首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cats exposed to novel environments initiate stress responses by behavioral and physiological changes that modify metabolism and lead to the collection of unreliable data. Fourteen cats (10 ± 2 months) were subjected to an 11-week acclimation procedure to adapt to restriction within chambers used for indirect calorimetry studies. Cats were acclimated to chambers in their home environments, to chambers in the study room, and to increasing periods of restriction within chambers. Ten additional cats (11 ± 1 month), used as controls, were subjected to a single 5-hr restriction without any prior exposure. Stress level, feed intake, fearfulness, and eliminations were recorded. Latencies to approach a novel object peaked on Weeks 4 and 8 (p < .05). Cat-Stress-Scores (CSS) declined with exposure and on Week 11, stress levels were low and consistent (p < .05). CSS was greater in unacclimated versus acclimated cats (p < .05). In conclusion, acclimation protocols prepare cats for repeated, temporary restriction within chambers, whereas short acclimations do not. A step-up acclimation procedure with behavioral indices of stress should be utilized to prepare cats for research that necessitates restriction.  相似文献   

2.
1. The effects of cold acclimation and cold exposure on the survival and reproductive capabilities of Alphitobius diaperinus (Tenebrionidae) adult beetles are examined. 2. First, the impact of temperature on survival duration was assessed by placing beetles in a range of cool temperature treatments. Second, the importance of acclimation duration was assessed. Third, the impact of thermal stress on subsequent reproductive ability was examined for beetles that had no previous cold exposure, and for beetles that had been subjected to previous cold exposure (i.e. acclimated) at various conditions, including fluctuating temperatures. 3. In all groups, the number of recorded survivors was strongly impacted by recovery period duration (i.e. 2 vs. 10 days). Survival of non‐acclimated and 3‐day acclimated beetles, expressed as lethal time for 50% of the samples, was reduced significantly when the insects were re‐assessed for survival at 10 days after being returned to optimal growth conditions (7.9 ± 0.4 vs. 5.1 ± 0.6 days and 8.8 ± 0.5 vs. 6.8 ± 0.6 days, respectively). 4. Insects that had been subject to cold acclimation expressed better subsequent reproduction success than non‐acclimated beetles. This beneficial impact increased when the acclimation period was prolonged, but some longer acclimation periods had no significant impact on survival. 5. Our results indicate that cold exposure has the capacity to irreversibly damage the reproductive system and that insect survival depends on the duration of the recovery period. Both the survival ability and subsequent reproductive output have to be examined to objectively determine insect cold resistance.  相似文献   

3.
Photosynthetic responses to increasing temperatures play important roles in regulating heat tolerance. The objectives of this study were to determine photosynthetic acclimation to increasing temperatures for creeping bentgrass (Agrostis stolonifera L.) and to examine changes in major photosynthetic components (photosynthetic pigments, photochemical efficiency, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activity, and activation state of rubisco) involved in heat responses of photosynthesis. 'Penncross' was exposed to 20, 25, 30, and 35 degrees C for 7d at each temperature (acclimated) before being exposed to 40 degrees C for 28d or directly exposed to 40 degrees C for 28d from 20 degrees C (non-acclimated) in growth chambers. Leaf net photosynthetic rate (Pn), photochemical efficiency, rubisco activity, rubisco activation state, chlorophyll content, and carotenoid content decreased when grasses were subjected to severe heat stress at 40 degrees C for 28d. The declines in rubisco activity and activation state were most dramatic among different photosynthetic components examined in this study. Heat-acclimated plants were able to maintain significantly higher Pn, the content of chlorophyll and carotenoid, and the level of rubisco activity and activation state during subsequent exposure to severe heat stress, compared to non-acclimated plants. These results suggested that photosynthetic acclimation to increasing temperatures contributed to creeping bentgrass tolerance to severe heat stress, which was associated with the maintenance of both higher light-harvesting capacity and carbon fixation activity during heat stress.  相似文献   

4.
Pinpointing and safeguarding the welfare status of domestic cats is problematic, especially in New Zealand where cats are introduced predators with significant impact on indigenous fauna. Usually the identification of welfare status depends on conservational, legal, and public attitudes that are often contrasting. Cats may rapidly transgress definitions placed on them, confounding attempts to categorize them. In 1 generation, cats can move from a human-dependent state (“stray” or “companion”) to wild (“feral”). Often this categorization uses arbitrary behavioral and or situational parameters; consequent treatment and welfare protection for these cats are similarly affected. Terminology used to describe cats is not equitable across research. However, the New Zealand Animal Welfare (Companion Cats) Code of Welfare 2007 seeks to create a new definition of the terms companion, stray, and feral. It distinguishes between cats who live within and without human social constructs. This legislation mandates that cats in human environments or indirectly dependent on humans cannot be classified as feral. Such definitions may prove vital when safeguarding the welfare of free-living domestic cats and cat colonies.  相似文献   

5.
异色瓢虫成虫冷驯化反应及体内几种酶活力的相关变化   总被引:4,自引:0,他引:4  
为明确冷驯化反应对异色瓢虫Harmonia axyridis (Pallas) 实验种群成虫耐寒性及其生殖能力的影响, 本研究测定了成虫低温存活率、过冷却点(supercooling point, SCP)、体内含水量及雌虫繁殖能力等。结果表明: 冷驯化(在5℃下诱导3 d, 5 d)后, 成虫再在-5℃下暴露3 d的存活率由对照(预先未进行冷驯化)的46%分别提高至60%和67%, 而诱导10 d后的存活率(51%)反而下降。冷驯化效应在其成虫转移至饲养条件下7 d后就消失。随着低温诱导时间的延长过冷却点及体内含水量均呈现下降趋势, 短时间(5, 10 d)的诱导不能使成虫的SCP明显降低, 但可以使含水量极显著下降。冷驯化后异色瓢虫雌虫产卵前期延长; 虽然冷驯化对雌虫首次产卵量没有影响, 但是随着诱导时间的延长连续观察72 h内单头雌虫累计产卵量却降低。冷驯化过程中成虫体内几种酶活力的检测结果表明: 两种细胞保护酶超氧化物歧化酶(SOD)与过氧化氢酶(CAT)活性升高, 与新陈代谢有关的乳酸脱氢酶(LDH)及Na+, K+-ATP酶活性却降低。结果显示, 低温胁迫前异色瓢虫成虫经过不同时间的诱导后有可能提高其低温抵抗能力, 而且冷驯化诱导成虫耐寒性增加是一种复杂的生理生化过程, 这一过程对其生存和繁殖具有重要的适应意义。  相似文献   

6.
Temperature acclimation may be a critical component of the locomotor physiology and ecology of ectothermic animals, particularly those living in eurythermal environments. Several studies of fish report striking acclimation of biochemical and kinetic properties in isolated muscle. However, the relatively few studies of whole-animal performance report variable acclimation responses. We test the hypothesis that different types of whole-animal locomotion will respond differently to temperature acclimation, probably due to divergent physiological bases of locomotion. We studied two cyprinid fishes, tinfoil barbs (Puntius schwanenfeldii) and river barbels (Barbus barbus). Study fish were acclimated to either cold or warm temperatures for at least 6 wk and then assayed at four test temperatures for three types of swimming performance. We measured voluntary swimming velocity to estimate routine locomotor behavior, maximum fast start velocity to estimate anaerobic capacity, and critical swimming velocity to estimate primarily aerobic capacity. All three performance measures showed some acute thermal dependence, generally a positive correlation between swimming speed and test temperature. However, each performance measure responded quite differently to acclimation. Critical speeds acclimated strongly, maximum speeds not at all, and voluntary speeds uniquely in each species. Thus we conclude that long-term temperature exposure can have very different consequences for different types of locomotion, consistent with our hypothesis. The data also address previous hypotheses that predict that polyploid and eurythermal fish will have greater acclimation abilities than other fish, due to increased genetic flexibility and ecological selection, respectively. Our results conflict with these predictions. River barbels are eurythermal polyploids and tinfoil barbs stenothermal diploids, yet voluntary swimming acclimated strongly in tinfoil barbs and minimally in river barbels, and acclimation was otherwise comparable.  相似文献   

7.
The American lobster is a poikilotherm that inhabits a marine environment where temperature varies over a 25°C range and depends on the winds, the tides and the seasons. To determine how cardiac performance depends on the water temperature to which the lobsters are acclimated we measured lobster heart rates in vivo. The upper limit for cardiac function in lobsters acclimated to 20°C is approximately 29°C, 5°C warmer than that measured in lobsters acclimated to 4°C. Warm acclimation also slows the lobster heart rate within the temperature range from 4 to 12°C. Both effects are apparent after relatively short periods of warm acclimation (3–14 days). However, warm acclimation impairs cardiac function at cold temperatures: following several hours exposure to frigid (<5°C) temperatures heart rates become slow and arrhythmic in warm acclimated, but not cold acclimated, lobsters. Thus, acclimation temperature determines the thermal limits for cardiac function at both extremes of the 25°C temperature range lobsters inhabit in the wild. These observations suggest that regulation of cardiac thermal tolerance by the prevailing environmental temperature protects against the possibility of cardiac failure due to thermal stress.  相似文献   

8.
The thermoregulatory behavior of Hemigrapsus nudus, the amphibious purple shore crab, was examined in both aquatic and aerial environments. Crabs warmed and cooled more rapidly in water than in air. Acclimation in water of 16 degrees C (summer temperatures) raised the critical thermal maximum temperature (CTMax); acclimation in water of 10 degrees C (winter temperatures) lowered the critical thermal minimum temperature (CTMin). The changes occurred in both water and air. However, these survival regimes did not reflect the thermal preferences of the animals. In water, the thermal preference of crabs acclimated to 16 degrees C was 14.6 degrees C, and they avoided water warmer than 25.5 degrees C. These values were significantly lower than those of the crabs acclimated to 10 degrees C; these animals demonstrated temperature preferences for water that was 17 degrees C, and they avoided water that was warmer than 26.9 degrees C. This temperature preference was also exhibited in air, where 10 degrees C acclimated crabs exited from under rocks at a temperature that was 3.2 degrees C higher than that at which the 16 degrees C acclimated animals responded. This behavioral pattern was possibly due to a decreased thermal tolerance of 16 degrees C acclimated crabs, related with the molting process. H. nudus was better able to survive prolonged exposure to cold temperatures than to warm temperatures, and there was a trend towards lower exit temperatures with the lower acclimation (10 degrees C) temperature. Using a complex series of behaviors, the crabs were able to precisely control body temperature independent of the medium, by shuttling between air and water. The time spent in either air or water was influenced more strongly by the temperature than by the medium. In the field, this species may experience ranges in temperatures of up to 20 degrees C; however, it is able to utilize thermal microhabitats underneath rocks to maintain its body temperature within fairly narrow limits.  相似文献   

9.
Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot‐acclimation or non‐acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat‐shocked flies, but in the absence of heat stress hot‐acclimated flies had reduced life spans relative to non‐acclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness‐related traits.  相似文献   

10.
Abiotic stresses cause ROS accumulation, which is detrimental to plant growth. It is well known that acclimation of plants under mild or sub-lethal stress condition leads to development of resistance in plants to severe or lethal stress condition. The generation of ROS and subsequent oxidative damage during drought stress is well documented in the crop plants. However, the effect of drought acclimation treatment on ROS accumulation and lipid peroxidation has not been examined so far. In this study, the effect of water stress acclimation treatment on superoxide radical (O(2)(-z.rad;)) accumulation and membrane lipid peroxidation was studied in leaves and roots of wheat (Triticum aestivum) cv. C306. EPR quantification of superoxide radicals revealed that drought acclimation treatment led to 2-fold increase in superoxide radical accumulation in leaf and roots with no apparent membrane damage. However under subsequent severe water stress condition, the leaf and roots of non-acclimated plants accumulated significantly higher amount of superoxide radicals and showed higher membrane damage than that of acclimated plants. Thus, acclimation-induced restriction of superoxide radical accumulation is one of the cellular processes that confers enhanced water stress tolerance to the acclimated wheat seedlings.  相似文献   

11.
The acute upper lethal temperature (AULT) at different rates of increase was evaluated as a tool for the design of cheaper and environmentally friendlier control strategies for the invasive bivalve Limnoperna fortunei. Survivorship of 6 ± 2 mm and 20 ± 2 mm mussels acclimated to 12, 23 and 28 ° C and subjected to different heating rates (1 ° C per 5, 15 and 30 min) was estimated in the laboratory. The temperatures required to kill 50% (LT(50)) and 100% (SM(100)) of the mussels, and the mean death temperature (MDT) varied between 42.2 and 51 ° C over 54 experiments. Heating rates significantly (p < 0.001) affected LT(50), SM(100), and MDT. AULT was not affected by mussel size and acclimation temperatures. Limnoperna appears to be more resistant to high temperatures than Dreissena polymorpha, a mussel invasive in the USA and Europe. Lethal temperatures of L. fortunei are within the current thermal operational industrial capacities, suggesting that heat treatment is a viable alternative for controlling its fouling in utility systems.  相似文献   

12.
An increase in environmental temperature can deleteriously affect organisms. This study investigated whether the semiterrestrial estuarine crab Neohelice granulata uses emersion behavior as a resource to avoid thermal stress and survive higher aquatic temperatures. We also examined whether this behavior is modulated by exposure to high temperature; whether, during the period of emersion, the animal loses heat from the carapace to the medium; and whether this behavior is altered by the temperature at which the animal has been acclimated. The lethal temperature for 50% of the population (LT50) was determined through 96-h mortality curves in animals acclimated at 20 °C and 30 °C. The behavioral profile of N. granulata during thermal stress was based on monitoring crab movement in aerial, intermediary, and aquatic zones. Acclimation at a higher temperature and the possibility of emersion increased the thermotolerance of the crabs and the synergistic effect of acclimation temperature. The possibility of leaving the hot water further increased the resistance of these animals to thermal stress. We observed that when the crab was subjected to thermal stress conditions, it spent more time in the aerial environment, unlike under control conditions. Under the experimental conditions, it made small incursions into the aquatic environment and stayed in the aerial environment for a longer time in order to cool its body temperature. The animals acclimated at 20 °C and placed into water at 35 °C remained in the aerial zone. The animals acclimated and maintained at 30 °C (control) that were placed in water at 35 °C with the possibility of emerging into hot air transited more frequently between the aquatic and aerial zones than did the animals that were put in water at 35 °C with the possibility of emerging into a cooler air environment. We conclude that emergence behavior allows N. granulata to survive high temperatures and that this behavior is influenced by acclimation temperature.  相似文献   

13.
Prasad TK 《Plant physiology》1997,114(4):1369-1376
The mechanisms of chilling acclimation and the role of antioxidant enzymes, catalase in particular, in inducing chilling tolerance in pre-emergent maize (Zea mays L.) seedlings have been investigated. Seedlings were acclimated to chilling stress in two different ways. Three-day-old seedlings did not survive 7 d of 4[deg]C stress unless acclimated by exposure to either 14[deg]C for 1 d or 4[deg]C for 1 d followed by recovery at 27[deg]C for 1 d. Although no changes in superoxide dismutase and ascorbate peroxidase activities were observed, both kinds of acclimated seedlings had higher catalase (CAT), glutathione reductase, and guaiacol peroxidase activities compared with nonacclimated seedlings during low-temperature stress and recovery conditions. To study the role of CAT in chilling tolerance, aminotriazole (AT) was used as a tool to artificially inhibit CAT activity and to initiate oxidative stress in the seedlings. Treatment of acclimating seedlings with 3 mM AT for 18 h abolished the acclimation phenomenon. AT treatment was found to be specific to CAT inhibition, because the total activities or isozyme profiles of the other investigated antioxidant enzymes were not altered in AT-treated seedlings. Protein carbonyl content, an indication of oxidative damage, was increased 2-fold in nonacclimated and AT-treated acclimated seedlings. These results collectively indicate that acclimation to prolonged chilling stress can be achieved by briefly pre-exposing the seedlings to 4[deg]C chilling stress and that acclimation-induced (oxidative stress-induced) CAT seems to play a major role, probably along with other antioxidant enzymes, in inducing chilling tolerance in pre-emergent maize seedlings.  相似文献   

14.
Eighteen cats were used to compare the urine acidifying properties of sodium bisulphate to phosphoric acid. Acidifying agents were added at one of three concentrations (0.4, 0.6, or 0.8%, as-is basis). Cats were offered a commercial diet to determine basal urinary pH, and then again for a 1 week period between blocks 1 and 2. Cats were acclimated to the diets for 6 days, and urine samples were collected on day 7 at 0, 4, and 8 h post-feeding to obtain pre- and postprandial urinary pH. Intakes of diets containing sodium bisulphate tended (P < 0.07) to be lower than intakes of diets containing phosphoric acid. Cats consuming the 0.8% phosphoric acid diet had higher (P < 0.05) food intakes than cats consuming either the 0.4 or 0.6% phosphoric acid-containing diets. There was significant (P = 0.01) linear and quadratic response for food intake in cats consuming the sodium bisulphate-containing diet. Cats consuming the 0.4 and 0.8% phosphoric acid-containing diets tended (P = 0.07) to have higher water intakes than cats consuming the 0.6% phosphoric acid-containing diet. There were no differences (P > 0.05) in urine pH and specific gravity between cats fed the different acidifier types. Cats consuming the 0.6% phosphoric acid-containing diet tended (P = 0.07) to have a higher urine pH 8 h post-feeding than cats consuming the 0.4 and 0.8% phosphoric acid-containing diets. Urine pH was highest at 4 h post-feeding except for cats fed the 0.4% sodium bisulphate- and the 0.6% phosphoric acid-containing diets. No differences (P > 0.05) between acidifiers were found in faecal score or in faecal dry matter and organic matter concentrations. A quadratic response was detected in faecal score for cats consuming the phosphoric acid-containing diets. Cats consuming the 0.6% phosphoric acid diet tended (P = 0.06) to have a lower faecal score than cats consuming the 0.4 and 0.8% phosphoric acid diets. For faecal dry matter, a linear trend was detected in cats consuming the sodium bisulphate (P = 0.08) and phosphoric acid-containing (P = 0.04) diets. Sodium bisulphate and phosphoric acid generally behaved in a similar fashion when incorporated in dry cat diets.  相似文献   

15.
Induction of Cold Acclimation in Cornus stolonifera Michx   总被引:10,自引:7,他引:3       下载免费PDF全文
A warm (20 to 15 Celsius day or night) preconditioning treatment enhanced cold acclimation of Cornus stolonifera bark under short-day conditions when plants were preconditioned for at least 4 weeks. Warm preconditioning inhibited the acclimation of plants subjected to long photoperiods. Removing leaves from plants exposed to low temperatures and short days inhibited acclimation. Removal of buds did not affect acclimation. Plants did not acclimate unless they were exposed to at least 4 weeks of short photoperiods prior to defoliation. Plants began to acclimate to cold at the time of growth cessation but not before. When half of the leaves were removed from plants, the defoliated and foliated branches both acclimated as well as branches on completely foliated plants. Girdling the phloem between foliated and defoliated branches prevented acclimation of the latter regardless of the position of the girdle in relation to the root system and the defoliated branch. When all of the leaves of plants were covered with aluminum foil to exclude light after 0 or 4 weeks of exposure to short days, the results resembled a defoliation study, i.e., plants with leaves covered at the start of the experiment failed to acclimate, and those covered after 4 weeks acclimated to some extent but less than uncovered control plants. Under longday conditions plants with all leaves covered failed to acclimate, and plants with none or half of their leaves covered acclimated equally and to a limited extent. Under short-day conditions, however, the covered branches of partially covered plants acclimated more than their uncovered counterparts or branches of totally uncovered plants.  相似文献   

16.
This study examined how developing fish larvae regulate their Ca2+ balance for acclimation to low ambient Ca2+. Calcium balance in newly hatched larvae was examined individually. Developing larvae not only increased Ca2+ influx but also decreased Ca2+ efflux when they were acclimated to low-Ca2+ environments. After acclimation for 8 days, the influx and efflux of the low-Ca2+ (0.02 mM) group were about 106% and 43%, respectively, compared to those of the high-Ca2+ (1.0 mM) group. Sensitivity and response to low-Ca2+ environments are age-dependent. Upon acute exposure to low Ca2+. newly hatched (H0) larvae increased both Ca2+ influx (from 24% to 67% of high-Ca2+) and net uptake (from 5% to 69%) within 64 h, while 3-day-posthatching (H3) larvae managed to reach the levels of the control within 38 h. Declining Ca2+ efflux in H3 larvae occurred 14 h after exposure, much faster than those in H0 larvae (38 h). It is suggested that modulation of Ca2+-balance mechanisms in developing larvae is dependent upon the levels of Ca2+ in the larval body.  相似文献   

17.
Agropyron desertorum and Lophopyrum elongatum were grown in a control environment or acclimated in high‐salt (daily exposure to 75 or 150 m M NaCl for 6 d), cold (6/2 °C for 14 d) or drought environments (watering withheld for 6 d). Lophopyrum elongatum was constitutively tolerant to salt and also acclimated more to salt than did A. desertorum whereas A. desertorum acclimated more to cold and drought. Dehydrin and non‐specific lipid transfer protein (nsLTP) mRNA sequences and polypeptides increased more, during acclimation to cold and drought, in A. desertorum than in L. elongatum crowns. Expression of immunologically identified dehydrin polypeptides was much higher in drought‐acclimated A. desertorum than in any other species/treatment combination. The most strongly expressed were 42 and 20 kDa. No change in dehydrin or nsLTP polypeptides were detected in the crowns during acclimation to salt. Overall, there was stronger acclimation to dehydrative stresses, at the molecular level, in A. desertorum than in L. elongatum crowns. Differences in dehydrin and nsLTP mRNA and polypeptide expression during acclimation to different stresses indicated that plants sense the differences between different primary potential causes of cellular dehydration.  相似文献   

18.
To determine whether marsupial mammals increase their metabolic capabilities during cold acclimation, the metabolism of both warm and cold acclimated Dasyuroides byrnei was examined by exposure to cold in a helium-oxygen atmosphere. Mean values of heat production and conductance were significantly higher in a helium-oxygen atmosphere than in air. Body temperature did not change until metabolic capacity was exhausted. Both cold and warm acclimated groups could maintain a metabolic scope of 10-11 times the basal or standard level for this species. Such a metabolic scope is much higher than levels recorded for placental mammals. At very low ambient temperatures cold acclimated D. byrnei could sustain a high level of heat production longer than could warm acclimated animals. While there are some similarities between marsupial mammals and placental mammals in their responses to cold acclimation, an increase in maximum metabolism, as reported for placentals, does not seem to occur in marsupials.  相似文献   

19.
In view of the projected climatic changes and the global decrease in plant species diversity, it is critical to understand the effects of elevated air temperature (Tair) and species richness (S) on physiological processes in plant communities. Therefore, an experiment of artificially assembled grassland ecosystems, with different S (one, three or nine species), growing in sunlit climate-controlled chambers at ambient Tair and ambient Tair + 3°C was established. We investigated whether grassland species would be more affected by midday high-temperature stress during summer in a warmer climate scenario. The effect of elevated Tair was expected to differ with S. This was tested in the second and third experimental years by means of chlorophyll a fluorescence. Because acclimation to elevated Tair would affect the plant's stress response, the hypothesis of photosynthetic acclimation to elevated Tair was tested in the third year by gas exchange measurements in the monocultures. Plants in the elevated Tair chambers suffered more from midday stress on warm summer days than those in ambient chambers. In absence of severe drought, the quantum yield of PSII was not affected by elevated Tair. Our results further indicate that species had not photosynthetically acclimated to a temperature increase of 3°C after 3 years exposure to a warmer climate. Although effects of S and Tair × S interactions were mostly not significant in our study, we expect that combined effects of Tair and S would be important in conditions of severe drought events.  相似文献   

20.
Acclimation refers to reversible, nongenetic changes in phenotype that are induced by specific environmental conditions. Acclimation is generally assumed to improve function in the environment that induces it (the beneficial acclimation hypothesis). In this study, we experimentally tested this assumption by measuring relative fitness of the bacterium Escherichia coli acclimated to different thermal environments. The beneficial acclimation hypothesis predicts that bacteria acclimated to the temperature of competition should have greater fitness than do bacteria acclimated to any other temperature. The benefit predicted by the hypothesis was found in only seven of 12 comparisons; in the other comparisons, either no statistically demonstrable benefit was observed or a detrimental effect of acclimation was demonstrated. For example, in a lineage evolutionarily adapted to 37°C, bacteria acclimated to 37°C have a higher fitness at 32°C than do bacteria acclimated to 32°C, a result exactly contrary to prediction; acclimation to 27°C or 40°C prior to competition at those temperatures confers no benefit over 37°C acclimated forms. Consequently, the beneficial acclimation hypothesis must be rejected as a general prediction of the inevitable result of phenotypic adjustments associated with new environments. However, the hypothesis is supported in many instances when the acclimation and competition temperatures coincide with the historical temperature at which the bacterial populations have evolved. For example, when the evolutionary temperature of the population was 37°C, bacteria acclimated to 37°C had superior fitness at 37°C to those acclimated to 32°C; similarly, bacteria evolutionarily adapted to 32°C had a higher fitness during competition at 32°C than they did when acclimated to 37°C. The more surprising results are that when the bacteria are acclimated to their historical evolutionary temperature, they are frequently competitively superior even at other temperatures. For example, bacteria that have evolved at either 20°C or 32°C and are acclimated to their respective evolutionary temperatures have a greater fitness at 37°C than when they are acclimated to 37°C. Thus, acclimation to evolutionary temperature may, as a correlated consequence, enhance performance not only in the evolutionary environment, but also in a variety of other thermal environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号