首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phosphatidylinositide (PI) 3-kinase binds to tyrosyl-phosphorylated insulin receptor substrate-1 (IRS-1) in insulin-treated adipocytes, and this step plays a central role in the regulated movement of the glucose transporter, GLUT4, from intracellular vesicles to the cell surface. PDGF, which also activates PI 3-kinase in adipocytes, has no significant effect on GLUT4 trafficking in these cells. We propose that this specificity may be mediated by differential localization of PI 3-kinase in response to insulin versus PDGF activation. Using subcellular fractionation in 3T3-L1 adipocytes, we show that insulin- and PDGF-stimulated PI 3-kinase activities are located in an intracellular high speed pellet (HSP) and in the plasma membrane (PM), respectively. The HSP is also enriched in IRS-1, insulin-stimulated tyrosyl-phosphorylated IRS-1 and intracellular GLUT4-containing vesicles. Using sucrose density gradient sedimentation, we have been able to segregate the HSP into two separate subfractions: one enriched in IRS-1, tyrosyl-phosphorylated IRS-1, PI 3-kinase as well as cytoskeletal elements, and another enriched in membranes, including intracellular GLUT4 vesicles. Treatment of the HSP with nonionic detergent, liberates all membrane constituents, whereas IRS-1 and PI 3-kinase remain insoluble. Conversely, at high ionic strength, membranes remain intact, whereas IRS-1 and PI 3-kinase become freely soluble. We further show that this IRS-1–PI 3-kinase complex exists in CHO cells overexpressing IRS-1 and, in these cells, the cytosolic pool of IRS-1 and PI 3-kinase is released subsequent to permeabilization with Streptolysin-O, whereas the particulate fraction of these proteins is retained. These data suggest that IRS-1, PI 3-kinase, as well as other signaling intermediates, may form preassembled complexes that may be associated with the actin cytoskeleton. This complex must be in close apposition to the cell surface, enabling access to the insulin receptor and presumably other signaling molecules that somehow confer the absolute specificity of insulin signaling in these cells.  相似文献   

3.
Insulin stimulation produced a reliable 3-fold increase in glucose uptake in primary neonatal rat myotubes, which was accompanied by a similar effect on GLUT4 translocation to plasma membrane. Tumor necrosis factor (TNF)-alpha caused insulin resistance on glucose uptake and GLUT4 translocation by impairing insulin stimulation of insulin receptor (IR) and IR substrate (IRS)-1 and IRS-2 tyrosine phosphorylation, IRS-associated phosphatidylinositol 3-kinase activation, and Akt phosphorylation. Because this cytokine produced sustained activation of stress and proinflammatory kinases, we have explored the hypothesis that insulin resistance by TNF-alpha could be mediated by these pathways. In this study we demonstrate that pretreatment with PD169316 or SB203580, inhibitors of p38 MAPK, restored insulin signaling and normalized insulin-induced glucose uptake in the presence of TNF-alpha. However, in the presence of PD98059 or SP600125, inhibitors of p42/p44 MAPK or JNK, respectively, insulin resistance by TNF-alpha was still produced. Moreover, TNF-alpha produced inhibitor kappaB kinase (IKK)-beta activation and inhibitor kappaB-beta and -alpha degradation in a p38 MAPK-dependent manner, and treatment with salicylate (an inhibitor of IKK) completely restored insulin signaling. Furthermore, TNF-alpha produced serine phosphorylation of IR and IRS-1 (total and on Ser(307) residue), and these effects were completely precluded by pretreatment with either PD169316 or salicylate. Consequently, TNF-alpha, through activation of p38 MAPK and IKK, produces serine phosphorylation of IR and IRS-1, impairing its tyrosine phosphorylation by insulin and the corresponding activation of phosphatidylinositol 3-kinase and Akt, leading to insulin resistance on glucose uptake and GLUT4 translocation.  相似文献   

4.
5.
The expression of heat shock proteins (HSPs) is known to be increased via activation of heat shock factor 1 (HSF1), and excess expression of HSPs exerts feedback inhibition of HSF1. However, the molecular mechanism to modulate such relationships between HSPs and HSF1 is not clear. In the present study, we show that stable transfection of either Hsp25 or inducible Hsp70 (Hsp70i) increased expression of endogenous HSPs such as HSP25 and HSP70i through HSF1 activation. However, these phenomena were abolished when the dominant negative Hsf1 mutant was transfected to HSP25 or HSP70i overexpressed cells. Moreover, the increased HSF1 activity by either HSP25 or HSP70i was found to result from dephosphorylation of HSF1 on serine 307 that increased the stability of HSF1. Either HSP25 or HSP70i inhibited ERK1/2 phosphorylation because of increased MKP1 phosphorylation by direct interaction of these HSPs with MKP1. Treatment of HOS and NCI-H358 cells, which showed high expressions of endogenous HSF1, with small interfering RNA (siRNA) of either HSP27 (siHSP27)or HSP70i (siHSP70i) inhibited both HSP27 and HSP70i proteins; this was because of increased ERK1/2 phosphorylation and serine phosphorylation of HSF1. The results, therefore, suggested that when the HSF1 protein level was high in cancer cells, excess expression of HSP27 or HSP70i strongly facilitates the expression of HSP proteins through HSF1 activation, resulting in severe radio- or chemoresistance.  相似文献   

6.
目的探讨舒林酸通过调节IKK通路对分化成熟3T3-L1细胞胰岛素受体后信号转导蛋白胰岛素受体底物1(IRS-1)蛋白酪氨酸/丝氨酸(Tyr/Ser)残基磷酸化表达的影响。 方法用地塞米松、IBMX和胰岛素三联培养诱导3T3-L1前脂肪细胞分化为成熟脂肪细胞,油红O染色观察脂肪细胞形态。诱导分化成熟的脂肪细胞如下分组干预,实时荧光定量PCR检测不同浓度炎症因子IL-1 β(0,1,10,100 ng/ml)和(或)不同浓度IKK特异阻断剂舒林酸(0,0.1,1,10 mmol/L)对诱导分化成熟的脂肪细胞IKK通路激活状态的影响。Western Blot检测IL-1β和(或)舒林酸对诱导分化成熟的脂肪细胞IRS-1酪氨酸/丝氨酸残基磷酸化状态的影响。采用单因素方差分析进行统计学分析。 结果实时荧光定量PCR和Western Blot结果显示,IL-1β 10 ng/ml组诱导成熟脂肪细胞IKKβ mRNA较对照组相对表达水平增加,分别为[(2.85±0.16)﹪,(1.00±0.12)﹪,P < 0.01];而IRS-1酪氨酸的磷酸化相对表达量较对照组下降,分别为[(0.72±0.26)﹪,(1.00±0.24)﹪,P < 0.01]。进一步予舒林酸(1?mmol/?L、10?mmol/L)干预后较对照组显著逆转IL-1β诱导脂肪细胞IRS-1酪氨酸磷酸化的表达水平,分别为[(1.72±0.16)﹪,(1.90±0.08)﹪,(1.00±0.13)﹪,P < 0.01],同时下调IRS-1丝氨酸磷酸化的表达水平[(0.79±0.16)﹪,(0.66±0.08)﹪,(1.00±0.10)﹪,P < 0.05]。 结?论IL-1β通过促进诱导分化成熟脂肪细胞IKKβ的表达,激活脂肪细胞IKK炎症通路,抑制脂肪细胞IRS-1酪氨酸残基磷酸化的表达,舒林酸通过调节脂肪细胞IRS-1酪氨酸/丝氨酸残基磷酸化的表达,改善脂肪细胞胰岛素受体后信号转导。  相似文献   

7.
Wu Y  Ouyang JP  Zhou YF  Wu K  Zhao DH  Wen CY 《生理学报》2004,56(4):539-549
本文研究血管紧张素Ⅱ受体拮抗剂诺沙坦对非胰岛素依赖型糖尿病(non-insulin-dependent diabetes mellitus,NIDDM)大鼠胰岛素敏感性的改善作用,并探讨其作用机制。从饮水中给予正常或高脂喂养加小剂量链脲佐菌素(STZ)诱发的NIDDM大鼠诺沙坦(4 mg/kg),连续6周。分离骨骼肌,用免疫印迹法检测诺沙坦对胰岛素受体底物1(insulin receptor substrate 1,IRS-1)、蛋白激酶B(protein kinase B,PKB)和葡萄糖转运因子4(glucose transporter 4,GLUT4)的表达,以及IRS-1的磷酸化、IRS-1与磷脂酰肌醇3激酶(phosphatidylinositol(PI)3-kinase)的结合。口服葡萄糖耐量试验表明,口服诺沙坦可改善糖尿病大鼠胰岛素敏感性。在骨骼肌组织,NIDDM和正常大鼠的IRS-1、PKB和GLUT4蛋白表达无差异,且不受诺沙坦处理的影响。NIDDM大鼠胰岛素刺激后的骨骼肌IRS-1酪氨酸磷酸化水平、PI 3-kinase结合IRS-1的活性和PKB活性较对照组显著降低(P<0.01),且不能被诺沙坦改善。诺沙坦显著增加NIDDM大鼠肌细胞质膜(plasma membrane,PM)和T管(T-tubules,TT)胰岛素诱导的GLUT4的 含量(P<0.05)。与该结果一致的是,诺沙坦处理的NIDDM大鼠血糖水平较未处理NIDDM大鼠下降(P<0.05)。结果表明,诺沙坦可改善胰岛素抵抗状态,主要是通过非PI 3-kinase依赖的  相似文献   

8.
In the present study, we have examined whether IKKβ [IκB (inhibitor of nuclear factor κB) kinase β] plays a role in feedback inhibition of the insulin signalling cascade. Insulin induces the phosphorylation of IKKβ, in vitro and in vivo, and this effect is dependent on intact signalling via PI3K (phosphoinositide 3-kinase), but not PKB (protein kinase B). To test the hypothesis that insulin activates IKKβ as a means of negative feedback, we employed a variety of experimental approaches. First, pharmacological inhibition of IKKβ via BMS-345541 did not potentiate insulin-induced IRS1 (insulin receptor substrate 1) tyrosine phosphorylation, PKB phosphorylation or 2-deoxyglucose uptake in differentiated 3T3-L1 adipocytes. BMS-345541 did not prevent insulin-induced IRS1 serine phosphorylation on known IKKβ target sites. Secondly, adenovirus-mediated overexpression of wild-type IKKβ in differentiated 3T3-L1 adipocytes did not suppress insulin-stimulated 2-deoxyglucose uptake, IRS1 tyrosine phosphorylation, IRS1 association with the p85 regulatory subunit of PI3K or PKB phosphorylation. Thirdly, insulin signalling was not potentiated in mouse embryonic fibroblasts lacking IKKβ. Finally, insulin treatment of 3T3-L1 adipocytes did not promote the recruitment of IKKβ to IRS1, supporting our findings that IKKβ, although activated by insulin, does not promote direct serine phosphorylation of IRS1 and does not contribute to the feedback inhibition of the insulin signalling cascade.  相似文献   

9.
The global incidence of diabetes is increasing at epidemic rates. Estimates suggest there are currently 150 million people with diabetes and this number is expected to double in the next 20 years. Type 2 diabetes accounts for 95% of all cases and is characterized in part by impaired sensitivity to insulin or 'insulin resistance'. Defects in the insulin signalling pathways underpin this resistance. In the current article we discuss the regulation of Insulin Receptor Substrate-1 (IRS-1), a protein that plays a pivotal role in insulin signalling and whose function is impaired in subjects with insulin resistance. Coordination of IRS-1 function is multi-faceted, involving phosphorylation of IRS-1 at multiple serine/threonine residues. This controls many aspects of IRS-1, including its interaction with the insulin receptor and subsequent tyrosine phosphorylation, as well as its subcellular distribution and targeting for degradation by the proteasome. Such tight control ensures appropriate transduction and attenuation of the insulin signal, thereby regulating insulin action in healthy individuals. Emerging evidence indicates that 'diabetogenic factors' associated with insulin resistance, such as TNFalpha and elevated circulating fatty acids, impact on insulin signalling at the level of IRS-1 serine/threonine phosphorylation. The expression and/or activity of several kinases, such as IkappaB kinase beta (IKKbeta) and salt-induced kinase 2 (SIK2), and the phosphorylation of IRS-1 at key sites, such as Ser307 and Ser789, are increased in states of insulin resistance. Identifying the pathways by which such factors activate these and other kinases, and defining the precise roles of specific serine/ threonine phosphorylation events in IRS-1 regulation, represent important goals which may eventually provide a rationale for therapeutic intervention.  相似文献   

10.
The appearance of a complex between tyrosine-phosphorylated insulin receptor substrate 1 (IRS-1) and PI3K in a high-speed pellet fraction (HSP) is thought to be a key event in insulin action. Conversely, the disappearance of the IRS-1/PI3K complex from this fraction has been linked to insulin desensitization. The present study examines the role of 14-3-3, a specific phospho-serine binding protein, in mediating the disappearance of IRS-1 from the HSP after insulin treatment. An in vitro pull-down assay using recombinant 14-3-3 revealed that insulin enhances the association of 14-3-3 with IRS-1 in cultured adipocytes and that this is completely inhibited by wortmannin. An association of IRS-1 and 14-3-3 was also observed and was maximal after stimulation by insulin, when endogenous proteins were immunoprecipitated. Epidermal growth factor (EGF), 12-O-tetradecanoylphorbol-13-acetate, and okadaic acid, other agents that cause serine/threonine phosphorylation of IRS-1, also stimulated IRS binding to 14-3-3. The enhancement of IRS-1 binding to 14-3-3 by insulin was accompanied by movement of IRS-1 and the p85 subunit of PI3K from the HSP to the cytosol. In keeping with a key role of 14-3-3 in mediating this redistribution of IRS-1, the complexes of IRS-1 and 14-3-3 were found in the cytosol but not in the HSP of insulin-treated cells. In addition, colocalization of IRS-1 and 14-3-3 was observed in the cytoplasm after insulin treatment by confocal microscopy. Finally, the addition of a phosphorylated 14-3-3 binding peptide to an adipocyte homogenate (to remove 14-3-3 from IRS-1) increased the abundance of IRS-1/PI3K complexes in the HSP and decreased their abundance in the cytosol. These findings strongly suggest that 14-3-3 participates in the intracellular trafficking of IRS-1 by promoting the displacement of serine-phosphorylated IRS-1 from particular structures. They also suggest that 14-3-3 proteins could play an integral role in the process of insulin desensitization.  相似文献   

11.
The insulin receptor initiates insulin action by phosphorylating multiple intracellular substrates. Previously, we have demonstrated that insulin receptor substrates (IRS)-1 and -2 can mediate insulin's action to promote translocation of GLUT4 glucose transporters to the cell surface in rat adipose cells. Although IRS-1, -2, and -4 are similar in overall structure, IRS-3 is approximately 50% shorter and differs with respect to sites of tyrosine phosphorylation. Nevertheless, as demonstrated in this study, both IRS-3 and IRS-4 can also stimulate translocation of GLUT4. Rat adipose cells were cotransfected with expression vectors for hemagglutinin (HA) epitope-tagged GLUT4 (GLUT4-HA) and human IRS-1, murine IRS-3, or human IRS-4. Overexpression of IRS-1 led to a 2-fold increase in cell surface GLUT4-HA in cells incubated in the absence of insulin; overexpression of either IRS-3 or IRS-4 elicited a larger increase in cell surface GLUT4-HA. Indeed, the effect of IRS-3 in the absence of insulin was approximately 40% greater than the effect of a maximally stimulating concentration of insulin in cells not overexpressing IRS proteins. Because phosphatidylinositol (PI) 3-kinase is essential for insulin-stimulated translocation of GLUT4, we also studied a mutant IRS-3 molecule (IRS-3-F4) in which Phe was substituted for Tyr in all four YXXM motifs (the phosphorylation sites predicted to bind to and activate PI 3-kinase). Interestingly, overexpression of IRS-3-F4 did not promote translocation of GLUT4-HA, but actually inhibited the ability of insulin to stimulate translocation of GLUT4-HA to the cell surface. Our data suggest that IRS-3 and IRS-4 are capable of mediating PI 3-kinase-dependent metabolic actions of insulin in adipose cells, and that IRS proteins play a physiological role in mediating translocation of GLUT4.  相似文献   

12.
Exhaustive and chronic physical exercise leads to peripheral inflammation, which is one of the molecular mechanisms responsible for the impairment of the insulin signaling pathway in the heart. Recently, 3 different running overtraining models performed downhill (OTR/down), uphill (OTR/up), and without inclination (OTR) increased the serum levels of proinflammatory cytokines. This proinflammatory status induced insulin signaling impairment in the skeletal muscle; however, the response of this signaling pathway in the cardiac muscle of overtrained mice was still unknown. Thus, we investigated the effects of OTR/down, OTR/up, and OTR protocols on the protein levels of phosphorylation of insulin receptor β (pIRβ) (Tyr), phosphorylation of protein kinase B (pAkt) (Ser473), plasma membrane glucose transporter-1 (GLUT1) and GLUT4, phosphorylation of insulin receptor substrate-1 (pIRS-1) (Ser307), phosphorylation of IκB kinase α/β) (pIKKα/β (Ser180/181), phosphorylation of p38 mitogen-activated protein kinase (p-p38MAPK) (Thr180/Tyr182), phosphorylation of stress-activated protein kinases-Jun amino-terminal kinases (pSAPK-JNK) (Thr183/Tyr185), and glycogen content in mice hearts. The rodents were divided into naïve (N, sedentary mice), control (CT, sedentary mice submitted to performance evaluations), trained (TR, performed the training protocol), OTR/down, OTR/up, and OTR groups. After the grip force test, the cardiac muscles (ie, left ventricle) were removed and used for immunoblotting and histology. Although the OTR/up and OTR groups exhibited higher cardiac levels of pIRβ (Tyr), only the OTR group exhibited higher cardiac levels of pAkt (Ser473) and plasma membrane GLUT4. On the contrary, the OTR/down group exhibited higher cardiac levels of pIRS-1 (Ser307). The OTR model enhanced the cardiac insulin signaling pathway. All overtraining models increased the left ventricle glycogen content, with this probably acting as a compensatory organ in response to skeletal muscle insulin signaling impairment.  相似文献   

13.
In a recent study we have demonstrated that 3T3-L1 adipocytes exposed to low micromolar H2O2 concentrations display impaired insulin stimulated GLUT4 translocation from internal membrane pools to the plasma membrane (Rudich, A., Tirosh, A., Potashnik, R., Hemi, R., Kannety, H., and Bashan, N. (1998) Diabetes 47, 1562-1569). In this study we further characterize the cellular mechanisms responsible for this observation. Two-hour exposure to approximately 25 microM H2O2 (generated by adding glucose oxidase to the medium) resulted in disruption of the normal insulin stimulated insulin receptor substrate (IRS)-1 and phosphatidylinositol (PI) 3-kinase cellular redistribution between the cytosol and an internal membrane pool (low density microsomal fraction (LDM)). This was associated with reduced insulin-stimulated IRS-1 and p85-associated PI 3-kinase activities in the LDM (84 and 96% inhibition, respectively). The effect of this finding on the downstream insulin signal was demonstrated by a 90% reduction in insulin stimulated protein kinase B (PKB) serine 473 phosphorylation and impaired activation of PKBalpha and PKBgamma. Both control and oxidized cells exposed to heat shock displayed a wortmannin insensitive PKB serine phosphorylation and activity. These data suggest that activation of PKB and GLUT4 translocation are insulin signaling events dependent upon a normal insulin induced cellular compartmentalization of PI 3-kinase and IRS-1, which is oxidative stress-sensitive. These findings represent a novel cellular mechanism for the induction of insulin resistance in response to changes in the extracellular environment.  相似文献   

14.
Induction of the heat shock proteins (HSPs) is involved in the increased resistance to cancer therapies such as chemotherapy and hyperthermia. We used two human ovarian cancer cell lines; a cisplatin (CDDP)-sensitive line A2780 and its CDDP-resistant derivative, A2780CP. The concentration of intracellular glutathione (GSH) is higher (2.7-fold increase) in A2780CP cells than in A2780 cells. A mild treatment with a heat stress (42 degrees C for 30 min) induced synthesis of both the heat shock protein 72 (Hsp72) mRNA and the HSP72 protein in A2780CP cells, but not in A2780 cells. In contrast, a severe heat stress (45 degrees C for 30 min) increased synthesis of the HSP72 protein in the two cell lines. The induced level of the HSP72 protein by the severe treatment was higher in A2780CP than in A2780 cells. The gel mobility shift assay showed that DNA binding activities of the heat shock factor (HSF) in the two cell lines were induced similarly and significantly by the mild heat stress. Immunocytochemistry using an anti HSF1 antibody also indicated that mild heat stress activated the HSF1 translocation from the cytosol to the nucleus similarly in the both cell lines. Pretreatment of CDDP-sensitive A2780 cells with N-acetyl-L-cysteine, a precursor of GSH, effectively enhanced induction of the Hsp72 mRNA by the mild heat stress. The present findings demonstrate that induction of the Hsp72 mRNA by the mild heat stress was more extensive in CDDP-resistant A2780CP cells. It is likely that the higher GSH concentration in A2780CP cells plays an important role in promoting Hsp72 gene expression induced by the mild heat stress probably through processes downstream of activation of HSF-DNA binding.  相似文献   

15.
The quality control of protein homoeostasis deteriorates with aging, causing the accumulation of misfolded proteins and neurodegeneration. Thus, in AD (Alzheimer's disease), soluble oligomers, protofibrils and fibrils of the Aβ (amyloid β-peptide) and tau protein accumulate in specific brain regions. This is associated with the progressive destruction of synaptic circuits controlling memory and higher mental function. The primary signalling mechanisms that (i) become defective in AD to alter the normal proteostasis of Aβ and tau, and (ii) initiate a pathophysiological response to cause cognitive decline, are unclear. The IIS [insulin/IGF-1 (insulin-like growth factor 1)-like signalling] pathway is mechanistically linked to longevity, protein homoeostasis, learning and memory, and is emerging to be central to both (i) and (ii). This pathway is aberrantly overactivated in AD brain at the level of increased activation of the serine/threonine kinase Akt and the phosphorylation of its downstream targets, including mTOR (mammalian target of rapamycin). Feedback inhibition of normal insulin/IGF activation of the pathway also occurs in AD due to inactivation of IRS-1 (insulin receptor substrate 1) and decreased IRS-1/2 levels. Pathogenic forms of Aβ may induce aberrant sustained activation of the PI3K (phosphoinositide 3-kinase)/Akt signal in AD, also causing non-responsive insulin and IGF-1 receptor, and altered tau phosphorylation, conformation and function. Reducing IIS activity in animal models by decreasing IGF-1R levels or inhibiting mTOR activity alters Aβ and tau protein homoeostasis towards less toxic protein conformations, improves cognitive function and extends healthy lifespan. Thus normalizing IIS dysfunction may be therapeutically relevant in abrogating Aβ and tau proteotoxicity, synaptic dysfunction and cognitive decline in AD.  相似文献   

16.
Insulin receptor substrate-2-deficient (IRS-2(-/-)) mice develop type 2 diabetes. We have investigated the molecular mechanisms by which IRS-2(-/-) immortalized brown adipocytes showed an impaired response to insulin in inducing GLUT4 translocation and glucose uptake. IRS-2-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity was blunted in IRS-2(-/-) cells, total PI 3-kinase activity being reduced by 30%. Downstream, activation of protein kinase C (PKC) zeta was abolished in IRS-2(-/-) cells. Reconstitution with retroviral IRS-2 restores IRS-2/PI 3-kinase/PKC zeta signalling, as well as glucose uptake. Wild-type cells expressing a kinase-inactive mutant of PKC zeta lack GLUT4 translocation and glucose uptake. Our results support the essential role played by PKC zeta in the insulin resistance and impaired glucose uptake observed in IRS-2-deficient brown adipocytes.  相似文献   

17.
In the present study we have investigated the effect of increased serine/threonine phosphorylation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) by okadaic acid pretreatment on brown adipocyte insulin signalling leading to glucose transport, an important metabolic effect of insulin in brown adipose tissue. Okadaic acid pretreatment before insulin stimulation decreased IRS-1 and IRS-2 tyrosine phosphorylation in parallel to a decrease in their sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility. IRS-1/IRS-2-associated p85alpha and phosphatidylinositol (PI) 3-kinase enzymatic activity were partly reduced in brown adipocytes pretreated with okadaic acid upon stimulation with insulin. Furthermore, insulin-induced glucose uptake was totally abolished by the inhibitor in parallel with a total inhibition of insulin-induced protein kinase C (PKC) zeta activity. However, activation of Akt/PKB or p70 S6 kinase (p70(s6k)) by insulin remained unaltered. Our results suggest that downstream of PI 3-kinase, insulin signalling diverges into at least two independent pathways through Akt/PKB and PKC zeta, the PKC zeta pathway contributing to glucose transport induced by insulin in fetal brown adipocytes.  相似文献   

18.
Hyperglycemia, glucose intolerance and elevated insulin levels frequently occur in burned patients; however, the mechanism(s) for this insulin resistance has not been fully elucidated. One possible mechanism could involve alterations in the phosphorylation of serine 307 of the insulin receptor substrate-1 (IRS-1) via activation of stress kinase enzymes, including SAPK/JNK. In the present study we examined the time course of the effect of burn injury to mice on: levels of IRS-1 protein, phosphorylation of serine 307 of IRS-1, SAPK/JNK kinase levels and activity and Akt kinase activity in hind limb skeletal muscle. Burn injury produced a reduction in hind limb muscle mass 24 h after injury, and, which persisted for 168 h. At 24 h after injury, there was a dramatic ( approximately 9-fold) increase in phosphorylation of IRS-1 serine 307 followed by a more moderate elevation thereafter. Total IRS-1 protein was slightly elevated at 24 h after injury and decreased to levels below sham treated animals at the later times. Burn injury did not appear to change total SAPK/JNK protein content, however, enzyme activity was increased for 7 days after injury. Akt kinase activity was decreased in skeletal muscle following burn injury; providing a biochemical basis for burn-induced insulin resistance. These findings are consistent with the hypothesis that burn-induced insulin resistance may be related, at least in part, to alterations in the phosphorylation of key proteins in the insulin signaling cascade, including IRS-1, and that changes in stress kinases, such as SAPK/JNK produced by burn injury, may be responsible for these changes in phosphorylation.  相似文献   

19.
20.
In this study, we examined the cellular content of the insulin receptor substrate (IRS)-1, the levels of phosphorylated tyrosine (pY) and serine (pS) residues in IRS-1, and the glucose transporters GLUT-1 and GLUT-4 in primary cultured rat skeletal myocytes treated with the glucocorticoid, dexamethasone. Dexamethasone markedly increased basal and insulin-stimulated IRS-1 content 4 to 5-fold (p < 0.01). A similar level of increase was observed for IRS-1 pY content. However, dexamethasone treatment had no effect on IRS-1 pS content. Further, dexamethasone reduced the cellular content of GLUT-1 when insulin and glucose were absent (p < 0.05), but did not significantly affect the expression of GLUT-4 in the presence of insulin (p > 0.05). We conclude that dexamethasone treatment impairs insulin signalling by a mechanism independent of serine-phosphorylation-mediated IRS-1 depletion, or of impairment of GLUT-1 expression. Instead, dexamethasone-induced insulin resistance may be mediated via reduced cellular content of IRS-1 accompanied by parallel reduction in tyrosine phosphorylation in IRS-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号