首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purely olfactory odorants coumarin, octanoic acid, phenylethyl alcohol, and vanillin had been found to be consistently identified when presented retronasally but could not be identified when presented oral-cavity only (OCO). However, OCO discrimination of these odorants was not tested. Consequently, it remained possible that the oral cavity trigeminal system might provide sufficient information to differentiate these purely olfactory odorants. To evaluate this, 20 participants attempted to discriminate vapor-phase coumarin, octanoic acid, phenylethyl alcohol, and vanillin and, as a control, the trigeminal stimulus peppermint extract, from their glycerin solvent, all presented OCO. None of the purely olfactory odorants could be discriminated OCO, but, as expected, peppermint extract was consistently discriminated. This inability to discriminate clarifies and expands the previous report of lack of OCO identification of purely olfactory odorants. Taken together with prior data, these results suggest that the oral cavity trigeminal system is fully unresponsive to these odorants in vapor phase and that coumarin, octanoic acid, phenylethyl alcohol, and vanillin are indeed purely olfactory stimuli. The OCO discrimination of peppermint extract demonstrated that the absence of discrimination for the purely olfactory odorants was odorant dependent and confirmed that the oral cavity trigeminal system will provide differential response information to some vapor-phase stimuli.  相似文献   

2.
Accumulating evidence suggests dietary fatty acids (FAs) may be sensed in the oral cavity. However, the effective cues have not been characterized. In particular, influences from other sensory cues have hampered identification of an independent gustatory contribution. Experiment 1 examined techniques to minimize the formation of FA oxidation products and improve the homogeneity of water/lipid emulsions to be used as stimuli in Experiment 2, a psychophysical study to determine FA detection thresholds in humans. Through sonication of chilled samples held in polypropylene labware and the addition of 0.01% ethylenediaminetetraacetic acid, calcium disodium salt, homogenous emulsions of unoxidized linoleic and oleic FAs were obtained. Spectrophotometric analysis revealed no oxidation product formation over a 24-h period. Coupled with these techniques, a masking approach was used to minimize other sensory cues imparted from linoleic, oleic, and stearic FAs. Concentration ranges from 0.00028% to 5% (w/v) were prepared in mixtures with 5% mineral oil (w/v) and 5% gum acacia (w/v) to mask lubricity and viscosity effects, respectively. Testing was conducted under red light with nares blocked to eliminate visual and olfactory cues. Oral rinses with 20 ppm capsaicin were administered to desensitize participants to selected irritation effects prior to remeasuring linoleic acid detection thresholds. To determine if the effective stimulus was an oxidation product, oxidized linoleic acid was included among the test stimuli. Detection thresholds were obtained using a 3-alternative, forced-choice ascending-concentration presentation procedure. The mean detection threshold for linoleic acid pre-desensitization was 0.034 +/- 0.008%, for linoleic acid post-desensitization was 0.032 +/- 0.007%, for oleic 0.022 +/- 0.003%, for stearic 0.032 +/- 0.005%, and oxidized linoleic 0.025 +/- 0.005%. The results suggest that linoleic, oleic, stearic, and oxidized linoleic acids are detectable in the oral cavity of humans with minimal input from the olfactory, capsaicin, and viscosity-assessing tactile systems.  相似文献   

3.
We have studied the changes in the fatty acid profiles of red blood cell membrane phospholipids in 47 infants who were exclusively fed human milk from birth to 1 month of life. Twenty blood samples were obtained from cord, 15 at 7 days and 12 at 30 days after birth. Membrane phospholipids were obtained from erythrocyte ghosts by thin-layer chromatography and fatty acid composition was determined by gas liquid chromatography. Phosphatidylcholine showed the most important changes during early life; stearic, w6 eicosatrienoic and arachidonic acids decreased whereas oleic and linoleic acids increased. In phosphatidylethanolamine, palmitic and stearic acid declined and oleic, linoleic and docosahexenoic acids increased with advancing age. Small changes were noted for individual fatty acids in phosphatidylserine. In sphingomyelin stearic acid increased from birth to 1 month and linoleic, arachidonic and nervonic acids decreased. Total polyunsaturated fatty acids of the w6 series greater than 18 carbon atoms increased with advancing age in phosphatidylethanolamine and decreased in choline and serine phosphoglycerides and in sphingomyelin. Long chain fatty acids derived from linoleic acid decreased in phosphatidylcholine but increased in ethanolamine and serine phosphoglycerides. The different behavior in the changes observed in fatty acid patterns for each erythrocyte membrane phospholipid may be a consequence of its different location in the cell membrane bilayer and specific exchange with plasma lipid fractions.  相似文献   

4.
This paper reports the results of our analysis of the impact high levels of de novo fatty acids have on the proportions of essential and non-essential fatty acids in human milk lipids. The data for seven fatty acids (linoleic, alpha-linolenic, arachidonic (AA), docosahexaenoic (DHA), palmitic, stearic and oleic) were derived from several studies conducted in Nigeria. The proportion by weight of each of these fatty acids was plotted versus the proportion of C10-14 fatty acids. As the proportion of C10-14 fatty acids increased from 15 to 65%, there was not a proportional decrease in the percentages of all seven fatty acids, but, instead, preferential incorporation of the essential fatty acids, AA and DHA into the triacylglycerol component of the milk. At the same time, the proportions of stearic and oleic acid declined by 69% and 86%, respectively. However, the proportions of linoleic acid, palmitic acid, DHA, AA and alpha-linolenic acid, in milk lipids decreased by only 44%, 40%, 39%, 28% and 2.3%, respectively. These observations indicate that as the contribution of C10-14 fatty acids increases, essential fatty acids are preferentially incorporated into milk triacylglycerols at the expense of oleic acid and stearic acid.  相似文献   

5.
Effects of fatty acids on lysis of Streptococcus faecalis.   总被引:6,自引:5,他引:1       下载免费PDF全文
Palmitic, stearic, oleic, and linoleic acids at concentrations of 200 nmol/ml all inhibited autolysin activity 80% or more in whole cells or cell-free extracts. This concentration of the saturated fatty acids palmitic acid and stearic acid had little or no effect on the growth of whole cells or protoplasts. However, the unsaturated fatty acids oleic acid and linoleic acid induced lysis in both situations. This lytic effect is apparently not related to any uncoupling activity or inhibition of energy catabolism by unsaturated fatty acids. It is concluded that unsaturated fatty acids induce cell and protoplast lysis by acting as more potent membrane destabilizers than saturated fatty acids.  相似文献   

6.
Cell growth, lipid accumulation and cellular lipid composition of Yarrowia lipolytica growing on mixtures of industrial fats containing stearic, oleic, linoleic and palmitic acid have been studied. During growth, the strain incorporated oleic and linoleic acids more rapidly than the saturated fatty acids. Relatively high lipid accumulation (up to 0.44 g of lipids per g of dry matter) was observed when stearic acid was included in the culture medium. In contrast, substrates rich in oleic acid did not favor cellular lipid accumulation. The accumulated lipids, mainly composed of triacylglycerols (45-55% w/w), demonstrated a different total fatty acid composition compared with that of the substrate; in all cases, the microorganism showed the unusual capacity to increase its cellular stearic acid level, even if this fatty acid was not found in high concentrations in the substrate. This permitted the synthesis of interesting lipid profiles with high percentages of stearic acid and non-negligible percentages of palmitic and oleic acid, with a composition resembling that of cocoa-butter.  相似文献   

7.
Serum lipoprotein[a] (Lp[a]) is a strong risk factor for coronary heart disease. We therefore examined the effect of dietary fatty acid composition on serum Lp[a] levels in three strictly controlled experiments with healthy normocholesterolemic men and women. In Expt. I, 58 subjects consumed a control diet high in saturated fatty acids for 17 days. For the next 36 days, 6.5% of total energy intake from saturated fatty acids was replaced by monounsaturates plus polyunsaturates (monounsaturated fatty acid diet; n = 29) or by polyunsaturates alone (polyunsaturated fatty acid diet; n = 29). Both diets caused a slight, nonsignificant, increase in median Lp[a] levels, with no difference between diets. In Expt. II, 10% of energy from the cholesterol-raising saturated fatty acids (lauric, myristic, and palmitic acid) was replaced by oleic acid or by trans-monounsaturated fatty acids. Each of the 59 participants received each diet for 3 weeks in random order. The median level of Lp[a] was 26 mg/l on the saturated fatty acid diet; it increased to 32 mg/l (P less than 0.020) on the oleic acid diet and to 45 mg/l (P less than 0.001) on the trans-fatty acid diet. The difference in Lp[a] between the trans-fatty acid and the oleic acid diets was also highly significant (P less than 0.001). Expt. III involved 56 subjects; all received 8% of energy from stearic acid, from linoleic acid, or from trans-monounsaturates, for 3 weeks each. All other nutrients were equal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The optimum cofactor requirements for triacylglycerol biosynthesis in rat adipose-tissue homogenates containing mitochondrial, microsomal and cytosolic fractions were investigated. In general the optimum concentrations of cofactors for triacylglycerol biosynthesis were found to differ from those for total fatty acid esterification. The results provided further evidence for the key role of phosphatidate phosphohydrolase in the regulation of triacylglycerol biosynthesis. Albumin was included in the incubation medium to permit the use of concentrations of added fatty acids that would swamp the effects of endogenous fatty acids. The addition of albumin had little effect on the incorporation of palmitic acid and stearic acid into lipids including triacylglycerols. By contrast, a critical concentration of albumin (about 60 muM) was required before incorporation of oleic acid or linoleic acid into triacylglycerols occurred. The system was used to study the incorporation of different 1-14C-labelled fatty acids from a mixture of unesterified fatty acids [palmitic acid 30%; stearic acid 10%; oleic acid 40%; linoleic acid 20% (molar percentages)] separately into the positions 1,2 and 3 of triacyl-sn-glycerols. In general the stereo-specific distribution of the labelled fatty acids incorporated into triacylglycerols paralleled the normal distribution of fatty acids within rat adipose-tissue triacylglycerols, suggesting that the specificities of the relevant acyltrasferases have the major role in determining the positional distribution of fatty acids within triacylglycerols.  相似文献   

9.
Neem (Azadirachta indica) is a multipurpose tree native to the Indian subcontinent and South-East Asian countries. Products derived from neem have been used for centuries, particularly in India, for medicinal and pest-management purposes. Azadirachtin and neem oil are the two major commercially important products derived from the tree. The oil contains palmitic, stearic, oleic and linoleic acids in good proportion. Although there is growing demand for quality planting material for plantation of neem, efforts are lacking for the selection of neem trees based on their biochemical composition. In the present study, 60 Neem seed samples were collected from different provinances of the Rajasthan state in India. These samples were analysed by GLC to study the variability of fatty acid composition. Significant variability in individual fatty acids was observed. The palmitic acid ranged from 16 to 34%, stearic acid from 6 to 24%, oleic acid from 25 to 58% and linoleic acid from 6 to 17%. This variability can be exploited for selection of trees and for studying the genetic variability in neem. These selections can also be utilized for genetic improvement of the tree.  相似文献   

10.
徐艳勤  陈立  王文凯 《昆虫学报》2018,61(12):1414-1420
【目的】工蚁死亡后易受病原菌的侵染,进而危害蚁巢的健康。为了避免病菌横向传播,活工蚁根据尸体体内特定的化学物质的变化来识别尸体并将其搬运到弃尸堆。本实验旨在研究6种脂肪酸(油酸、亚油酸、棕榈油酸、棕榈酸、硬脂酸和肉豆蔻酸)对红火蚁Solenopsis invicta工蚁搬尸行为的影响,明确不同脂肪酸在其搬尸行为中发挥的作用。【方法】本实验利用GC-MS分析了工蚁活体和尸体提取物的脂肪酸成分,并在室内用滤纸片法测定了红火蚁对6种脂肪酸(10 μg/μL)、不同浓度(0.75和3 μg/μL)的单组分油酸或亚油酸以及不同浓度(0.01, 0.1, 1和10 μg/μL)的这两种酸的混合液的反应。【结果】结果表明,红火蚁尸体仅含有亚油酸和油酸两种脂肪酸;另外4种脂肪酸(棕榈油酸、棕榈酸、硬脂酸和肉豆蔻酸)对红火蚁的搬尸行为无显著影响;单组分的油酸和亚油酸均能促进红火蚁的搬尸行为,浓度越高,搬尸行为越显著。10 μg/μL的油酸和亚油酸混合液对工蚁的搬尸行为也具有显著的促进效果,低浓度的混合液对其无明显的促进作用(P>0.05)。【结论】结果提示油酸和亚油酸可调控红火蚁的搬尸行为,其他脂肪酸对红火蚁搬尸行为不产生影响。  相似文献   

11.
Microbial biohydrogenation of oleic acid to trans isomers in vitro   总被引:5,自引:0,他引:5  
Ruminant products are significant sources of dietary trans fatty acids. Trans fatty acids, including various conjugated linoleic acid isomers, have been shown to act as metabolic modifiers of lipid metabolism. Trans fatty acids originate from biohydrogenation of dietary unsaturated fatty acids by gut microbes; however, the exact synthetic pathways are unclear. It was our goal to examine the biohydrogenation pathway for oleic acid, where oleic acid is hydrogenated directly to stearic acid. Our objective in this study was to trace the time course of appearance of 13C in labeled oleic acid to determine if trans monoenes are formed from the 13C-labeled oleic acid or if the 13C appears only in stearic acid as described in reviews of earlier work. Enrichments were calculated from the mass abundance of 13C in major fatty acid fragments and expressed as a percentage of total carbon isotopomers. Significant 13C enrichment was found in stearic acid, oleic acid, trans-6, trans-7, and in all trans C18:1 in positions 9-16. We concluded that the biohydrogenation of oleic acid by mixed ruminal microbes involves the formation of several positional isomers of trans monoenes rather than only direct biohydrogenation to form stearic acid as previously described.  相似文献   

12.
Fatty Acid Transport and Utilization for the Developing Brain   总被引:7,自引:0,他引:7  
Abstract: To determine the transport and utilization of dietary saturated, monounsaturated, and n-6 and n-3 polyunsaturated fatty acids for the developing brain and other organs, artificially reared rat pups were fed a rat milk substitute containing the perdeuterated (each 97 atom% deuterium) fatty acids, i.e., palmitic, stearic, oleic, linoleic, and linolenic, from day 7 after birth to day 14 as previously described. Fatty acids in lipid extracts of the liver, lung, kidney, and brain were analyzed by gas chromatography-mass spectrometry to determine their content of each of the deuterated fatty acids. The uptake and metabolism of perdeuterated fatty acid lead to the appearance of three distinct groups of isotopomers: the intact perdeuterated, the newly synthesized (with recycled deuterium), and the natural unlabeled fatty acid. The quantification of these isotopomers permits the estimation of uptake and de novo synthesis of these fatty acids. Intact perdeuterated palmitic, stearic, and oleic acids from the diet were found in liver, lung, and kidney, but not in brain. By contrast, perdeuterated linoleic acid was found in all these organs. Isotopomers of fatty acid from de novo synthesis were observed in palmitic, oleic, and stearic acids in all tissues. The highest enrichment of isotopomers with recycled deuterium was found in the brain. The data indicate that, during the brain growth spurt and the prelude to myelination, the major saturated and monounsaturated fatty acids in brain lipids are exclusively produced locally by de novo biosynthesis. Consequently, the n-6 and n-3 polyunsaturated fatty acids must be transported and delivered to the brain by highly specific mechanisms.  相似文献   

13.
贵州地方芝麻种质资源品质性状的分析与评价   总被引:1,自引:0,他引:1  
为探究贵州芝麻种质资源的品质特征,并对地方芝麻资源进行初步鉴定与评价,本研究对73份贵州芝麻种质资源的8个品质性状进行测试分析。结果表明:(1)贵州芝麻种质资源含油量介于41.45%~52.12%之间,平均含量为49.69%。在脂肪酸组成中,油酸、亚油酸等不饱和脂肪酸的平均含量分别为35.65%和50.66%;而棕榈酸、硬脂酸等饱和脂肪酸的平均含量仅为8.40%和4.79%。此外,贵州芝麻资源中芝麻素、芝麻林素和木质素的平均含量分别为5.03 mg/g、2.63 mg/g和4.79 mg/g。8个品质性状的变异系数介于3.69%~32.62%范围内,其中芝麻素含量变异系数最大,含油量变异系数最小。而芝麻素含量、芝麻林素含量及硬脂酸含量的变异系数均大于10%,表明这3个性状在芝麻样本间存在较大差异。(2)相关性分析结果显示:含油量与油酸、芝麻素含量呈极显著正相关,与亚油酸含量呈极显著负相关;油酸含量与芝麻素含量呈极显著正相关,与亚油酸含量呈极显负相关;亚油酸含量与芝麻素含量呈极显著负相关。表明品质性状间相关性大、关联程度较高,性状间相互影响较大。(3)主成分分析将8个品质性状综合为3个主成分,分别为油酸因子、含油量因子和芝麻素因子,3个主成分因子包含了贵州芝麻种质资源品质性状的绝大部分信息,累计贡献率达96%以上。(4)在欧氏距离D=9.75处将73份贵州芝麻资源划分为6个类群:第Ⅰ类群包含2份资源、第Ⅱ类群有7份、第Ⅲ类群有12份、第Ⅳ类群有5份、第Ⅴ类群有16份、第Ⅵ类群有31份。其中第Ⅵ类群油酸含量最高,且含油量、芝麻素含量较高。本研究探明了贵州芝麻品质的特征特性,可为芝麻种质资源的利用和创新提供依据,为芝麻品种选育和遗传改良提供参考。  相似文献   

14.
不同种源山桐子果实脂肪酸组成变异分析   总被引:1,自引:0,他引:1  
以采自11个种源的山桐子为材料,测定其果实脂肪酸的组成及其变异情况,结果表明:山桐子果实中不饱和脂肪酸含量较高,尤以亚油酸含量最高,11个种源的平均值为63.58%,且种源间差异显著,分宜、宜昌种源亚油酸相对含量明显高于其他9个种源;饱和脂肪酸以棕榈酸为主,11个种源山桐子果实棕榈酸差异显著,且以平武种源最高;其余脂肪酸含量均较低,变异幅度较大;种子中棕榈酸和棕榈烯酸含量明显高于果肉,而亚油酸、亚麻酸及硬脂酸含量明显低于果肉,油酸含量相近:果实不饱和脂肪酸含量依次为果肉〉全果〉种子,且变异系数及相对极差均较小,尤以果肉中最小;除硬脂酸外,山桐子果实中其他4种主要脂肪酸组分受海拔等地理环境的影响均较小。  相似文献   

15.
Perturbation of the fatty acid composition of human lymphocytes in vitro was investigated by addition of linoleic acid complexed to bovine serum albumin (BSA-LA) and by mitogenic stimulation with phytohaemagglutinin (PHA). BSA-LA resulted in a 45% increase in linoleic acid in phosphatidylethanolamine (PE) and over 100% in phosphatidylcholine (PC) in peripheral blood cells. Supplementation with BSA-LA in PHA-stimulated lymphocytes produced even greater changes: 100% increase in linoleic acid content for PE and over 300% for PC. There was a large decrease in oleic acid: 40% for PE and almost 100% in PC. Significant decreases in arachidonic acid occurred in both phospholipid fractions. PHA alone also altered membrane phospholipid fatty acid composition, with reductions in palmitic, stearic and linoleic acid for PE and increases in oleic acid and arachidonic acid (almost 100%). For PC, there were large decreases in stearic (40%), linoleic (30%) and arachidonic (40%) acids, together with an increase in oleic acid (65%). Cells supplemented with linoleic acid grown in the presence of PHA, compared with those grown in linoleic acid-supplemented medium alone, showed a 40% decrease in palmitic acid and a 55% increase in arachidonic acid in PE. For PC, there were large decreases in stearic acid (40%) and arachidonic acid (57%). Antibody-induced redistribution of surface molecules ('capping') was inhibited by some 14% after incubation with BSA-LA. However, no consistent alterations in PHA-induced cell proliferation were observed. These data suggest that profound alterations of membrane fatty acid composition occur spontaneously during the mitotic cycle, and may be further induced by experimental manipulation, without gross perturbation of cell function.  相似文献   

16.
桐油脂肪酸组成分析和甘三酯结构判定   总被引:1,自引:0,他引:1  
采用2-氨基-2-甲基丙醇(2-amino-2-methylpropanol,AMP)衍生化、GC/MS法分析桐油的脂肪酸组成:软脂酸3.41%,硬脂酸3.71%,油酸7.07%,亚油酸7.51%,亚麻酸1.31%,十八碳共轭三烯酸73.19%,未定出成分3.80%;采用RP—HPLC/APCI—MS法分离桐油中的甘三酯组分,并根据特定甘三酯断裂生成的特征甘二酯离子的丰度比初步判定主要甘三酯的结构。  相似文献   

17.
The fatty acid composition of platelet membranes has been analysed in patients with thrombocytosis due to myeloproliferative disorders, who had not taken any drugs. A significant increase in palmitic and oleic acid, together with a decrease in stearic, linoleic and arachidonic acids was observed. The fatty acid pattern of platelet membranes was also analysed in patients during treatment with ASA (acetylsalicylic acid). ASA ingestion completely normalizes the platelet content of palmitic acid and partially that of stearic and arachidonic acid, whereas it has no effect on the level of linoleic acid and raises that of oleic acid. The altered pattern of fatty acids observed in patients may interfere with platelet function by decreasing membrane fluidity. Treatment of patients with ASA seems to act on platelet membranes by partially normalizing the fatty acid composition.  相似文献   

18.
A lipoprotein inhibitor of hydroxymethylglutaryl CoA reductase (EC 1.1.1.34) and of cholesterol synthesis by rat liver homogenates, was isolated from the mitochondria of starved rats’ livers. The isolated lipoprotein complex contained a low molecular weight protein and fatty acids. The fatty acids identified were arachidonic, linoleic, oleic, stearic and palmitic. The saturated fatty acids and oleic acid did not inhibit. Inhibition of the enzyme was to a large extent related to the degree of fatty acid unsaturation.  相似文献   

19.
Seed triglycerides of Andropogon gayanus contained 17 fatty acid moieties, principally palmitic, oleic and linoleic acids. These were distributed in an essentially random manner amongst the triglycerides to form the following main types: POL, PLL, OOL, LLO and LLL. Triglycerides decreased during both light and dark germination but there was no evidence for selective hydrolysis. Free fatty acids appear to be derived from triglyceride hydrolysis but the free and triglyceride fatty acid composition differed. Less palmitic, oleic and linoleic acids and more stearic, linolenic and C20-acids were found in the free state than combined in the triglycerides. Free fatty acids did not accumulate during germination.  相似文献   

20.
Platelets are formed by fragmentation of the cytoplasm and plasma membrane of the megakaryocyte in the bone marrow. This study has compared the lipid composition of guinea pig platelets and megakaryocytes. Phospholipids were quantitated by TLC and measurement of lipid phosphorus. Cholesterol and fatty acids were quantitated by GLC. The cholesterol/phospholipid molar ratio was 0.35 in megakaryocytes and 0.55 in platelets. The phospholipid distribution in megakaryocytes was: 9.8% phosphatidylserine, 6.7% phosphatidylinositol, 14.2% sphingomyelin, 40.0% phosphatidylcholine and 29.3% phosphatidy lethanolamine. Platelets contained 11.2% phosphatidylserine, 5.1% phosphatidylinositol, 16.1% sphingomyelin, 38.6% phosphatidylcholine and 29.0% phosphatidylethanolamine. The major megakaryocyte fatty acids were 20.0% palmitic, 16.4% stearic, 20.6% oleic, 13.2% linoleic and 8.2% arachidonic. The major platelet fatty acids were 17.4% palmitic, 17.5% stearic, 11.6% oleic, 12.4% linoleic and 14.6% arachidonic. The minor fatty acids were found in similar proportions in both cells. The major and minor fatty acid compositions of the individual platelet phospholipids reflected those of the megakaryocyte counterparts. The increased arachidonic acid and decreased oleic acid in platelets relative to megakaryocytes were found in all four glycerophospholipids. The similarity of the phospholipid and fatty acid composition of megakaryocytes and platelets suggests that the lipid composition of the platelet is determined by the megakaryocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号