首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human malignant melanoma cell lines were found to increase shedding of soluble intercellular adhesion molecule-1 (sICAM-1) into the culture medium when the cells were treated with hyperthermia at 41–43°C for 3–6 hr in vitro. The content of ICAM-1 in the cell lysate was also found to be increased after hyperthermia. The increased rate of ICAM-1 concentration in the cells was at maximum when they were incubated at 41°C for 3 hr. Also, the melanoma cell lines heat-treated at 41°C showed more intense immuno-fluorescence in the ICAM-1 expression on the cell surface. It remains to be investigated further whether the effects of hyperthermia on the ICAM-1 expression in melanoma cells is to augment membrane ICAM-1 expression, which in turn leads to shedding of soluble ICAM-1 or only to acceleration of shedding of sICAM-1 by unknown mechanisms.  相似文献   

2.
Infections caused by Streptococcus suis, a major swine pathogen, include meningitis, arthritis, pneumonia and septicaemia. In this study, we investigated interactions that may occur between human brain microvascular endothelial cells (HBMEC), the main constituent of the blood-brain barrier, and S. suis. We show that S. suis acquires plasmin activity in a time-dependent manner when in contact with cultured HBMEC. Cell-associated plasmin activity reached a plateau following a 48h co-incubation period. Zymography analysis revealed that HBMEC produce urokinase, which is probably involved in activation of plasminogen bound to S. suis. We also show that a S. suis culture supernatant which possesses both phospholipase C and haemolysin (suilysin) activities was able to induce the release of arachidonic acid from the membrane of HBMEC. Evidence suggests that the action of suilysin on HBMEC may be a prerequisite for the action of additional molecules such as phospholipase C. These new biological effects associated with S. suis may play an important role in the migration of S. suis through the blood-brain barrier and in the modulation of local inflammation.  相似文献   

3.
Membrane-associated intercellular adhesion molecule-1 (mICAM-1; CD54) is constitutively expressed on the surface of type I alveolar epithelial cells (AEC). Soluble ICAM-1 (sICAM-1) may be produced by proteolytic cleavage of mICAM-1 or by alternative splicing of ICAM-1 mRNA. In contrast to inducible expression seen in most cell types, sICAM-1 is constitutively released by type I AEC and is present in normal alveolar lining fluid. Therefore, we compared the mechanism of sICAM-1 production in primary cultures of two closely juxtaposed cells in the alveolar wall, AEC and pulmonary microvascular endothelial cells (PVEC). AEC, but not PVEC, demonstrated high-level baseline expression of sICAM-1. Stimulation of AEC with TNFalpha or LPS resulted in minimal increase in AEC sICAM-1, whereas PVEC sICAM-1 was briskly induced in response to these signals. AEC sICAM-1 shedding was significantly reduced by treatment with a serine protease inhibitor, but not by cysteine, metalloprotease, or aspartic protease inhibitors. In contrast, none of these inhibitors effected sICAM-1 expression in PVEC. RT-PCR, followed by gel analysis of total RNA, suggests that alternatively spliced fragments are present in both cell types. However, a 16-mer oligopeptide corresponding to the juxtamembrane region of mICAM-1 completely abrogated sICAM-1 shedding in AEC but reduced stimulated PVEC sICAM-1 release by only 20%. Based on these data, we conclude that the predominant mechanism of sICAM-1 production likely differs in the two cell types from opposite sides of the alveolar wall.  相似文献   

4.
Intercellular adhesion molecule-1 (ICAM-1; CD54) is an adhesion molecule constitutively expressed in abundance on the cell surface of type I alveolar epithelial cells (AEC) in the normal lung and is a critical participant in pulmonary innate immunity. At many sites, ICAM-1 is shed from the cell surface as a soluble molecule (sICAM-1). Limited information is available regarding the presence, source, or significance of sICAM-1 in the alveolar lining fluid of normal or injured lungs. We found sICAM-1 in the bronchoalveolar lavage (BAL) fluid of normal mice (386 +/- 50 ng/ml). Additionally, sICAM-1 was spontaneously released by murine AEC in primary culture as type II cells spread and assumed characteristics of type I cells. Shedding of sICAM-1 increased significantly at later points in culture (5-7 days) compared with earlier time points (3-5 days). In contrast, treatment of AEC with inflammatory cytokines had limited effect on sICAM-1 shedding. BAL sICAM-1 was evaluated in in vivo models of acute lung injury. In hyperoxic lung injury, a reversible process with a major component of leak across the alveolar wall, BAL fluid sICAM-1 only increased in parallel with increased alveolar protein. However, in lung injury due to FITC, there were increased levels of sICAM-1 in BAL that were independent of changes in BAL total protein concentration. We speculate that after lung injury, changes in sICAM-1 in BAL fluid are associated with progressive injury and may be a reflection of type I cell differentiation during reepithelialization of the injured lung.  相似文献   

5.
Escherichia coli K1 meningitis is a serious central nervous system disease with unchanged mortality and morbidity rates for last few decades. Intercellular adhesion molecule 1 (ICAM-1) is a cell adhesion molecule involved in leukocyte trafficking toward inflammatory stimuli at the vascular endothelium; however, the effect of E. coli invasion of endothelial cells on the expression of ICAM-1 is not known. We demonstrate here that E. coli K1 invasion of human brain microvascular endothelial cells (HBMEC) selectively up-regulates the expression of ICAM-1, which occurs only in HBMEC invaded by the bacteria. The interaction of outer membrane protein A (OmpA) of E. coli with its receptor, Ecgp, on HBMEC was critical for the up-regulation of ICAM-1 and was depend on PKC-alpha and PI3-kinase signaling. Of note, the E. coli-induced up-regulation of ICAM-1 was not due to the cytokines secreted by HBMEC upon bacterial infection. Activation of NF-kappaB was required for E. coli mediated expression of ICAM-1, which was significantly inhibited by over-expressing the dominant negative forms of PKC-alpha and p85 subunit of PI3-kinase. The increased expression of ICAM-1 also enhanced the binding of THP-1 cells to HBMEC. Taken together, these data suggest that localized increase in ICAM-1 expression in HBMEC invaded by E. coli requires a novel interaction between OmpA and its receptor, Ecgp.  相似文献   

6.
Sultan S  Gosling M  Nagase H  Powell JT 《FEBS letters》2004,564(1-2):161-165
Within 6 h, shear stress upregulated intercellular adhesion molecule-1 (ICAM-1) (two- to four-fold, P<0.001) and induced matrix metalloproteinase-2 (MMP-2) in cultured human saphenous vein endothelial cells. By 8 h endothelial ICAM-1 levels returned to baseline, with concomitant increase in soluble ICAM-1 (sICAM-1) (P<0.001) and MMP-9 had been induced. Inclusion of a hydroxamate metalloproteinase inhibitor partially reversed the effects on ICAM-1 and sICAM-1 at 8 h, whereas TIMP-1, -2 or -3 had no effect. MMP-9, but not MMP-2, co-immunoprecipitated with ICAM-1. sICAM-1 was processed distal to Arg441, indicating that MMP-9, docking to ICAM-1, contributes to sICAM-1 shedding and attenuation of the shear stress-induced upregulation of ICAM-1.  相似文献   

7.
8.
Melanoma cells constitutively release intercellular adhesion molecule 1 (ICAM-1) as soluble ICAM-1 (sICAM-1), and its levels are elevated in melanoma patients and correlate with disease progression. However, this correlation is not absolute, suggesting that specific characteristics of neoplastic cells and/or ICAM-1-positive non-neoplastic cells may influence the amounts of circulating sICAM-1. In this study, we found a weak correlation (r = 0.55; r 2 = 0.3) between sICAM-1 release by 40 metastatic melanomas (36 primary cultures and 4 cell lines), and ICAM-1 expression on neoplastic cells. In addition, melanoma-secreted interleukin-1α (IL-1α) (1/40) but not vascular endothelial growth factor (VEGF) (29/40), significantly (P < 0.05) up-regulated the shedding of sICAM-1 by human umbilical vein endothelial cells (HUVEC). This was completely abolished by IL-1α/β neutralizing antibodies both at the protein and mRNA level. Altogether, our results suggest that (i) the extent of sICAM-1 release is distinctive for individual melanomas and can be independent of ICAM-1 expression; (ii) tumor endothelia may sustain levels of sICAM-1 in selected melanomas; (iii) melanoma-released VEGF does not affect ICAM-1 expression and sICAM-1 release by HUVEC. Melanoma-derived sICAM-1 inhibits cell-mediated cytotoxicity of melanoma cells; therefore, constitutive levels of sICAM-1 release and IL-1α secretion by individual melanomas can differentially influence tumor progression and the clinical effectiveness of cytotoxic-cell-based vaccines. Received: 15 October 1998 / Accepted: 17 February 1999  相似文献   

9.
We determined effects of IL-1alpha, TNFalpha and IFNgamma on sICAM-1 release in culture media from human aortic smooth muscle cells (AOSMC), dermal microvascular endothelial cells (DMEC), keratinocytes (KC), bronchial epithelial cells (BEC) and lung fibroblasts (LF) as determined by ELISA. Under basal conditions of cultures for 20 h, low concentrations of sICAM-1 were only detected in the culture media of two (DMEC and BEC) of these cell types. IL-1alpha, TNFalpha and IFNgamma stimulated sICAM-1 from these cells. IFNgamma stimulated more shedding from AOSMC, BEC and KC than IL-1alpha or TNFalpha. TNFalpha enhanced more sICAM-1 release from DEMC than from AOSMC, BEC and LF. IL-1alpha and IFNgamma or TNFalpha and IFNgamma acted synergistically to enhance shedding of sICAM-1 from these cells. The levels sICAM-1 in pathophysiological conditions may influence leukocyte-vascular cell interactions to block leukocyte transmigration to tissue injury sites as a negative feedback mechanism.  相似文献   

10.
While intercellular adhesion molecule-1 (ICAM-1) is a transmembrane protein, two types of extracellular ICAM-1 have been detected in cell culture supernatants as well as in the serum: a soluble form of ICAM-1 (sICAM-1) and a membranous form of ICAM-1 (mICAM-1) associated with exosomes. Previous observations have demonstrated that sICAM-1 cannot exert potent immune modulatory activity due to its low affinity for leukocyte function-associated antigen-1 (LFA-1) or membrane attack complex-1. In this report, we initially observed that human cancer cells shed mICAM-1(+)-exosomes but were devoid of vascular cell adhesion molecule-1 and E-selectin. We demonstrate that mICAM-1 on exosomes retained its topology similar to that of cell surface ICAM-1, and could bind to leukocytes. In addition, we show that exosomal mICAM-1 exhibits potent anti-leukocyte adhesion activity to tumor necrosis factor-α-activated endothelial cells compared to that of sICAM-1. Taken together with previous findings, our results indicate that mICAM-1 on exosomes exhibits potent immune modulatory activity.  相似文献   

11.
We examined the effects of high glucose concentrations on the expression of adhesion molecules in human aortic endothelial cells. Expression levels of both mRNA and protein of intercellular adhesion molecule-1 (ICAM-1) were increased after incubation of endothelial cells with 30 mM glucose for 24 h. The effect of glucose on ICAM-1 was concentration dependent, partially attributable to osmolarity, and enhanced by glycated-collagen. Staurosporine (10 nM), epalrestat (10 microM) suppressed the expression of ICAM-1 mRNA and protein induced by high glucose to variable extents. Aminoguanidine (50 mM) suppressed the expression of ICAM-1 protein. It is thought that soluble ICAM-1 protein is produced by shedding in human aortic endothelial cells because RNA for the soluble form of ICAM-1 formed by variant splicing has not been detected. These results show that glucose is an important determinant of ICAM-1 expression in endothelial cells, and suggest that ICAM-1 molecules induced by hyperglycemia may contribute to the development of atherosclerosis in diabetes mellitus.  相似文献   

12.
Endothelial cells and macrophages are thought to play a critical role in the inflammatory response that contributes to meningitis. To investigate the interactions between Streptococcus suis and these two cell types, we developed a coculture model composed of brain microvascular endothelial cells and macrophage-like cells, and characterized the production of proinflammatory cytokines, chemokines, prostaglandin E2 (PGE2), and matrix metalloproteinase 9 (MMP-9) following a challenge with bacteria. Streptococcus suis cells stimulated the secretion of all the inflammatory mediators as well as MMP-9 in the coculture model. Responses to S. suis infection were influenced by endothelial cell/macrophage ratios and were dependent on the multiplicity of infection. Except for IL-6, significantly higher amounts of inflammatory mediators and MMP-9 were produced with the coculture model at an endothelial cell/macrophage ratio of 1 : 10 than at a ratio of 1 : 1. When infected with S. suis , endothelial cells and macrophages acted in synergy to increase the secretion of IL-6 and PGE2. Using a model that more closely reproduces the in vivo situation, we showed that S. suis can induce the secretion of high levels of inflammatory mediators and MMP-9, which may contribute to the development of meningitis.  相似文献   

13.
14.
ICAM-1-mediated cell-cell adhesion is essential for various immunologic functions, including non-MHC-restricted cytotoxicity. The present study was designed to establish whether shedding of ICAM-1 from melanoma cells occurred and to characterize the effects of soluble ICAM-1 on some cell adhesion-dependent functions. The shed soluble ICAM-1 molecule was detected and quantified by a specific ELISA. Shedding of ICAM-1 could be induced by IFN-gamma and TNF-alpha alone, or more effectively, by a combination of the two cytokines together. The use of purified soluble ICAM-1 enabled us to test for the functional significance of the ICAM-1 shedding from tumor cells. Conjugate formation between the cloned NK cell line CNK6 and the erythromyeloid cell line K562, as well as between lymphokine-activated killer cells and the melanoma cell line M26, could be inhibited by purified soluble ICAM-1 and cell-free supernatants from melanoma cell cultures containing shed ICAM-1. Furthermore, the non-MHC-restricted cytotoxicity mediated by NK and lymphokine-activated killer cells could be abrogated either by purified soluble ICAM-1 or by melanoma cell culture supernatants containing shed ICAM-1. Thus, shedding of ICAM-1 may be one of the mechanisms by which neoplastic cells escape immunosurveillance.  相似文献   

15.
The ability of Plasmodium falciparum infected erythrocytes (Pf-IEs) to activate endothelial cells has been described; however, the interaction of the endothelium with Pf-IEs field isolates from patients has been less characterized. Previous reports have shown that isolates alter the endothelial permeability and apoptosis. In this study, the adhesion of 19 uncomplicated malaria isolates to Human Dermal Microvascular Endothelial Cells (HDMEC), and their effect on the expression of ICAM-1 and proinflammatory molecules (sICAM-1, IL-6, IL-8, and MCP-1) was evaluated.P. falciparum isolates adhered to resting and TNFα-activated HDEMC cells at different levels. All isolates increased the ICAM-1 expression on the membrane (mICAM-1) of HDMEC and increased the release of its soluble form (sICAM-1), as well the production of IL-6, IL-8 and MCP-1 by HDMEC with no signs of cell apoptosis. No correlation between parasite adhesion and production of cytokines was observed.In conclusion, isolates from uncomplicated malaria can induce a proinflammatory response in endothelial cells that may play a role during the initial inflammatory response to parasite infection; however, a continuous activation of the endothelium can contribute to pathogenesis.  相似文献   

16.
Interleukin-18 (IL-18), a cytokine that plays an important role in the T-cell-helper type 1 response, acts as an angiogenesis and tumor suppressor. Intercellular adhesion molecule-1 (ICAM-1) has a potential role in immunoregulation by mediating immune cell infiltration into the tissue. The aim of this study was to evaluate IL-18 and soluble (s) ICAM-1 serum levels in breast cancer (BCa) patients with liver (BCaM1 h) or bone (BCaM1 b) metastases compared to BCa patients without metastases (BCaM0) and healthy donors (HDs). Furthermore, since IL-18 enhances ICAM-1 expression, we investigated whether there was a direct correlation between sICAM-1 and IL-18 serum levels. Serum IL-18 and sICAM-1 levels were assayed by immunoenzymatic methods. The serum sICAM-1 levels in the three groups of cancer patients were significantly higher (p<0.05) than those of HDs. Serum IL-18 levels were significantly higher (p<0.05) in BCaM1h and BCaM1b patients compared to BCaM0 patients and HDs. sICAM-1 proved to be closely correlated with serum IL-18 levels in HDs, whereas a weaker correlation was found in BCaM1h, BCaM1b and BCaM0 patients. The defective correlation between sICAM-1 and IL-18 found in cancer patients may contribute to our understanding of the immunity upset occurring in cancer. Our data suggest that IL-18, irrespective of its biological activity, could represent a marker for metastatic breast cancer.  相似文献   

17.
Severe traumatic brain injury stimulates the release of soluble intercellular adhesion molecule-1 (sICAM-1) into CSF. Studies in cultured mouse astrocytes suggest that sICAM-1 induces the production of macrophage inflammatory protein-2 (MIP-2). In the present study, we investigated the underlying mechanisms for MIP-2 induction. sICAM-1 induced MIP-2 in astrocytes lacking membrane-bound ICAM-1, indicating that its action is due to heterophilic binding to an undescribed receptor rather than homophilic binding to surface ICAM-1. Signal transduction may be mediated by src tyrosine kinases, as the src tyrosine kinase inhibitors herbimycin A and PP2 abolished MIP-2 induction by sICAM-1. Phosphorylation of p42/44 mitogen-activated protein kinase (MAPK), but not of p38 MAPK, occurred further downstream, as evidenced by western blot analysis combined with the use of herbimycin A and specific MAPK inhibitors. By contrast, induction of MIP-2 by tumour necrosis factor-alpha (TNF-alpha) involved both p42/44 MAPK and p38 MAPK. Following stimulation with either sICAM-1 or TNF-alpha, astrocyte supernatants promoted chemotaxis of human neutrophils and incubation of these supernatants with anti-MIP-2 antibodies more efficiently suppressed the migration induced by sICAM-1 than by TNF-alpha. These results show that sICAM-1 induces the production of biologically active MIP-2 in astrocytes by heterophilic binding to an undefined receptor and activation of src tyrosine kinases and p42/44 MAPK.  相似文献   

18.
ExoU, a Pseudomonas aeruginosa cytotoxin injected via the type III secretion system into host cells, possesses eicosanoid-mediated proinflammatory properties due to its phospholipase A2 (PLA2) activity. This report addressed the question whether ExoU may modulate the expression of adhesion molecules in host cells, therefore contributing to the recruitment of leukocyte into infected tissues. ExoU was shown to down-regulate membrane-bound ICAM-1 (mICAM-1) and up-regulate the release of soluble ICAM-1 (sICAM-1) from P. aeruginosa-infected endothelial cells. The modulation of ICAM-1 depended on the direct effect of the ExoU PLA2 activity and involved the cyclooxygenase (COX) pathway. No differences in mICAM-1 and sICAM-1 mRNA levels were observed when cultures were infected with the ExoU-producing PA103 strain or the mutant PA103ΔexoU, suggesting that ExoU may proteolytically cleave mICAM-1, producing sICAM-1 in a COX-dependent pathway.  相似文献   

19.
20.
Escherichia coli K1 is the most common gram-negative bacterium causing neonatal meningitis. The outer membrane protein A (OmpA) assembles a beta-barrel structure having four surface-exposed loops in E. coli outer membrane. OmpA of meningitis-causing E. coli K1 is shown to contribute to invasion of the human brain microvascular endothelial cells (HBMEC), the main cellular component of the blood-brain barrier (BBB). However, the direct evidence of OmpA protein interacting with HBMEC is not clear. In this study, we showed that OmpA protein, solubilized from the outer membrane of E. coli, adhered to HBMEC surface. To verify OmpA interaction with the HBMEC, we purified N-terminal membrane-anchoring beta-barrel domain of OmpA and all surface-exposed loops deleted OmpA proteins, and showed that the surface-exposed loops of OmpA were responsible for adherence to HBMEC. These findings indicate that the OmpA is the adhesion molecule with HBMEC and the surface-exposed loops of OmpA are the determinant of this interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号