首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The purpose of this study was to investigate the effects of acute nitric oxide synthase inhibition on mean arterial blood pressure, oxidative stress markers such as plasma malondialdehyde (MDA) concentration, intracellular antioxidant enzyme activities such as copper-zinc superoxide dismutase (Cu/Zn SOD) and catalase and on trace elements important for activity and stability of Cu/Zn-SOD. Wistar-Kyoto rats (approx 150 g) (n=11) were treated with N ω-nitro-l-arginine methyl esther (l-NAME) (0.5 mg/mL) for 2 d. Age- and bodyweight-matched rats (n=10) were used for control group. Their systolic blood pressures and heart rates were recorded daily during the experimental period and also before their blood samples were drawn. Plasma MDA, plasma and red cell zinc and copper concentrations, and red cell Cu/Zn-SOD and catalase activities were determined. A progressive rise in systolic arterial blood pressure was observed compared to the control group (p<0.001). The heart rate of the experimental group was reduced on the third day (p<0.05). Plasma MDA concentration and red cell catalase activity were increased in the experimental group (p<0.001 and p<0.001, respectively). Plasma copper and red cell zinc concentrations were also increased significantly in the experimental group (p<0.001 and p<0.01, respectively). In conclusion, impairment in endothelium-derived relaxation altered mean arterial blood pressure, oxidant status, and trace element concentrations. Presented at the Advanced Course (sponsored by NATO-ASI, SFRR, FEBS, UNESCO-MCBN, IUBMB) “Free Radicals, Nitric Oxide, and Inflamation: Molecular, Biochemical, and Clinical Aspects,” Lara, Antalya, Turkey, September 23–October 3, 2001.  相似文献   

3.
Inflammatory factors produced and secreted by adipose tissue, in particular peri-pancreatic adipose tissue (P-WAT), may influence pancreatic β-cell dysfunction. Using the ZDF Rat model of diabetes, we show the presence of infiltrating macrophage (ED1 staining) on pancreatic tissue and P-WAT in the pre-diabetes stage of the disease. Then, when the T2D is installed, infiltrating cells decreased. Meanwhile, the P-WAT conditioned-medium composition, in terms of inflammatory factors, varies during the onset of the T2D. Using chemiarray technology, we observed an over expression of CXCL-1, -2, -3, CCL-3/MIP-1α and CXCL-5/LIX and TIMP-1 in the 9?weeks old obese ZDF pre-diabetic rat model. Surprisingly, the expression profile of these factors decreased when animals become diabetic (12?weeks obese ZDF rats). The expression of these inflammatory proteins is highly associated with inflammatory infiltrate. P-WAT conditioned-medium from pre-diabetes rats stimulates insulin secretion, cellular proliferation and apoptosis of INS-1 cells. However, inhibition of conditioned-medium chemokines acting via CXCR2 receptor do not change cellular proliferation apoptosis and insulin secretion of INS-1 cells induced by P-WAT conditioned-medium. Taken together, these results show that among the secreted chemokines, increased expression of CXCL-1, -2, -3 and CXCL-5/LIX in P-WAT conditioned-medium is concomitant with the onset of the T2D but do not exerted a direct effect on pancreatic β-cell dysfunction.  相似文献   

4.
Yeast studies identified the evolutionarily conserved core ATG genes responsible for autophagosome formation. However, the SNARE-dependent machinery involved in autophagosome fusion with the vacuole in yeast is not conserved. We recently reported that the SNARE complex consisting of Syx17 (Syntaxin 17), ubisnap (SNAP-29) and Vamp7 is required for the fusion of autophagosomes with late endosomes and lysosomes in Drosophila. Syx17 mutant flies are viable but exhibit neuronal dysfunction, locomotion defects and premature death. These data point to the critical role of autophagosome clearance in organismal homeodynamics.  相似文献   

5.
In Japan, many sounds designed for the visually handicapped are not only useless, but also create noise for the impaired and non-impaired people alike. Interview surveys with visually handicapped people were analyzed to reveal why inappropriate barrier-free acoustic designs have been provided for them. Responses from participants were divided into three categories: (1) mistaken needs-assessments, (2) poor technical knowledge of the visually impaired and (3) problems of power/political relationships. Furthermore, the responses of almost all the participants seemed to apply as well to other kinds of barrier-free designs, in spite of the fact that the topic of this survey focused only on acoustic designs. The results suggest that we must examine social as well as technical and psychological issues when we plan barrier-free designs.  相似文献   

6.
For good sleepers, distal skin temperatures (e.g., hands and feet) have been shown to increase when sleep is attempted. This process is said to reflect the body's action to lose heat from the core via the periphery. However, little is known regarding whether the same process occurs for insomniacs. It would be expected that insomniacs would have restricted heat loss due to anxiety when attempting sleep. The present study compared the finger skin temperature changes when sleep was attempted for 11 chronic primary insomniacs [mean age = 40.0 years (SD 13.3)] and 8 good sleepers [mean age = 38.6 years (SD 13.2)] in a 26-h constant routine protocol with the inclusion of multiple-sleep latency tests. Contrary to predictions, insomniacs demonstrated increases in finger skin temperature when attempting sleep that were significantly greater than those in good sleepers (P = 0.001), even though there was no significant differences in baseline finger temperature (P = 0.25). These significant increases occurred despite insomniacs reporting significantly greater sleep anticipatory anxiety (P < 0.0008). Interestingly, the core body temperature mesor of insomniacs (37.0 +/- 0.2 degrees C) was significantly higher than good sleepers (36.8 +/- 0.2 degrees C; P = 0.03). Whether insomniacs could have impaired heat loss that is masked by elevated heat production is discussed.  相似文献   

7.
Caloric stimulation induced a transient reversal of multimodal hemispatial cognitive deficits in an 81-year-old woman with an acute left cerebral hemisphere stroke. The patient had unawareness of her right hand (asomatognosia), right-sided visual unawareness (hemineglect), aphasia and right-sided weakness (hemiplegia) prior to the stimulation. Transient improvements in impaired sensory, motor, linguistic and cognitive function developed within 30 s following application of the caloric stimulus and onset of horizontal nystagmus. The effect persisted for 3 min and ceased completely after 5 min. While several recent reports have described the capacity of caloric stimulation to transiently improve or reverse a wide range of attentional, cognitive and motor impairments, most examples are in right-hemisphere-damaged patients with long-standing brain injury. Typically, patients have been tested several months or years after the onset of the deficit. A possible mechanism for the temporary reintegration of multiple cognitive functions in this patient is discussed.  相似文献   

8.
Gestational and postpartum high-fat diets (HFDs) have been implicated as causes of obesity in offspring in later life. The present study aimed to investigate the effects of gestational and/or postpartum HFD on obesity in offspring. We established a mouse model of HFD exposure that included gestation, lactation and post-weaning periods. We found that gestation was the most sensitive period, as the administration of a HFD impaired lipid metabolism, especially fatty acid oxidation in both foetal and adult mice, and caused obesity in offspring. Mechanistically, the DNA hypermethylation level of the nuclear receptor, peroxisome proliferator-activated receptor-α (Pparα), and the decreased mRNA levels of ten-eleven translocation 1 (Tet1) and/or ten-eleven translocation 2 (Tet2) were detected in the livers of foetal and adult offspring from mothers given a HFD during gestation, which was also associated with low Pparα expression in hepatic cells. We speculated that the hypermethylation of Pparα resulted from the decreased Tet1/2 expression in mothers given a HFD during gestation, thereby causing lipid metabolism disorders and obesity. In conclusion, this study demonstrates that a HFD during gestation exerts long-term effects on the health of offspring via the DNA demethylation of Pparα, thereby highlighting the importance of the gestational period in regulating epigenetic mechanisms involved in metabolism.  相似文献   

9.
Temperature-sensitive (Ts) mutants ofAnabœna variabilis exhibited differences in the rates of oxygen evolution at 28 and 40°C. They were unable to perform photosynthesis and nitrogen fixation at 40°C beyond a period of 3 d in a nitrogen-deficient medium. However, the addition of combined nitrogen sources enhanced the growth of all the Ts mutants at both temperatures. Studies on nitrate uptake ty Ts mutants revealed the existence of a low affinity system, whereK m values were found to be lower than 1 mmol/L. The activity of nitrate reductase gradually increased with time at 28°C with the exception of Ts-161 where the activity decreased with time at 40°C. The rate of ammonia uptake byA. variabilis and its Ts mutants greatly differed and the results suggest the existence of a single phase of uptake. The activity of glutamate-ammonia ligase (GAL) of the parent and Ts mutants was slightly higher in cells from nitrogen-deficient medium when compared to nitrate grown cells at 28°C. At 40°C, the GAL activity decreased after 3 d. The inability of the Ts mutants to grow at 40°C appears to be due to an impairment in nitrogen asimilation.  相似文献   

10.
Angiogenesis is an essential component of ulcer healing since it assures delivery of oxygen and nutrients to the healing site. Previous studies demonstrated increased serum and tissue levels of vascular endothelial growth factor (VEGF, the most potent angiogenic growth factor) in patients with active ulcerative colitis (UC) and animal models of UC. However, there is no explanation why the healing of UC-related mucosal injury is impaired despite increased expression of VEGF. Expression of angiogenesis inhibitors, angiostatin and/or endostatin, in UC has not been determined before. We examined expression of VEGF, angiostatin, and endostatin in two models of experimental UC. The results revealed that in addition to increased VEGF, both endostatin and angiostatin levels were markedly (2-3-folds) increased in colonic mucosa at early stage of experimental UC. This is the first demonstration that colitis triggers increase in angiostatin and endostatin levels. The results may explain why mucosal lesions heal slowly despite increased VEGF levels, and may provide a novel and mechanistic insight into UC.  相似文献   

11.
Peroxisome deficiency in liver causes hepatosteatosis both in patients and in mice. Here, we studied the mechanisms that contribute to this lipid accumulation and to activation of peroxisome proliferator activated receptor α (PPARα) by using liver-specific Pex5−/− mice (L-Pex5−/− mice). Surprisingly, steatosis was accompanied both by increased mitochondrial β-oxidation capacity, confirming previous observations, and by impaired de novo lipid synthesis mediated by reduced expression of sterol regulatory element binding protein 1c and its targets. As a consequence, when challenged with a high fat diet, L-Pex5−/− mice were protected from adiposity. Hepatic fatty acid uptake was strongly increased whereas the expression of apolipoproteins and the lipoprotein assembly factor microsomal triglyceride transfer protein were markedly reduced resulting in reduced secretion of very low density lipoproteins. Most of these changes seemed to be orchestrated by the endogenous activation of PPARα, challenging the assumption that PPARα activation in hepatocytes requires fatty acid synthase dependent de novo fatty acid synthesis. Expression of cholesterol synthesizing enzymes and cholesterol levels were not affected in peroxisome deficient liver. In conclusion, increased fatty acid uptake driven by endogenous PPARα activation and reduced fatty acid secretion cause hepatosteatosis in peroxisome deficient livers.  相似文献   

12.
Palmitic acid (PA) is associated with higher blood concentrations of medium-chain acylcarnitines (MCACs), and we hypothesized that PA may inhibit progression of FA β-oxidation. Using a cross-over design, 17 adults were fed high PA (HPA) and low PA/high oleic acid (HOA) diets, each for 3 weeks. The [1-13C]PA and [13-13C]PA tracers were administered with food in random order with each diet, and we assessed PA oxidation (PA OX) and serum AC concentration to determine whether a higher PA intake promoted incomplete PA OX. Dietary PA was completely oxidized during the HOA diet, but only about 40% was oxidized during the HPA diet. The [13-13C]PA/[1-13C]PA ratio of PA OX had an approximate value of 1.0 for either diet, but the ratio of the serum concentrations of MCACs to long-chain ACs (LCACs) was significantly higher during the HPA diet. Thus, direct measurement of PA OX did not confirm that the HPA diet caused incomplete PA OX, despite the modest, but statistically significant, increase in the ratio of MCACs to LCACs in blood.  相似文献   

13.
14.
The bile salt export pump (BSEP) is an ATP-binding cassette transporter that serves as the primary system for removing bile salts from the liver. In humans, deficiency of BSEP, which is encoded by the ABCB11 gene, causes severe progressive cholestatic liver disease from early infancy. In previous studies of Abcb11 deficiency in mice generated on a mixed genetic background, the animals did not recapitulate the human disease. We reasoned that ABCB11 deficiency may cause unique changes in hepatic metabolism that are predictive of liver injury. To test this possibility, we first determined that Abcb11 knock-out (KO) C57BL/6J mice recapitulate human deficiency. Before the onset of cholestasis, Abcb11 KO mice have altered hepatic lipid metabolism coupled with reduced expression of genes important in mitochondrial fatty acid oxidation. This was associated with increased serum free-fatty acids, reduced total white adipose, and marked impairment of long-chain fatty acid β-oxidation. Importantly, metabolomic analysis confirmed that Abcb11 KO mice have impaired mitochondrial fatty acid β-oxidation with the elevated fatty acid metabolites phenylpropionylglycine and phenylacetylglycine. These metabolic changes precede cholestasis but may be of relevance to cholestatic disease progression because altered fatty acid metabolism can enhance reactive oxygen species that might exacerbate cholestatic liver damage.  相似文献   

15.
Reduced levels of the SMN (survival of motoneuron) protein cause spinal muscular atrophy, the main form of motoneuron disease in children and young adults. In cultured motoneurons, reduced SMN levels lead to disturbed axon growth that correlates with reduced actin mRNA and protein in growth cones, indicating that anterograde transport and local translation of β-actin mRNA are altered in this disease. However, it is not fully understood how local translation of the β-actin mRNA is regulated in SMN-deficient motoneurons. Here, we established a lentiviral GFP-based reporter construct to monitor local translation of β-actin mRNA. Time-lapse imaging of fluorescence recovery after photobleaching (FRAP) in living motoneurons revealed that β-actin is locally translated in the growth cones of embryonic motoneurons. Interestingly, local translation of the β-actin reporter construct was differentially regulated by various Laminin isoforms, indicating that Laminins provide extracellular cues for the regulation of local translation in growth cones. Notably, local translation of β-actin mRNA was deregulated in motoneurons from a mouse model for the most severe form of SMA (Smn ?/? ;SMN2). Taken together our findings suggest that local translation of β-actin in growth cones of motoneurons is regulated by Laminin signalling and that this signalling is disturbed in SMA.  相似文献   

16.
Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic β-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, ΒΕΤΑ2, MafA, and IRS-2 were suppressed, partially explaining the loss and dysfunction of β-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous β-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts β-cell mass and function.  相似文献   

17.
All photosynthetic organisms face the difficulty of maintaining cellular metabolism in the absence of photosynthetic active radiation during the night. Although many consuming metabolic pathways (e.g., fatty acid synthesis) are only active in the light, plant cells still require basic levels of metabolic energy and reductive power during the night for sustained growth and development.Key words: PXA1, comatose, β-oxidation, fatty acids, starch, imaging PAM, extended darkness  相似文献   

18.
One of the characteristics of type 2 diabetes is that the insulin secretory response of β cells is selectively impaired to glucose. In the Goto-Kakizaki (GK) rat, a genetic model of type 2 diabetes mellitus, glucose-induced insulin secretion is selectively impaired due to deficient ATP production derived from impaired glucose metabolism. In addition, islets in GK rat and human type 2 diabetes are oxidatively stressed. In this issue, role of endogenous reactive oxygen species (ROS) production in impaired metabolism-secretion coupling of diabetic pancreatic β cells is reviewed. In β cells, ROS is endogenously produced by activation of Src, a non-receptor tyrosine kinase. Src inhibitors restore the impaired insulin release and impaired ATP elevation by reduction in ROS production in diabetic islets. Src is endogenously activated in diabetic islets, since the level of Src pY416 in GK islets is higher than that in control islets. In addition, exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, decreases Src pY416 and glucose-induced ROS production and ameliorates impaired ATP production dependently on Epac in GK islets. These results indicate that GLP-1 signaling regulates endogenous ROS production due to Src activation and that incretin has unique therapeutic effects on impaired glucose metabolism in diabetic β cells.  相似文献   

19.
Pulmonary surfactant, a defined mixture of lipids and proteins, imparts very low surface tension to the lung-air interface by forming an incompressible film. In acute respiratory distress syndrome and other respiratory conditions, this function is impaired by a number of factors, among which is an increase of cholesterol in surfactant. The current study shows in vitro that cholesterol can be extracted from surfactant and function subsequently restored to dysfunctional surfactant films in a dose-dependent manner by methyl-β-cyclodextrin (MβCD). Bovine lipid extract surfactant was supplemented with cholesterol to serve as a model of dysfunctional surfactant. Likewise, when cholesterol in a complex with MβCD (“water-soluble cholesterol”) was added in aqueous solution, surfactant films were rendered dysfunctional. Atomic force microscopy showed recovery of function by MβCD is accompanied by the re-establishment of the native film structure of a lipid monolayer with scattered areas of lipid bilayer stacks, whereas dysfunctional films lacked bilayers. The current study expands upon a recent perspective of surfactant inactivation in disease and suggests a potential treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号