共查询到20条相似文献,搜索用时 0 毫秒
1.
Elongation of long-chain fatty acids 总被引:19,自引:0,他引:19
2.
M. S. Van Dyk J. L. F. Kock A. Botha 《World journal of microbiology & biotechnology》1994,10(5):495-504
Hydroxy long-chain fatty acids occur widely in animals and plants and have important physiological activities in these eukaryotes. There are indications that these compounds are also common and important in fungi. The occurrence of hydroxy-polyunsaturated fatty acids (hydroxy-PUFAs) is of biotechnological importance, because these compounds are potentially high-value lipid products with medical applications. This review pays particular attention to the production of hydroxy-PUFAs by yeasts and other fungi. Hydroxy-PUFAs derived from lipoxygenase activity appear to be present in most fungi, while hydroxy-PUFAs from cyclooxygenase activity (i.e. prostaglandins) have mainly been implicated in the Oomycota and in yeasts from the genus Dipodascopsis. The occurrence of other hydroxy long-chain fatty acids in fungi is also discussed briefly; these include hydroxy fatty acids that are generally associated with cytochrome P-450 monooxygenase activity (i.e. terminal and sub-terminal hydroxy acids and diols derived from the corresponding epoxides) as well as 2-hydroxy-fatty acids and 3-hydroxy-fatty acids.The authors are with the Department of Microbiology and Biochemistry, University of the Orange Free State, P.O. Box 339, Bloemfontein, 9300, South Africa 相似文献
3.
Synthesis of long-chain fatty acids in mitochondria 总被引:3,自引:0,他引:3
E M Wit-Peeters 《Biochimica et biophysica acta》1969,176(3):453-462
4.
R. W. R. Baker 《The Biochemical journal》1961,79(3):642-648
5.
6.
Cardiovascular disease and long-chain omega-3 fatty acids 总被引:1,自引:0,他引:1
PURPOSE OF REVIEW: Of all known dietary factors, long-chain omega-3 fatty acids may be the most protective against death from coronary heart disease. New evidence has confirmed and refined the cardioprotective role of these fatty acids. RECENT FINDINGS: Omega-3 fatty acid supplementation reduces the risk of sudden cardiac death and death from any cause within 4 months in post-myocardial infarction patients. Evidence continues to accrue for benefits in the primary prevention of coronary heart disease and stroke, and an anti-arrhythmogenic mechanism is emerging as the most likely explanation. SUMMARY: Current evidence suggests that individuals with coronary artery disease may reduce their risk of sudden cardiac death by increasing their intake of long-chain omega-3 fatty acids by approximately 1 g per day. 相似文献
7.
Metabolism of exogenous long-chain fatty acids by spinach leaves 总被引:8,自引:0,他引:8
When applied in liquid paraffin to the upper surface of expanding spinach leaves, [1-14C]palmitic acid was efficiently and exclusively incorporated into the sn-1 position of cellular glycerolipids, principally phosphatidylcholine and triacylglycerol. A slow transfer of fatty acids from phosphatidylcholine to chloroplast glycolipids subsequently occurred with the positional specificity of the label remaining intact. Labeled palmitate at the sn-1 position of monogalactosyldiacylglycerol was desaturated to hexadecatrienoate so that 1-[14C]hexadecatrienoyl-2-linolenoyl-3-galactosoylglycerol became the major labeled species of the lipid between 8 and 24 h. There was no evidence of deacylation/reacylation reactions modifying the acyl compositions of spinach leaf glycerolipids for at least 48 h after labeling with [1-14C]palmitic acid; even the partially prokaryotic glycerolipids remained firmly labeled at the sn-1 position. Exogenous [1-14C]stearic acid was also incorporated into the sn-1 position of MGD, presumably by the same mechanism, and was there desaturated to [14C]linolenate. Exogenous [1-14C]oleic acid was initially incorporated equally into both sn-1 and sn-2 positions of phosphatidylcholine, and was desaturated to linoleate at both positions before the label was rapidly transferred to monogalactosyldiacylglycerol. There, desaturation of linoleate to linolenate took place. Galactolipids remained equally labeled at both positions throughout the 6 days of the experiment, but label was concentrated in the 1-saturated-2-[14C]linolenoyl molecular species of phosphatidylcholine as those species with two [14C]linoleoyl residues were drawn off for monogalactolipid synthesis. Glycerolipids synthesised from exogenous [1-14C]acetate by spinach leaves were labeled equally at both the sn-1 and the sn-2 positions. These results are interpreted as providing strong support for the two-pathway scheme of glycerolipid synthesis in plants. 相似文献
8.
Long-chain unsaturated fatty acids, as well as certain saturated fatty acids such as lauric acid, are inhibitors of the in
vivo luminescence of wild-type strains of four species of luminous bacteria (Beneckea harveyi, Photobacterium phosphoerum, P. fischeri, andP. leiognathi) as well as the myristic acid-stimulated luminescence in the aldehyde dim mutant M17 ofB. harveyi. Based on studies with the system in vivo, the principal site of action of all the fatty acids appears to be the reductase
activity that converts myristic acid to myristyl aldehyde. This was confirmed by in vitro studies: Reductase activity in crude
cell-free extracts is strongly inhibited by oleic acid. 相似文献
9.
Hydroxy fatty acids (HFAs) are very important chemicals for versatile applications in biodegradable polymer materials and cosmetic and pharmaceutical industries. They are difficult to be synthesized via chemical routes due to the inertness of the fatty acyl chain. In contrast, these fatty acids make up a major class of natural products widespread among bacteria, yeasts, and fungi. A number of microorganisms capable of producing HFAs from fatty acids or vegetable oils have been reported. Therefore, HFAs could be produced by biotechnological strategies, especially by microbial conversion processes. Microorganisms could oxidize fatty acids either at the terminal carbon or inside the acyl chain to produce various HFAs, including α-HFAs, β-HFAs, mid-position HFAs, ω-HFAs, di-HFAs, and tri-HFAs. The enzymes and their encoded genes responsible for the hydroxylation of the carbon chain have been identified and characterized during the past few years. The involved microbes and catalytic mechanisms for the production of different types of HFAs are systematically demonstrated in this review. It provides a better view of HFA biosynthesis and lays the foundation for further industrial production. 相似文献
10.
Polyunsaturated fatty acids (PUFAs) are important for the normal development and function of all organisms, and are essential in maintaining human health. Impaired PUFA metabolism is thought to be associated with pathogenesis of many chronic diseases. Dietary supplementation of PUFAs, such as gamma-linolenic acid, arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which bypass the defective or dysfunctional steps of the biosynthetic pathway has been found to significantly alleviate the symptoms of the disease. These findings have drawn a great deal of interest from general public and food manufacturers. As the demand of these beneficial PUFAs has drastically increased in recent years, there are also increasing efforts in finding the alternate sources of PUFAs that are more economical and sustainable. One option is to modify the oil-seed crops to produce PUFAs through genetic engineering technique. This review examines the isolation, identification and expression of genes encoding the enzymes required for the biosynthesis of the above mentioned PUFAs in plants. 相似文献
11.
12.
Binding of long-chain fatty acids to bovine serum albumin 总被引:32,自引:0,他引:32
We have studied the binding of long-chain free fatty acids (FFA) to crystalline bovine serum albumin (BSA) that had been extracted with charcoal to remove endogenous fatty acids. The data were analyzed in terms of a model consisting of six high-energy binding sites and a large number of weak binding sites. The high-energy sites were resolved into two distinct classes, each containing three sites. At 37 degrees C and pH 7.4, k'(1) (the apparent association constant of a class of binding sites) was about 10(6) m(-1) for binding to the three primary sites, and k'(2) was about 10(5) m(-1) for binding to the three secondary sites. The number of weak (tertiary) sites was estimated to be 63 with a k'(3) of 10(3) m(-1). In general, palmitate and palmitoleate were bound more tightly than oleate, linoleate, stearate, or myristate, and much more tightly than laurate. The association of palmitate with human and rabbit albumin also was analyzed in terms of this model. Palmitate was bound less firmly by human or rabbit albumin than by BSA. Palmitate binding to BSA was dependent upon the pH and temperature of the incubation medium. Long-chain hydrocarbons that did not contain a free carboxyl group (methyl palmitate, cetyl alcohol, and hexadecane) were bound to a limited extent and weakly. The presence of positively charged protein sites and native protein tertiary structure were required for maximal binding of palmitate to BSA. Of nine other proteins tested, only -lactoglobulin exhibited a significant capacity to bind palmitate. 相似文献
13.
Schizophrenia, autism and depression do not inherit by Mendel's law, and the search for a genetic basis seems unsuccessful. Schizophrenia and autism relate to low birth weight and pregnancy complications, which are associated with developmental adaptations by "programming". Epigenetics might constitute the basis of programming and depend on folate status and one-carbon metabolism in general. Early folate status of patients with schizophrenia might be compromised as suggested by (i) coinciding incidences of schizophrenia and neural tube defects (NTDs) in the Dutch hunger winter, (ii) coinciding seasonal fluctuations in birth of patients with schizophrenia and NTDs, (iii) higher schizophrenia incidence in immigrants and (iv) higher incidence in methylene tetrahydrofolate reductase 677C-->T homozygotes. Recent studies in schizophrenia and autism point at epigenetic silencing of critical genes or chromosomal loci. The long-chain polyunsaturated fatty acids (LCPUFA), arachidonic acid (AA, from meat) and docosahexaenoic acid (fish) are components of brain phospholipids and modulators of signal transduction and gene expression. Patients with schizophrenia and, possibly, autism exhibit abnormal phospholipid metabolism that might cause local AA depletion and impaired eicosanoid-mediated signal transduction. National fish intakes relate inversely with major and postpartum depressions. Five out of six randomized controlled trials with eicosapentaenoic acid (fish) have shown positive effects in schizophrenia, and 4 of 6 were favorable in depression and bipolar disorders. We conclude that folate and LCPUFA might be important in both the etiology and severity of at least some psychiatric diseases. 相似文献
14.
Gupta S Knight AG Gupta S Keller JN Bruce-Keller AJ 《Journal of neurochemistry》2012,120(6):1060-1071
This study describes the effects of long-chain fatty acids on inflammatory signaling in cultured astrocytes. Data show that the saturated fatty acid palmitic acid, as well as lauric acid and stearic acid, trigger the release of TNFα and IL-6 from astrocytes. Unsaturated fatty acids were unable to induce cytokine release from cultured astrocytes. Furthermore, the effects of palmitic acid on cytokine release require Toll-like receptor 4 rather than CD36 or Toll-like receptor 2, and do not depend on palmitic acid metabolism to palmitoyl-CoA. Inhibitor studies revealed that pharmacologic inhibition of p38 or p42/44 MAPK pathways prevents the pro-inflammatory effects of palmitic acid, whereas JNK and PI3K inhibition does not affect cytokine release. Depletion of microglia from primary astrocyte cultures using the lysosomotropic agent l-leucine methyl ester revealed that the ability of palmitic acid to trigger cytokine release is not dependent on the presence of microglia. Finally, data show that the essential ω-3 fatty acid docosahexaenoic acid acts in a dose-dependent manner to prevent the actions of palmitic acid on inflammatory signaling in astrocytes. Collectively, these data demonstrate the ability of saturated fatty acids to induce astrocyte inflammation in vitro. These data thus raise the possibility that high levels of circulating saturated fatty acids could cause reactive gliosis and brain inflammation in vivo, and could potentially participate in the reported adverse neurologic consequences of obesity and metabolic syndrome. 相似文献
15.
Bernd Walloschke Herbert Fuhrmann Julia Schumann 《The Journal of nutritional biochemistry》2010,21(6):556-560
Macrophages play a vital role in the innate immune system. Thereby, production of both reactive oxygen intermediates and immune modulating cytokines is crucial for successful pathogen defense. Fatty acids may interfere with immune response in several ways. In this study, we investigated the influence of essential polyunsaturated fatty acids (PUFA) on key macrophage functions. RAW264.7 macrophages were cultured in a medium supplemented with 2 or 15 μmol/L of the n-6 PUFA linoleic acid (LA) or of the n-3 PUFA α-linolenic acid (LNA), respectively. Cells were tested for incorporation of fatty acids as well as NADPH oxidase activity. Furthermore, supernatants were collected for detection of NO and cytokine release (TNF-α, IL-6, IL-10). Exposure of RAW264.7 macrophages to LA or LNA resulted in incorporation of these fatty acids and their derivatives. Thereby, supplementation with both LA and LNA caused a significant increase in NADPH oxidase activity. In contrast, synthesis of NO was not affected by PUFA supplementation. Moreover, distinct effects could be seen in the release of immune modulating cytokines. Due to enhancement of NADPH oxidase activity, PUFA presumably promote the killing of pathogens crucial in host defense. In addition, the unsaturated fatty acids tested in our study were shown to modulate cytokine release by the macrophages, thus driving immune response into an anti-inflammatory direction. Of note, distinct differences between the n-6 PUFA LA and the n-3 PUFA LNA underline the impact of PUFA family on immune response. 相似文献
16.
17.
Central administration of the long-chain fatty acid oleic acid inhibits food intake and glucose production in rats. Here we examined whether short term changes in nutrient availability can modulate these metabolic and behavioral effects of oleic acid. Rats were divided in three groups receiving a highly palatable energy-dense diet at increasing daily caloric levels (below, similar, or above the average of rats fed standard chow). Following 3 days on the assigned diet regimen, rats were tested for acute biological responses to the infusion of oleic acid in the third cerebral ventricle. Three days of overfeeding virtually obliterated the metabolic and anorectic effects of the central administration of oleic acid. Furthermore, the infusion of oleic acid in the third cerebral ventricle failed to decrease the expression of neuropeptide Y in the hypothalamus and of glucose-6-phosphatase in the liver following short term overfeeding. The lack of hypothalamic responses to oleic acid following short term overfeeding is likely to contribute to the rapid onset of weight gain and hepatic insulin resistance in this animal model. 相似文献
18.
Nonesterified long-chain fatty acids (myristic, palmitic, oleic and arachidonic), added at low amounts (around 20 nmol/mg protein) to rat liver mitochondria, energized by respiratory substrates and suspended in isotonic solutions of KCl, NaCl, RbCl or CsCl, adjusted to pH 8.0, induce a large-scale swelling followed by a spontaneous contraction. Such swelling does not occur in alkaline solutions of choline chloride or potassium gluconate or sucrose. These changes in the matrix volume reflect a net uptake, followed by net extrusion, of KCl (or another alkali metal chloride) and are characterized by the following features: (1) Lowering of medium pH from 8.0 to 7.2 results in a disappearance of the swelling-contraction reaction. (2) The contraction phase disappears when the respiration is blocked by antimycin A. (3) Quinine, an inhibitor of the K+/H+ antiporter, does not affect swelling but suppresses the contraction phase. (4) The swelling phase is accompanied by a decrease of the transmembrane potential and an increase of respiration, whereas the contraction is followed by an increase of the membrane potential and a decrease of oxygen uptake. (5) Nigericin, a catalyst of the K+/H+ exchange, prevents or partly reverses the swelling and partly restores the depressed membrane potential. These results indicate that long-chain fatty acids activate in liver mitochondria suspended in alkaline saline media the uniporter of monovalent alkali metal cations, the K+/H+ antiporter and the inner membrane anion channel. These effects are presumably related to depletion of mitochondrial Mg2+, as reported previously [Arch. Biochem. Biophys. 403 (2002) 16], and are responsible for the energy-dissipating K+ cycling. The uniporter and the K+/H+ antiporter are in different ways activated by membrane stretching and/or unfolding, resulting in swelling followed by contraction. 相似文献
19.
Summary Low concentrations of the long-chain fatty acids oleate and stearate inhibited all steps of the anaerobic thermophilic biogas process during digestion of cattle manure. The lag phase increased when the concentrations of oleate and stearate were 0.2 g/l and 0.5 g/l, respectively, and no growth was found at concentrations of 0.5 g/l for oleate and 1.0 g/l for stearate. The toxic effect of these acids was permanent as growth did not occur when inhibited cultures were diluted to a non-inhibitory concentration. No adaptation to the fatty acids toxicity was observed by pre-exposing the cultures to non-inhibitory concentrations and the inhibitory response was the same as for cultures not pre-exposed to the fatty acids. Oleate was less inhibitory when added as a neutral oil in the form of the glycerol ester. This indicates that it is the free fatty acid that influences the bacterial activity.
Correspondence to: B. K. Ahring 相似文献
20.
Movement of free fatty acids (ffa) between small unilamellar vesicles (SUV) was studied by measuring the transfer of fluorescent n-(9-anthroyloxy)-labeled analogues (AOffa) between donor and acceptor vesicles. Donors were composed of egg phosphatidylcholine (PC) loaded with 1-2 mol % AOffa, and acceptors were egg PC containing 10-12 mol % N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (NBD-PE). The fluorescence of AO added directly to acceptor SUV was greater than 98% quenched by energy transfer to NBD. Thus, AOffa movement from donor to acceptor was monitored by the time-dependent decrease in AO fluorescence. The transfer of the short-chain AOffa, although too fast to be resolved by the methods used here, is consistent with studies that find transfer rates on the order of milliseconds and kinetics which are first order. In contrast, transfer rates for the long-chain AOffa are more than 2 orders of magnitude slower, and the kinetics of the transfer process are best described by the sum of two exponentials plus a constant. The ffa ionization state was also found to be an important determinant of transfer rate. The charged species transferred an average of 10-fold faster than the protonated ffa. The ffa pKa in the membrane is 9, as calculated from the pH dependence of transfer. Similar to results found for other lipids, long-chain AOffa are transferred via water rather than a collision-mediated process. The aqueous phase route of AOffa intermembrane transfer is indicated by the lack of effect on transfer of large alterations in the product of donor and acceptor phospholipid concentrations. Moreover, the transfer rate is decreased as [NaCl] is increased from 0.1 to 4 M. This effect of ionic strength is probably due not only to a decrease in the aqueous phase partition of the AOffa but also to an alteration in bilayer structure, as measured by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. The observed kinetics are consistent with a model in which the transfer involves two steps: transbilayer movement between the inner and outer bilayer leaflets, followed by transfer from the outer leaflet to the aqueous phase (off rate). Within the framework of this model, the observed slow rate is primarily determined by the rate of transbilayer movement, and the observed fast rate is approximately equal to the off rate. The off rate is about 10-fold faster than the rate of transbilayer movement. 相似文献