首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
GPR34 is a G protein-coupled receptor belonging to the P2Y family. Here, we attempted to resolve conflicting reports about whether it is a functional lysophosphatidylserine (LysoPS) receptor. In HEK293 cells expressing human, mouse or rat GPR34 and Gα chimera between Gαq and Gαi1(Gq/i1), LysoPS quickly elevated intracellular Ca(2+) ion levels ([Ca(2+)](i)). LysoPS also stimulated alkaline phosphatase (AP)-tagged TGFα (AP-TGFα) release in GPR34-expressing HEK293 cells and induced the migration of CHO-K1 cells expressing GPR34. Other lysophospholipids did not induce these actions. Replacement of the serine residue of LysoPS abolished the reactivity of LysoPS with GPR34, indicating that GPR34 strictly recognizes the serine head group of LysoPS. Recombinant phosphatidylserine-specific phospholipase A(1) (PS-PLA(1)) that deacylates fatty acid at the sn-1 position of PS and produces 2-acyl-LysoPS, but not catalytically inactive mutant PS-PLA(1), stimulated the release of AP-TGFα from GPR34-expressing cells. Consistent with the result, LysoPS was detected in the cells treated with wild-type PS-PLA(1) but not with the mutant PS-PLA(1). PS treated with PLA(1) was much more effective at stimulating AP-TGFα release than PS treated with PLA(2). In addition, migration-resistant 2-acyl-1-deoxy-LysoPS, a 2-acyl-LysoPS analogue, was much more potent than 1-acyl-2-deoxy-LysoPS. The present studies confirm that GPR34 is a cellular receptor for LysoPS, especially with a fatty acid at the sn-2 position.  相似文献   

3.
G蛋白偶联受体(G protein-coupled receptors,GPCRs)是一类重要的细胞膜表面跨膜蛋白受体超家族,具有7个跨膜螺旋结构。GPCRs的细胞内信号由G蛋白介导,可将激素、神经递质、药物、趋化因子等多种物理和化学的细胞外刺激穿过细胞膜转导到细胞内不同的效应分子,激活相应的信号级联系统进而影响恶性肿瘤的生长迁移过程。虽然目前药物市场上有很多治疗癌症的小分子药物属于G蛋白受体相关药物,但所作用的靶点集中于少数特定G蛋白偶联受体。因此,新的具有成药性的G蛋白偶联受体的开发具有很大的研究价值和市场潜力。本文主要以在癌症发生、发展中起重要作用的溶血磷脂酸(LPA),G蛋白偶联受体30(GPR30)、内皮素A受体(ETAR)等不同G蛋白偶联受体为分类依据,综述其与相关的信号通路在癌症进程中的作用,并对相应的小分子药物的临床应用和研究进展进行展望。  相似文献   

4.
Salvia miltiorrhiza Bunge is a natural drug for treating myocardial infarction (MI). However, the targets and mechanisms of S. miltiorrhiza Bunge in the treatment of MI are yet to be elucidated. Traditional Chinese medicine systems pharmacology (TCMSP) data were used to screen out chemical constituents, and UniProt was used to predict relevant targets. Disease targets were obtained from the Online Mendelian Inheritance in Man and GeneCards databases. We used the STRING platform to build a protein–protein interaction network and used Cytoscape_v3.8.1 software to make a Drug–Ingredients–Gene Symbols–Disease network map. The Metascape database was used to perform gene ontology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses for drug–disease overlapping gene symbols. The targets identified by network pharmacology were further verified by in vitro and in vivo experiments. Seventy-five active components of S. miltiorrhiza Bunge were obtained from the TCMSP database, while 370 disease targets and 29 cross-targets were obtained from the Genecards database. The KEGG pathway enrichment results suggested that the mechanism of S. miltiorrhiza Bunge in the treatment of MI was significantly related to the VEGF signalling pathway. In vitro and in vivo experiments were used to evaluate the reliability of some important active ingredients and targets. S. miltiorrhiza Bunge alleviated the damage to cardiac function, attenuated myocardial fibrosis and protected endothelial cell function by increasing the expression of TGF-β and VEGFA. S. miltiorrhiza Bunge showed the therapeutic effect of MI by promoting the expression of VEGFA signalling pathway, providing a reliable basis for exploring herbal treatment of MI.  相似文献   

5.
A family of fatty acid binding receptors   总被引:4,自引:0,他引:4  
The family of G protein-coupled receptors (GPCRs) serves as the target for almost a third of currently marketed drugs, and provides the predominant mechanism through which extracellular factors transmit signals to the cell. The discovery of GPCRs with no known ligand has initiated a frenzy of research, with the aim of elucidating the physiological ligands for these "orphan" receptors and revealing new drug targets. The GPR40 family of receptors, tandemly located on chromosome 19q13.1, exhibit 30-40% homology to one another and diverse tissue distribution, yet all are activated by fatty acids. Since agonists of GPR40 are medium to longchain fatty acids and those for GPR41 and 43 are short-chain fatty acids, the family clearly provides an intriguing example of how the ligand specificity, patterns of expression, and function of GPCRs can diverge through evolution. Here we summarize the identification, structure, and pharmacology of the receptors and speculate on the respective physiological roles that the GPR40 family members may play.  相似文献   

6.
7.
The field of drug target discovery is currently very popular with a great potential for advancing biomedical research and chemical genomics. Innovative strategies have been developed to aid the process of target identification, either by elucidating the primary mechanism-of-action of a drug, by understanding side effects involving unanticipated 'off-target' interactions, or by finding new potential therapeutic value for an established drug. Several promising proteomic methods have been introduced for directly isolating and identifying the protein targets of interest that are bound by active small molecules or for visualizing enzyme activities affected by drug treatment. Significant progress has been made in this rapidly advancing field, speeding the clinical validation of drug candidates and the discovery of the novel targets for lead compounds developed using cell-based phenotypic screens. Using these proteomic methods, further insight into drug activity and toxicity can be ascertained.  相似文献   

8.
9.
Cardiac fibrosis after myocardial infarction (MI) has been identified as a key factor in the development of heart failure. Although dysregulation of microRNA (miRNA) is involved in various pathophysiological processes in the heart, the role of miRNA in fibrosis regulation after MI is not clear. Previously we observed the correlation between fibrosis and the miR-24 expression in hypertrophic hearts, herein we assessed how miR-24 regulates fibrosis after MI. Using qRT-PCR, we showed that miR-24 was down-regulated in the MI heart; the change in miR-24 expression was closely related to extracellular matrix (ECM) remodelling. In vivo, miR-24 could improve heart function and attenuate fibrosis in the infarct border zone of the heart two weeks after MI through intramyocardial injection of Lentiviruses. Moreover, in vitro experiments suggested that up-regulation of miR-24 by synthetic miR-24 precursors could reduce fibrosis and also decrease the differentiation and migration of cardiac fibroblasts (CFs). TGF-β (a pathological mediator of fibrotic disease) increased miR-24 expression, overexpression of miR-24 reduced TGF-β secretion and Smad2/3 phosphorylation in CFs. By performing microarray analyses and bioinformatics analyses, we found furin to be a potential target for miR-24 in fibrosis (furin is a protease which controls latent TGF-β activation processing). Finally, we demonstrated that protein and mRNA levels of furin were regulated by miR-24 in CFs. These findings suggest that miR-24 has a critical role in CF function and cardiac fibrosis after MI through a furin-TGF-β pathway. Thus, miR-24 may be used as a target for treatment of MI and other fibrotic heart diseases.  相似文献   

10.
By means of a variety of intracellular scaffolding proteins, a vast number of heterotrimeric G protein-coupled receptors (GPCRs) may achieve specificity in signaling through a much smaller number of heterotrimeric G proteins. Members of the tetraspanin family organize extensive complexes of cell surface proteins and thus have the potential to act as GPCR scaffolds; however, tetraspanin-GPCR complexes had not previously been described. We now show that a GPCR, GPR56/TM7XN1, and heterotrimeric G protein subunits, Galpha(q), Galpha(11), and Gbeta, associate specifically with tetraspanins and CD81, but not with other tetraspanins. CD9 Complexes of GPR56 with CD9 and CD81 remained intact when fully solubilized and were resistant to cholesterol depletion. Hence they do not depend on detergent-insoluble, raft-like membrane microdomains for stability. A central role for CD81 in promoting or stabilizing a GPR56-CD81-Galpha(q/11) complex was revealed by CD81 immunodepletion and reexpression experiments. Finally, antibody engagement of cell surface CD81 or cell activation with phorbol ester revealed two distinct mechanisms by which GPR56-CD81-Galpha(q/11) complexes can be dynamically regulated. These data reveal a potential role for tetraspanins CD9 and CD81 as GPCR scaffolding proteins.  相似文献   

11.
Activator of G-protein signaling 3 (AGS3) has a modular domain structure consisting of seven tetratricopeptide repeats (TPRs) and four G-protein regulatory (GPR) motifs. Each GPR motif binds to the alpha subunit of Gi/Go (Gialpha > Goalpha) stabilizing the GDP-bound conformation of Galpha and apparently competing with Gbetagamma for GalphaGDP binding. As an initial approach to identify regulatory mechanisms for AGS3-G-protein interactions, a yeast two-hybrid screen was initiated using the TPR and linker region of AGS3 as bait. This screen identified the serine/threonine kinase LKB1, which is involved in the regulation of cell cycle progression and polarity. Protein interaction assays in mammalian systems using transfected cells or brain lysate indicated the regulated formation of a protein complex consisting of LKB1, AGS3, and G-proteins. The interaction between AGS3 and LKB1 was also observed with orthologous proteins in Drosophila where both proteins are involved in cell polarity. LKB1 immunoprecipitates from COS7 cells transfected with LKB1 phosphorylated the GPR domains of AGS3 and the related protein LGN but not the AGS3-TPR domain. GPR domain phosphorylation was completely blocked by a consensus GPR motif peptide, and placement of a phosphate moiety within a consensus GPR motif reduced the ability of the peptide to interact with G-proteins. These data suggest that phosphorylation of GPR domains may be a general mechanism regulating the interaction of GPR-containing proteins with G-proteins. Such a mechanism may be of particular note in regard to localized signal processing in the plasma membrane involving G-protein subunits and/or intracellular functions regulated by heterotrimeric G-proteins that occur independently of a typical G-protein-coupled receptor.  相似文献   

12.
Gel microdroplet – fluorescence activated cell sorting (GMD-FACS) is an innovative high throughput screening platform for recombinant protein libraries, and we show here that GMD-FACS can overcome many of the limitations associated with conventional screening methods for antibody libraries. For example, phage and cell surface display benefit from exceptionally high throughput, but generally require high quality, soluble antigen target and necessitate the use of anchored antibody fragments. In contrast, the GMD-FACS assay can screen for soluble, secreted, full-length IgGs at rates of several thousand clones per second, and the technique enables direct screening against membrane protein targets in their native cellular context. In proof-of-concept experiments, rare anti-EGFR antibody clones were efficiently enriched from a 10,000-fold excess of anti-CCR5 clones in just three days. Looking forward, GMD-FACS has the potential to contribute to antibody discovery and engineering for difficult targets, such as ion channels and G protein-coupled receptors.  相似文献   

13.
Local catabolism of the essential amino acid tryptophan is considered an important mechanism in regulating immunological and neurological responses. The kynurenine pathway is the main route for the non-protein metabolism of tryptophan. The intermediates of the kynurenine pathway are present at micromolar concentrations in blood and are regulated by inflammatory stimuli. Here we show that GPR35, a previously orphan G protein-coupled receptor, functions as a receptor for the kynurenine pathway intermediate kynurenic acid. Kynurenic acid elicits calcium mobilization and inositol phosphate production in a GPR35-dependent manner in the presence of G(qi/o) chimeric G proteins. Kynurenic acid stimulates [35S]guanosine 5'-O-(3-thiotriphosphate) binding in GPR35-expressing cells, an effect abolished by pertussis toxin treatment. Kynurenic acid also induces the internalization of GPR35. Expression analysis indicates that GPR35 is predominantly detected in immune cells and the gastrointestinal tract. Furthermore, we show that kynurenic acid inhibits lipopolysaccharide-induced tumor necrosis factor-alpha secretion in peripheral blood mononuclear cells. Our results suggest unexpected signaling functions for kynurenic acid through GPR35 activation.  相似文献   

14.
Background and Purpose: The in vivo cardiac differentiation and functional effects of unmodified adult bone marrow mesenchymal stem cells (BMSCs) after myocardial infarction (MI) is controversial. Our previous results suggested that hypergravity promoted the cardiomyogenic differentiation of BMSCs, and thus we postulated that ex vivo pretreatment of BMSCs using hypergravity and 5‐azacytidine (5‐Aza) would lead to cardiomyogenic differentiation and result in superior biological and functional effects on cardiac regeneration of infarcted myocardium. Methods: We used a rat MI model generated by ligation of the coronary artery. Homogeneous rat BMSCs were isolated, culture expanded, and differentiated into a cardiac lineage by adding hypergravity (2G) for 3 days and 5‐Aza (50 lmol/L, 24 h). Rats underwent BMSCs (labeled with DAPI) injection after the infarction and were randomized into five groups. Group A rats received the control medium, Group B rats received unmodified BMSCs, Group C rats received BMSCs treated with hypergravity, Group D rats received BMSCs treated with 5‐Aza, and Group E rats received BMSCs treated with 5‐Aza and hypergravity (n = 6). Results: After hypergravity and 5‐Aza treatment, BMSCs showed positive for the early muscle and cardiac markers GATA‐4, MEF‐2, and Nkx2‐5 with RT‐PCR. We also found that hypergravity could enhance the activities of MEF‐2 via promoting the nuclear export of HDAC5. The frozen section showed that the implanted BMSCs labeled with DAPI survived and angiogenesis was identified at the implantation site. In Groups B, C, D, and E rats, pre‐treated BMSCs colocalized with α‐actinin, and Group E rats showed a significantly larger increase in left ventricular function. Conclusions: The biological ex vivo cardiomyogenic differentiation of adult BMSCs with hypergravity and 5‐Aza prior to their transplantation is feasible and appears to improve their in vivo cardiac differentiation as well as the functional recovery in a rat model of the infarcted myocardium. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

15.
Intramyocardial transplantation of cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) derived from human induced pluripotent stem cells (hiPSCs) has beneficial effects on the post‐infarction heart. However, the mechanisms underlying the functional improvements remain undefined. We employed large‐scale label‐free quantitative proteomics to identify proteins that were differentially regulated following cellular transplantation in a swine model of myocardial infarction (MI). We identified 22 proteins that were significantly up‐regulated after trilineage cell transplantation compared to both MI and Sham groups. Among them, 12 proteins, including adenylyl cyclase‐associated protein 1 and tropomodulin‐1, are associated with positive regulation of muscular contraction whereas 11 proteins, such as desmoplakin and zyxin, are involved in embryonic and muscular development and regeneration. Moreover, we identified 21 proteins up‐regulated and another 21 down‐regulated in MI, but reversed after trilineage cell transplantation. Proteins up‐regulated after MI but reversed by transplantation are related to fibrosis and apoptosis. Conversely, proteins down‐regulated in MI but restored after cell therapy are regulators of protein nitrosylation. Our results show that the functionally beneficial effects of trilineage cell therapy are accompanied by differential regulation of protein expression in the recipient myocardium, which may contribute to the improved cardiac function.  相似文献   

16.
《Gene》1997,187(1):75-81
We report the discovery of four novel human putative G-protein-coupled receptor (GPCR) genes. Gene GPR20 was isolated by amplifying genomic DNA with oligos based on the opioid and somatostatin related receptor genes and subsequent screening of a genomic library. Also, using our customized search procedure of a database of expressed sequence tags (dbEST), cDNA sequences that partially encoded novel GPCRs were identified. These cDNA fragments were obtained and used to screen a genomic library to isolate the full-length coding region of the genes. This resulted in the isolation of genes GPR21, GPR22 and GPR23. The four encoded receptors share significant identity to each other and to other members of the receptor family. Northern blot analysis revealed expression of GPR20 and GPR22 in several human brain regions while GPR20 expression was detected also in liver. Fluorescence in situ hybridization (FISH) was used to map GPR20 to chromosome 8q, region 24.3–24.2, GPR21 to chromosome 9, region q33, GPR22 to chromosome 7, region q22–q31.1, and GPR23 to chromosome X, region q13–q21.1.© 1997 Elsevier Science B.V. All rights reserved.  相似文献   

17.
Heat shock protein 90 (HSP90) is a molecular chaperone that plays important functional roles in cells. The chaperone activity of HSP90 is regulated by the hydrolysis of ATP at the protein’s N-terminal domain. HSP90, in particular the N-terminal domain, is a current inhibition target for therapeutic treatments of cancers. This paper describes an application of virtual screening, thermal shift assaying and protein NMR spectroscopy leading to the discovery of HSP90 inhibitors that contain the resorcinol structure. The resorcinol scaffold can be found in a class of HSP90 inhibitors that are currently undergoing clinical trials. The proved success of the resorcinol moiety in HSP90 inhibitors validates this combined virtual screen and biophysical technique approach, which may be applied for future inhibitor discovery work for HSP90 as well as other targets.  相似文献   

18.
19.
The discovery, synthesis and structure-activity relationship (SAR) of novel carboxylic acid agonists for GPR40 are described. Aryl propionic acid 1, identified from a high throughput screen, was selected for chemical exploration. Compound 2 was identified as our lead molecule through efficient solid phase combinatorial array chemistry and had an attractive in vitro and in vivo pharmacokinetic profile in rat. These ligands may prove useful in establishing a role for GPR40 in insulin regulation.  相似文献   

20.
Sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC) are bioactive lipid molecules involved in numerous biological processes. We have recently identified ovarian cancer G protein-coupled receptor 1 (OGR1) as a specific and high affinity receptor for SPC, and G2A as a receptor with high affinity for LPC, but low affinity for SPC. Among G protein-coupled receptors, GPR4 shares highest sequence homology with OGR1 (51%). In this work, we have identified GPR4 as not only another high affinity receptor for SPC, but also a receptor for LPC, albeit of lower affinity. Both SPC and LPC induce increases in intracellular calcium concentration in GPR4-, but not vector-transfected MCF10A cells. These effects are insensitive to treatment with BN52021, WEB-2170, and WEB-2086 (specific platelet activating factor (PAF) receptor antagonists), suggesting that they are not mediated through an endogenous PAF receptor. SPC and LPC bind to GPR4 in GPR4-transfected CHO cells with K(d)/SPC = 36 nm, and K(d)/LPC = 159 nm, respectively. Competitive binding is elicited only by SPC and LPC. Both SPC and LPC activate GPR4-dependent activation of serum response element reporter and receptor internalization. Swiss 3T3 cells expressing GPR4 respond to both SPC and LPC, but not sphingosine 1-phosphate (S1P), PAF, psychosine (Psy), glucosyl-beta1'1-sphingosine (Glu-Sph), galactosyl-beta1'1-ceramide (Gal-Cer), or lactosyl-beta1'1-ceramide (Lac-Cer) to activate extracellular signal-regulated kinase mitogen-activated protein kinase in a concentration- and time-dependent manner. SPC and LPC stimulate DNA synthesis in GPR4-expressing Swiss 3T3 cells. Both extracellular signal-regulated kinase activation and DNA synthesis stimulated by SPC and LPC are pertussis toxin-sensitive, suggesting the involvement of a G(i)-heterotrimeric G protein. In addition, GPR4 expression confers chemotactic responses to both SPC and LPC in Swiss 3T3 cells. Taken together, our data indicate that GPR4 is a receptor with high affinity to SPC and low affinity to LPC, and that multiple cellular functions can be transduced via this receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号