首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The botulinum neurotoxins (BoNTs) are the most potent toxins known in nature, causing the lethal disease known as botulism in humans and animals. The BoNTs act by inhibiting neurotransmitter release from cholinergic synapses. Clostridium botulinum strains produce large BoNTs toxin complexes, which include auxiliary non-toxic proteins that appear not only to protect BoNTs from the hostile environment of the digestive tract but also to assist BoNT translocation across the intestinal mucosal layer. In this study, we visualize for the first time a series of botulinum serotype D toxin complexes using negative stain transmission electron microscopy (TEM). The complexes consist of the 150-kDa BoNT, 130-kDa non-toxic non-hemagglutinin (NTNHA), and three kinds of hemagglutinin (HA) subcomponents: 70-kDa HA-70, 33-kDa HA-33, and 17-kDa HA-17. These components assemble sequentially to form the complex. A novel TEM image of the mature L-TC revealed an ellipsoidal-shaped structure with "three arms" attached. The "body" section was comprised of a single BoNT, a single NTNHA and three HA-70 molecules. The arm section consisted of a complex of HA-33 and HA-17 molecules. We determined the x-ray crystal structure of the complex formed by two HA-33 plus one HA-17. On the basis of the TEM image and biochemical results, we propose a novel 14-mer subunit model for the botulinum toxin complex. This unique model suggests how non-toxic components make up a "delivery vehicle" for BoNT.  相似文献   

2.
3.
The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins cleave specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex proteins and block the release of neurotransmitters that cause flaccid paralysis and are considered potential bioweapons. Botulinum neurotoxin type A is the most potent among the clostridial neurotoxins, and to date there is no post-exposure therapeutic intervention available. To develop inhibitors leading to drug design, it is imperative that critical interactions between the enzyme and the substrate near the active site are known. Although enzyme-substrate interactions at exosites away from the active site are mapped in detail for botulinum neurotoxin type A, information about the active site interactions is lacking. Here, we present the crystal structures of botulinum neurotoxin type A catalytic domain in complex with four inhibitory substrate analog tetrapeptides, viz. RRGC, RRGL, RRGI, and RRGM at resolutions of 1.6-1.8 A. These structures show for the first time the interactions between the substrate and enzyme at the active site and delineate residues important for substrate stabilization and catalytic activity. We show that OH of Tyr(366) and NH(2) of Arg(363) are hydrogen-bonded to carbonyl oxygens of P1 and P1' of the substrate analog and position it for catalytic activity. Most importantly, the nucleophilic water is replaced by the amino group of the N-terminal residue of the tetrapeptide. Furthermore, the S1' site is formed by Phe(194), Thr(215), Thr(220), Asp(370), and Arg(363). The K(i) of the best inhibitory tetrapeptide is 157 nm.  相似文献   

4.
Clostridium botulinum serotype D strains usually produce two types of stable toxin complex (TC), namely, the 300 kDa M (M-TC) and the 660 kDa L (L-TC) toxin complexes. We previously proposed assembly pathways for both TCs [Kouguchi, H., et al. (2002) J. Biol. Chem. 277, 2650-2656]: M-TC is composed by association of neurotoxin (NT) and nontoxic nonhemagglutinin (NTNHA); conjugation of M-TC with three auxiliary types of hemagglutinin subcomponents (HA-33, HA-17, and HA-70) leads to the formation of L-TC. In this study, we found three TC species, 410, 540, and 610 kDa TC species, in the culture supernatant of type D strain 4947. The 540 and 610 kDa TC species displayed banding patterns on SDS-PAGE similar to that of L-TC but with less staining intensity of the HA-33 and HA-17 bands than those of L-TC, indicating that these are intermediate species in the pathway to L-TC assembly. In contrast, the 410 kDa TC species consisted of M-TC and two molecules of HA-70. All of the TC species, except L-TC, demonstrated no hemagglutination activity. When the intermediate TC species were mixed with an isolated HA-33/17 complex, every TC species converted to 650 kDa L-TC with full hemagglutination activity and had the same molecular composition of L-TC. On the basis of titration analysis with the HA-33/17 complex, the stoichiometry of the HA-33/17 complex molecules in the L-TC, 610 kDa, and 540 kDa TC species was estimated as 4, 3, and 2, respectively. In conclusion, the complete subunit composition of mature L-TC is deduced to be a dodecamer assembled by a single NT, a single NTNHA, two HA-70, four HA-33, and four HA-17 molecules.  相似文献   

5.
Neurotoxins of Clostridium botulinum are needed in basic neurologic research, but as therapeutic agent for certain neuromuscular disorders like strabism as well. A method for the production and purification of botulinum neurotoxins C and D is reported using a two-step hollow-fiber cross flow filtration and a newly developed chromatographic purification procedure. Hollow-fiber filtration proved to be a rapid and safe concentration and pre-purification step, which can easily be scaled up. The chromatographic purification included hydrophobic interaction, anion exchange and size exclusion chromatography runs. Botulinum neurotoxins C and D could be recovered with an overall yield of 12.6% and 10.6%, respectively. A specific toxicity of 1.86 x 10(7) minimal lethal dose mg(-1) (type C) and 5.26 x 10(7) minimal lethal dose mg(-1) (type D) was determined in the mouse bioassay.  相似文献   

6.
Aims: To determine whether Clostridium botulinum neurotoxin (BoNT) production in anaerobic culture was affected by temperature and could influence the sandwich ELISA (sELISA) detection of group III toxins in pre‐enriched gastrointestinal (GI) contents from clinically suspect cattle botulism cases. Methods and Results: Bovine post‐mortem GI samples taken from 124 and 96 animals with suspect and nonsuspect botulism, respectively, were pre‐enriched anaerobically at 30 and 37°C prior to testing by sELISA. After enrichment at 37°C, BoNT was demonstrated in all clinically suspect bovine botulism cases that had been identified by the mouse bioassay, and enrichment by both temperatures enabled BoNT detection in a number of mouse bioassay–negative suspect cases. Conclusions: Culture temperature does influence the production of group III BoNT, and incubation at both 30 and 37°C is required for optimum detection. Significance and Impact of the Study: The in vitro assay defined in this study has the potential of improving the confirmation rate of clinically suspect cattle botulism cases whilst reducing the use of the costly and ethically sensitive mouse bioassay, the current diagnostic gold standard for BoNT testing.  相似文献   

7.
Clostridium botulinum serotype C strains produce a neurotoxin (BoNT) along with nontoxic proteins, including nontoxic nonhemagglutinin and three hemagglutinin subcomponents, HA-70, HA-33 and HA-17, to form a large toxin complex (L-TC). While L-TCs produced by serotype C strains usually exhibit hemagglutination (HA) activity via HA-33 binding to sialic acid on erythrocytes, serotype C strain Yoichi (C-Yoichi) L-TC exhibited neither HA nor binding activity towards erythrocytes, probably due to a C-terminal truncation of the HA-33 protein. However, here, we demonstrate that C-Yoichi L-TC newly showed full HA and binding activity towards neuraminidase-treated erythrocytes that was completely inhibited in the presence of galactose (Gal) or lactose (Lac). Binding of C-Yoichi L-TC to rat small intestine epithelial cells (IEC-6) treated with neuraminidase was also significantly enhanced compared with untreated IEC-6 cells. Similarly, the HA-33/HA-17 complex isolated from C-Yoichi L-TC also bound to neuraminidase-treated IEC-6 cells. The binding activity of both L-TC and HA-33/HA-17 was inhibited in the presence of Gal or Lac. Additionally, C-Yoichi L-TC adsorbed tightly to a lactose-affinity gel column. These results strongly suggest that the unusual recognition of the Gal moiety on the cells could be due to a variation and/or a truncation in the C-terminal-half of the unique C-Yoichi HA-33 protein.  相似文献   

8.
Selection and characterization of bovine aortic endothelial cells   总被引:17,自引:0,他引:17  
Summary This paper reports techniques for isolation, selection and long-term passage of bovine aortic endothelium (BAE). A [3H]thymidine-selection technique was developed to limit overgrowth of cultures by contaminating smooth-muscle cells. The resulting cultures could be passaged for a replicative life span of 35 to 40 doublings and maintained a stable, normal karyotype throughout this period. Despite the fact that these cultures reached a stable monolayer with density-inhibited growth state, postconfluent cells showed focal areas of a second growth pattern called “sprouting.” This was seen only when cultures were maintained at high densities for periods of 1 to 2 weeks. Ultrastructural analysis, as well as immunofluorescence studies with markers for endothelial cells (factor VIII) and smooth-muscle cells (actin), indicates that this phenomenon is not due to overgrowth of a residual population of smooth-muscle cells, but may represent a second growth pattern of the endothelial cells themselves. This research was supported by NIH Grant HL 18645. This work was done during the tenure of an Established Investigationship of the American Heart Association.  相似文献   

9.
The bacterium Clostridium botulinum type C produces a progenitor toxin (C16S toxin) that binds to O-linked sugar chains terminating with sialic acid on the surface of HT-29 cells prior to internalization [A. Nishikawa, N. Uotsu, H. Arimitsu, J.C. Lee, Y. Miura, Y. Fujinaga, H. Nakada, T. Watanabe, T. Ohyama, Y. Sakano, K. Oguma, Biochem. Biophys. Res. Commun. 319 (2004) 327-333] [21]. Based on this, it was hypothesized that the C16S toxin is internalized via clathrin-coated pits. To examine this possibility, the internalized toxin was observed with a fluorescent antibody using confocal laser-scanning microscopy. The confocal images clearly indicated that the C16S toxin was internalized mainly via clathrin-coated pits and localized in early endosomes. The toxin was colocalized with caveolin-1 which is one of the components of caveolae, however, implying the toxin was also internalized via caveolae. The confocal images also showed that the neurotoxin transported to the endosome was transferred to the Golgi apparatus. However, the non-toxic components were not merged with the Golgi marker protein, TGN38, implying the neurotoxin was dissociated from progenitor toxin in endosomes. These results suggested that the C16S toxin was separated to the neurotoxin and other proteins in endosome and the neurotoxin was further transferred to the Golgi apparatus which is the center for protein sorting.  相似文献   

10.

Background  

Clostridium botulinum is a taxonomic designation for at least four diverse species that are defined by the expression of one (monovalent) or two (bivalent) of seven different C. botulinum neurotoxins (BoNTs, A-G). The four species have been classified as C. botulinum Groups I-IV. The presence of bont genes in strains representing the different Groups is probably the result of horizontal transfer of the toxin operons between the species.  相似文献   

11.
We have investigated whether the presence of other fatty acids in physiologic amounts will influence the effects of eicosapentaenoic acid on cellular lipid metabolism and prostaglandin production. Eicosapentaenoic acid uptake by cultured bovine aortic endothelial cells was time and concentration dependent. At concentrations between 1 and 25 microM, most of the eicosapentaenoic acid was incorporated into phospholipids and of this, 60-90% was present in choline phosphoglycerides. Eicosapentaenoic acid inhibited arachidonic acid uptake and conversion to prostacyclin (prostaglandin I2) but was not itself converted to eicosanoids. Only small effects on the uptake of 10 microM eicosapentaenoic acid occurred when palmitic, stearic or oleic acids were added to the medium in concentrations up to 75 microM. In contrast, eicosapentaenoic acid uptake was reduced considerably by the presence of linoleic, n-6 eicosatrienoic, arachidonic or docosahexaenoic acids. Although a 100 microM mixture of palmitic, stearic, oleic and linoleic acid (25:10:50:15) had little effect on the uptake of 10 or 20 microM eicosapentaenoic acid, less of this acid was channeled into endothelial phospholipids. However, the fatty acid mixture did not prevent the inhibitory effect of eicosapentaenoic acid on prostaglandin I2 formation in response to either arachidonic acid or ionophore A23187. An 8 h exposure to eicosapentaenoic acid was required for the inhibition to become appreciable and, after 16 h, prostaglandin I2 production was reduced by as much as 60%. These findings indicate that the capacity of aortic endothelial cells to produce prostaglandin I2 is decreased by continuous exposure to eicosapentaenoic acid. Even if the eicosapentaenoic acid is present as a small percentage of a physiologic fatty acid mixture, it is still readily incorporated into endothelial phospholipids and retains its inhibitory effect against endothelial prostaglandin I2 formation. Therefore, these actions may be representative of the in vivo effects of eicosapentaenoic acid on the endothelium.  相似文献   

12.
Amino acid deprivation induces adaptive changes in amino acid transport and the intracellular amino acid pool in cultured cells. In this study intracellular amino acid levels were determined in cultured bovine aortic endothelial cells (EC) deprived of L-arginine or total amino acids for 1, 3, 6 and 24 h. Amino acid concentrations were analyzed by reverse phase HPLC after precolumn derivatisation. Under normal culture conditions levels of L-arginine L-citrulline, total essential and non-essential amino acids were 840 +/- 90 microM, 150 +/- 40 microM, 11.4 +/- 0.9 mM and 53.3 +/- 3.4 mM (n = 9), respectively. In EC deprived of L-arginine or all amino acids for 24 h L-arginine and L-citrulline levels were 200 microM and 50 microM, and 670 microM and 100 microM Deprivation of L-arginine or total amino acids induced rapid (1 h) decreases (30 - 50%) in the levels of other cationic (lysine, ornithine) and essential branched-chain (valine, isoleucine, leucine) and aromatic (phenylalanine, tryptophan) amino acids. L-glutamine was reduced markedly in EC deprived of total amino acids for 1 h - 6 h but actually increased 3-fold in EC deprived of L-arginine for 6 h or 24 h. Arginine deprivation resulted in a rapid decrease in the total intracellular amino acid pool, however concentrations were restored after 24 h. Increased amino acid transport and/or reduced protein synthesis may account for the restoration of amino acid levels in EC deprived of L-arginine. The sustained reduction in the free amino acid pool of EC deprived of all amino acids may reflect utilization of intracellular amino acids for protein synthesis.  相似文献   

13.
14.
A total of 41 Clostridium botulinum serotype E strains from different geographic regions, including Canada, Denmark, Finland, France, Greenland, Japan, and the United States, were compared by multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) analysis, variable-number tandem-repeat (VNTR) analysis, and botulinum neurotoxin (bont) E gene sequencing. The strains, representing environmental, food-borne, and infant botulism samples collected from 1932 to 2007, were analyzed to compare serotype E strains from different geographic regions and types of botulism and to determine whether each of the strains contained the transposon-associated recombinase rarA, involved with bont/E insertion. MLST examination using 15 genes clustered the strains into several clades, with most members within a cluster sharing the same BoNT/E subtype (BoNT/E1, E2, E3, or E6). Sequencing of the bont/E gene identified two new variants (E7, E8) that showed regions of recombination with other E subtypes. The AFLP dendrogram clustered the 41 strains similarly to the MLST dendrogram. Strains that could not be differentiated by AFLP, MLST, or bont gene sequencing were further examined using three VNTR regions. Both intact and split rarA genes were amplified by PCR in each of the strains, and their identities were confirmed in 11 strains by amplicon sequencing. The findings suggest that (i) the C. botulinum serotype E strains result from the targeted insertion of the bont/E gene into genetically conserved bacteria and (ii) recombination events (not random mutations) within bont/E result in toxin variants or subtypes within strains.  相似文献   

15.
Free-energy terms that contribute to complex formation between the catalytic domain of botulinum neurotoxin type B (BoNT/B-L(C)) and a 36-residue synaptobrevin fragment were estimated by using a combination of microscopic simulations and continuum methods. The complex for a non-hydrolyzed substrate was calculated by optimizing an energy function applied to the X-ray co-crystal structure of BoNT/B-L(C) bound with reaction products from a cleaved synaptobrevin peptide, refined to high crystallographic thermal factors. The estimated absolute binding affinity of the simulation structure is in good qualitative agreement with the experimental free energy of Michaelis complex formation, given the approximations of the model calculations. The simulation structure revealed significant complex stabilization from the hydrophobic effect, while the electrostatic cost of releasing water molecules from the interface determined to be highly unfavorable. By partitioning the total electrostatic and hydrophobic terms into residue free-energy contributions, a binding-affinity 'signature' for synaptobrevin was developed from the optimized conformation. The results demonstrate the effect of substrate length on complex formation and identify a peripheral high-affinity binding site near the N-terminal region that might initiate cooperative activation responsible for the large minimal substrate length requirement. The so-called SNARE motif is observed to contribute negligible free energy of binding.  相似文献   

16.
The action of human rIL-1 beta on confluent, quiescent monolayers of human umbilical vein endothelial cells (HUVEC) has been studied for the induction of new membrane proteins. Two approaches have been taken. The first is a quantitative two-dimensional gel analysis of [35S]cysteine-labeled membrane proteins of HUVEC with and without cytokine treatment. This analysis indicates that there are a restricted number of new membrane proteins synthesized in the first 6 h of IL-1 treatment, on the order of 19 out of a total of over 600 detectable proteins. Second, we have prepared two mAb (1E7 and 2G7) to different epitopes of a major inducible sialoglycoprotein with molecular mass of 114 kDa and an isoelectric point of 4.6 to 4.8. These antibodies were compared with two additional antibodies, 3B7 and 7A9, which were shown to react with the endothelial leukocyte adhesion molecule-1 (ELAM-1) protein as expressed in COS cells. The 1E7/2G7 protein is distinct from ELAM-1, based upon biochemical comparisons as well as the inability of the 1E7 and 2G7 antibodies to react with ELAM-1-transfected COS cells. The protein defined as 1E7/2G7 is neither expressed constitutively nor in an inducible manner on PBMC, granulocytes, platelets, fibroblasts, or keratinocytes. The 7A9 and 3B7 antibodies are shown to block granulocyte binding to IL-1-activated HUVEC. The 2G7 antibody is effective at inhibiting the binding of T cells but not granulocytes to IL-1-activated endothelium, suggesting this new protein is an adhesion protein that may be active in vivo in T cell-endothelial cell adhesion-related events such as inflammation or lymphocyte recirculation. In addition, T cells were shown to utilize the ELAM-1 protein in binding to cytokine-activated HUVEC. Antibodies directed to both proteins had additive effects on inhibition of T cell adhesion.  相似文献   

17.
Botulinum C2 toxin (C2T) is composed of two dissimilar protein components, designated components I and II, which are linked with neither covalent nor noncovalent bonds. The heterogeneity of these two components of C2T produced by Clostridium botulinum type C and D strains was examined. Of 21 strains examined, 19 strains produced the two components, while the others produced neither component I nor component II. The 19 producers of C2T could be divided into three groups based on the differences in antigenicity, molecular weight and biological activity of components I and II. The results provide evidence of heterogeneity in the molecular structure of the two components of C2T, which is possibly a cause of the differences in the biological activity of the toxin observed in different strains.  相似文献   

18.
Clostridium botulinum C and D strains produce two types of progenitor toxins, M and L. Previously we reported that a 130-kDa nontoxic-nonhemagglutinin (NTNHA) component of the M toxin produced by type D strain CB16 was nicked at a unique site, leading to a 15-kDa N-terminal fragment and a 115-kDa C-terminal fragment. In this study, we identified the amino acid sequences around the nicking sites in the NTNHAs of the M toxins produced by C. botulinum type C and D strains by analysis of their C-terminal and N-terminal sequences and mass spectrometry. The C-terminus of the 15-kDa fragments was identified as Lys127 from these strains, indicating that a bacterial trypsin-like protease is responsible for the nicking. The 115-kDa fragment had mixtures of three different N-terminal amino acid sequences beginning with Leu135, Val139, and Ser141, indicating that 7–13 amino acid residues were deleted from the nicking site. The sequence beginning with Leu135 would also suggest cleavage by a trypsin-like protease, while the other two N-terminal amino acid sequences beginning with Val139 and Ser141 would imply proteolysis by an unknown protease. The nicked NTNHA forms a binary complex of two fragments that could not be separated without sodium dodecyl sulfate.  相似文献   

19.
The transport of the polar head groups, ethanolamine and choline, was examined in cultured bovine aortic endothelial cells. Both ethanolamine and choline are taken up by high- and low-affinity systems. The K'm and V'max for the Na+-dependent, high-affinity ethanolamine and choline transport system are 3.0 and 3.0 microM and 5.4 and 7.3 pmol/mg protein/min, respectively. Ethanolamine and choline competitively influence one another's transport as the presence of 50 microM ethanolamine increases the K'm but not the V'max of choline uptake. Likewise, 50 microM choline increases the K'm but not the V'max of ethanolamine transport. The concentration of ethanolamine that inhibits maximal velocity of 5 microM choline by 50% is 9.7 microM, while 12 microM choline inhibits 5 microM ethanolamine maximal velocity by 50%. Uptake of both head groups is only partially Na+-dependent and is inhibited similarly by 2-methylethanolamine and 2,2-dimethylethanolamine at all concentrations examined. Hemicholinium-3, a classic inhibitor of high-affinity, Na+-dependent choline transport, reduces both ethanolamine and choline accumulation in a concentration-dependent fashion, but has a greater effect on choline transport at higher concentrations. The major portion of these data is consistent with our hypothesis that the uptake of physiological concentrations of ethanolamine and choline may occur through the same transport system. However, the results of the effect of hemicholinium-3 and the extent of Na+-dependency of choline and ethanolamine uptake could be interpreted as meaning that separate transport systems for choline and ethanolamine exist which cross react or that a single transport system exists which has separate active sites for the two compounds.  相似文献   

20.
We have made a comparison between plasma and endothelial cell fibronectin, since these cells are in intimate contact with plasma in vivo. Cellular and secreted fibronectins were purified from cloned lines of adult bovine aortic endothelial cells, and compared to purified bovine plasma fibronectin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional peptide mapping. When unreduced, all three fibronectins migrated on gels as single bands with Mr 440,000. After reduction, cellular and secreted fibronectins migrated on gels as single bands with Mr 220,000, but plasma fibronectin migrated as two bands with Mr 220,000 and 210,000. All three fibronectins, including the two subunits of plasma fibronectin, had identical structures by peptide mapping analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号