The guanidinium toxin-induced inhibition of the current through voltage-dependent sodium channels was examined for batrachotoxin-modified channels incorporated into planar lipid bilayers that carry no net charge. To ascertain whether a net negative charge exists in the vicinity of the toxin-binding site, we studied the channel closures induced by tetrodotoxin (TTX) and saxitoxin (STX) over a wide range of [Na+]. These toxins carry charges of +1 and +2, respectively. The frequency and duration of the toxin-induced closures are voltage dependent. The voltage dependence was similar for STX and TTX, independent of [Na+], which indicates that the binding site is located superficially at the extracellular surface of the sodium channel. The toxin dissociation constant, KD, and the rate constant for the toxin-induced closures, kc, varied as a function of [Na+]. The Na+ dependence was larger for STX than for TTX. Similarly, the addition of tetraethylammonium (TEA+) or Zn++ increased KD and decreased kc more for STX than for TTX. These differential effects are interpreted to arise from changes in the electrostatic potential near the toxin-binding site. The charges giving rise to this potential must reside on the channel since the bilayers had no net charge. The Na+ dependence of the ratios KDSTX/KDTTX and kcSTX/kcTTX was used to estimate an apparent charge density near the toxin-binding site of about -0.33 e X nm-2. Zn++ causes a voltage-dependent block of the single-channel current, as if Zn++ bound at a site within the permeation path, thereby blocking Na+ movement. There was no measurable interaction between Zn++ at its blocking site and STX or TTX at their binding site, which suggests that the toxin-binding site is separate from the channel entrance. The separation between the toxin-binding site and the Zn++ blocking site was estimated to be at least 1.5 nm. A model for toxin-induced channel closures is proposed, based on conformational changes in the channel subsequent to toxin binding.  相似文献   

12.
J K Reed  M A Raftery 《Biochemistry》1976,15(5):944-953
The biochemical properties of the electrically excitable sodium channels in the electroplaque of Electrophorus electricus were investigated using tritiated tetrodotoxin (TTX) as a specific membrane probe. Membrane fragments from the electroplaque were isolated essentially by differential centrifugation and characterized with respect to the plasma membrane markers acetylcholine receptors, acetylcholinesterase, (Na+ + K+)ATPase, and [3H]TTX binding. Equilibrium binding studies showed that [3H]TTX bound to a single population of noninteracting receptor sites with an apparent dissociation constant of 6 +/- 1 X 10(-9) M. The toxin-membrane complex dissociated with a first-order rate constant of 0.012 sec-1. Studies on the pH dependence of complex formation demonstrated the requirement for an ionizable, functional group with a pK of 5.3 and this group has been shown to be a carboxyl. Treatment of the membranes with trimethyloxonium tetrafluoroborate, a carboxyl group modifying reagent, resulted in an irreversible loss in the binding of [3H]TTX, which could be prevented by low concentrations of TTX or saxitoxin. This decrease was due to a reduction in the total number of binding sites and not to a decrease in toxin binding affinities. The relative binding affinities of various monovalent alkali metal and polyatomic cations for the TTX-receptor site showed that this site displayed cation discrimination properties which were similar to those reported previously for the electrically excitable sodium channel in intact nerve fibers. A possible role for this site in the ion selectivity of the sodium channel is proposed.  相似文献   

13.
Scorpion β-toxin 4 from Centruroides suffusus suffusus (Css4) enhances the activation of voltage-gated sodium channels through a voltage sensor trapping mechanism by binding the activated state of the voltage sensor in domain II and stabilizing it in its activated conformation. Here we describe the antagonist and partial agonist properties of a mutant derivative of this toxin. Substitution of seven different amino acid residues for Glu15 in Css4 yielded toxin derivatives with both increased and decreased affinities for binding to neurotoxin receptor site 4 on sodium channels. Css4E15R is unique among this set of mutants in that it retained nearly normal binding affinity but lost its functional activity for modification of sodium channel gating in our standard electrophysiological assay for voltage sensor trapping. More detailed analysis of the functional effects of Css4E15R revealed weak voltage sensor trapping activity, which was very rapidly reversed upon repolarization and therefore was not observed in our standard assay of toxin effects. This partial agonist activity of Css4E15R is observed clearly in voltage sensor trapping assays with brief (5 ms) repolarization between the conditioning prepulse and the test pulse. The effects of Css4E15R are fit well by a three-step model of toxin action involving concentration-dependent toxin binding to its receptor site followed by depolarization-dependent activation of the voltage sensor and subsequent voltage sensor trapping. Because it is a partial agonist with much reduced efficacy for voltage sensor trapping, Css4E15R can antagonize the effects of wild-type Css4 on sodium channel activation and can prevent paralysis by Css4 when injected into mice. Our results define the first partial agonist and antagonist activities for scorpion toxins and open new avenues of research toward better understanding of the structure-function relationships for toxin action on sodium channel voltage sensors and toward potential toxin-based therapeutics to prevent lethality from scorpion envenomation.  相似文献   

14.
Batrachotoxin, veratridine and aconitine, activators of the voltage-dependent sodium channel in excitable cell membranes, increase the rate of 22Na+ uptake by mouse brain synaptosomes. Batrachotoxin was both the most potent (K0.5, 0.49 microM) and most effective activator of specific 22Na+ uptake. Veratridine (K0.5, 34.5 microM) and aconitine (K0.5, 19.6 microM) produced maximal stimulations of 22Na+ uptake that were 73% and 46%, respectively, of that produced by batrachotoxin. Activation of 22Na+ uptake by veratridine was completely inhibited by tetrodotoxin (I50, 6 nM ), a specific blocker of nerve membrane sodium channels. These results identify appropriate conditions for measuring sodium channel-dependent 22Na+ flux in mouse brain synaptosomes. The pharmacological properties of mouse brain synaptosomal sodium channels described here are distinct from those previously described for sodium channels in rat brain synaptosomes and mouse neuroblastoma cells.  相似文献   

15.
The blockage of skeletal muscle sodium channels by tetrodotoxin (TTX) and saxitoxin (STX) have been studied in CHO cells permanently expressing rat Nav1.4 channels. Tonic and use-dependent blockage were analyzed in the framework of the ion-trapped model. The tonic affinity (26.6 nM) and the maximum affinity (7.7 nM) of TTX, as well as the "on" and "off" rate constants measured in this preparation, are in remarkably good agreement with those measured for Nav1.2 expressed in frog oocytes, indicating that the structure of the toxin receptor of Nav1.4 and Nav1.2 channels are very similar and that the expression method does not have any influence on the pore properties of the sodium channel. The higher affinity of STX for the sodium channels (tonic and maximum affinity of 1.8 nM and 0.74 nM respectively) is explained as an increase on the "on" rate constant (approximately 0.03 s(-1) nM(-1)), compared to that of TTX (approximately 0.003 s(-1) nM(-1)), while the "off" rate constant is the same for both toxins (approximately 0.02 s(-1)). Estimations of the free-energy differences of the toxin-channel interaction indicate that STX is bound in a more external position than TTX. Similarly, the comparison of the toxins free energy of binding to a ion-free, Na(+)- and Ca(2+)-occupied channel, is consistent with a binding site in the selectivity filter for Ca(2+) more external than for Na(+). This data may be useful in further attempts at sodium-channel pore modeling.  相似文献   

16.
Geographutoxin II (GTX II), a peptide toxin isolated from Conus geographus, inhibited [3H]saxitoxin binding to receptor sites associated with voltage-sensitive Na channels in rat skeletal muscle homogenates and rabbit T-tubular membranes with K0.5 values of 60 nM for homogenates and 35 nM for T-tubular membranes in close agreement with concentrations that block muscle contraction. Scatchard analysis of [3H]saxitoxin binding to T-tubular membranes gave values of KD = 9.3 nM and Bmax = 300 fmol/mg of protein and revealed a primarily competitive mode of inhibition of saxitoxin binding by GTX II. The calculated KD values for GTX II were 24 nM for T-tubules and 35 nM for homogenates, respectively. In rat brain synaptosomes, GTX II caused a similar inhibitory effect on [3H]saxitoxin binding at substantially higher concentrations (K0.5 = 2 microM). In contrast, binding of [3H]batrachotoxin A 20-alpha-benzoate and 125I-labeled scorpion toxin to receptor sites associated with Na channels in synaptosomes was not affected by GTX II at concentrations up to 10 microM. Furthermore, [3H]saxitoxin binding to membranes of rat superior cervical ganglion was only blocked 10% by GTX II at 10 microM. These results indicate that GTX II interacts competitively with saxitoxin in binding at neurotoxin receptor site 1 on the sodium channel in a highly tissue-specific manner. GTX II is the first polypeptide ligand for this receptor site and the first to discriminate between this site on nerve and adult muscle sodium channels.  相似文献   

17.
We studied the properties of a sodium channel comprised only of S5-P-S6 region of the rat sodium channel alpha-subunit Nav1.4 (micro1pore). Results obtained in HEK cell lines permanently transfected with the sodium channel alpha-subunit or with the micro1pore were compared with data of the native HEK cells. Sodium channel blockers, tetrodotoxin and tetracaine, protect cells transfected with the complete sodium channel against death produced by incubation with veratridine. Veratridine-induced cell death in cell lines expressing the micro1pore construct is antagonised by tetracaine, but not by tetrodotoxin. Whole-cell conductance also increases in the presence of veratridine in micro1pore transfected cells and tetracaine inhibits these currents. Our pharmacological and electrophysiological data suggest that micro1pore keeps binding sites for veratridine and tetracaine, but not for TTX, and reconstitutes the permeation pathway for Na+ ions.  相似文献   

18.
The expression of Na+ channels during differentiation of cultured embryonic chick skeletal muscle cells was investigated using saxitoxin (STX) and batrachotoxin (BTX), which previously have been shown to interact with distinct, separate receptor sites of the voltage-sensitive Na+ channel of excitable cells. In the present study, parallel measurements of binding of [3H]-STX (STX) and of BTX-activated 22Na+ uptake (Na influx) were made in order to establish the temporal relationship of the appearance of these two Na+ channel activities during myogenesis. Na influx was clearly measurable in 2-d cells; from day 3 to day 7 the maximum Na influx approximately doubled when measured with saturating BTX concentrations potentiated by Leiurus scorpion toxin, while the apparent affinity of BTX, measured without scorpion toxin, also increased. Saturable STX binding did not appear consistently until day 3; from then until day 7 the STX binding capacity increased about threefold, whereas the equilibrium dissociation constant (KD) decreased about fourfold. Although Na influx in cells of all ages was totally inhibited by STX or tetrodotoxin (TTX) at 10 microM, lower concentrations (2-50 nM) blocked the influx in 7-d cells much more effectively than that in 3-d cells, where half the flux was resistant to STX at 20-50 nM. Similar but smaller differences characterized the block by TTX. In addition, when protein synthesis is inhibited by cycloheximide, both Na influx and STX binding activities disappear more rapidly in 3-d than in 7-d cells, which shows that these functions are less stable metabolically in the younger cells.  相似文献   

19.
The participation of voltage-sensitive Na+ channels (VSSC) on the changes on internal (i) Na+, K+, Ca2+, and on DA, Glu, and GABA release caused by different concentrations of 4-AP was investigated in striatum synaptosomes. TTX, which abolished the increase in Na(i) (as determined with SBFI), induced by 0.1 mM 4-AP only inhibited by 30% the rise in Na(i) induced by 1 mM 4-AP. One millimolar 4-AP markedly decreased the fluorescence of the K+ indicator dye PBFI but 0.1 mM 4-AP did not. Like 1 mM 4-AP, ouabain decreased PBFI fluorescence and increased a considerable fraction of Na(i) in a TTX-insensitive manner. In contrast with the different TTX sensitivity of the rise in Na(i) induced by 0.1 and 1 mM 4-AP, the rise in Ca(i) (as determined with fura-2) induced by the two concentrations of 4-AP was markedly inhibited by TTX, as well as by omega-agatoxin in combination with omega-conotoxin GVIA, indicating that only the TTX-sensitive fraction of the rise in Na(i) induced by 4-AP is linked with the activation of presynaptic Ca2+ channels. It is concluded that the TTX-sensitive fraction of neurotransmitter release evoked by 4-AP is released by exocytosis, and the TTX insensitive fraction involves reversal of the neurotransmitters transporters. This contrasts with the exocytosis evoked by high K+ that is unchanged by TTX and with the neurotransmitter-transporter-mediated release evoked by veratridine, which is highly TTX sensitive and does not require activation of Ca2+ channels.  相似文献   

20.
The effects of veratridine, an agent known to increase Na permeability in excitable tissues, were determined on a dispersed cell preparation from the rat parotid gland. The uptake of 22Na by these parotid cells was increased in the presence of veratridine but not to as great an extent as with carbachol. The veratridine effect was blocked by both tetrodotoxin (TTX) and a combination of receptor blockers, atropine and phentolamine. TTX had no effect on the increase in 22Na uptake due to carbachol. Electron microscopic examination revealed the presence of nerve terminals in the dispersed cell preparation, often in very close apposition to individual cells. It is likely that these nerve terminals are the primary sites of actions of veratridine and TTX and not the parotid acinar cells. The possibility of the presence of unmyelinated nerve fibers should be taken into account in the analyses of experimental data obtained with dispersed cell preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号