首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly sensitive peptide mapping method using derivatization and fluorescence detection is described. Bovine cytochrome c was digested using a buffer compatible with the derivatization that followed. The derivatization was performed with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. The peptide mapping of the tagged digest was conducted with both HPLC and capillary LC (CLC) systems. A capillary LC-electrospray ionization mass spectrometer (MS) was set up for measuring the molecular weights of the tagged peptides. Optimization was made of the conditions used for digestion, derivatization, and mapping. MS measurements of the tagged peptides suggested that there was only one derivatization product produced from all peptides (except one) and that all the identified peptides were fully tagged. Peptide mapping of the tagged digest reviews a larger number of peptides, covering almost the entire sequence. Peptide mapping of a 20 fmol amount of tagged digest was readily performed with the CLC system. By using derivatization and fluorescence detection, the sensitivity of peptide mapping could be improved 2000 times compared to that observed with uv detection of untagged peptides.  相似文献   

2.
A rapid, sensitive and reproducible high-performance liquid chromatographic assay for busulfan in human plasma was developed. After extraction of plasma samples with acetonitrile and methylene chloride, busulfan and the internal standard [1,5-bis(methanesulfonyloxy)pentane] were derivatized with 8-mercaptoquinoline to yield fluorescent compounds which were detected with a fluorescence detector equipped with filters of 360 nm (excitation) and 425 nm (emission). Calibration graphs showed a linear correlation (r>0.9990) over the concentration range of 20–2000 ng/ml. The recovery of busulfan from plasma standards was 70±5%. The detection and quantification limits for busulfan in plasma samples were established at 9 ng/ml and 20 ng/ml, respectively. The intra- and inter-assay variations were lower than 8% and 10%, respectively. The applicability of the method was verified by analyzing the plasma concentrations of busulfan in a patient to whom it was administered orally on two different days.  相似文献   

3.
Analysis of plasma catecholamines (norepinephrine, epinephrine and dopamine) by high-performance liquid chromatography using 1,2-diphenylethylenediamine as a fluorescent reagent is described. We have developed an automatic catecholamine analyser, based on pre-column fluorescence derivatization and column switching. The analysis time for one assay was 15 min. The correlation coefficients of the linear regression equations were greater than 0.9996 in the range 10–10 000 pg/ml. The detection limit, at a signal-to-noise ratio of 3, was 2 pg/ml for dopamine. A new method of sample preparation for the pre-column fluorescence derivatization of plasma catecholamines was used. In order to protect the catecholamines from decomposition, an ion-pair complex between boric acid and the diol group in the catecholamine was formed at a weakly alkaline pH. The stabilities of plasma catecholamines were evaluated at several temperatures. After complex formation, the catecholamines were very stable at 17°C for 8 h, and the coefficients of variation for norepinephrine, epinephrine and dopamine were 1.2, 4.2 and 9.3%, respectively.  相似文献   

4.
A simple procedure for the determination of amphetamine in urine with minimal sample preparation is described. This method involves direct addition of human urine to an acetone-dansyl chloride solution for simultaneous deproteinization and fluorescence derivatization. The derivatized amphetamine is then measured by HPLC with fluorescence detection. It eliminates the extraction procedures often required by other HPLC or GC methods. The effects of pH, temperature and reaction time on the derivatization reaction were investigated. The stability of amphetamine-dansyl chloride in different storage conditions was examined. The detection limit and linearity associated with this assay are discussed.  相似文献   

5.
A high-performance liquid chromatographic method was developed for the determination of methylguanidine in biological fluids. Methylguanidine and the internal standard were isolated from plasma by cation-exchange solid-phase extraction prior to chromatographic analysis. Urine samples were diluted and injected directly onto the analytical column. Chromatographic separation was carried out on an Ultrasil cation-exchange column using a mixture of methanol and monochloroacetate (15/85, v/v) as the mobile phase. Postcolumn derivatization of methylguanidine was carried out using alkaline ninhydrin reagent and the resulting fluorescent product was detected on-line. The method was specific, sensitive, reproducible, and linear over a wide a range of concentrations. The lower limit of detection for methylguanidine in plasma and urine was 1 and 100 ng/ml, respectively. The method was successfully employed for quantification of the levels of methylguanidine in normal and uremic human subjects, normal dogs, and dogs with ischemic-induced acute or spontaneous chronic renal failure.  相似文献   

6.
In this work we describe a sensitive method for the detection of 4,5-dioxovaleric acid (DOVA). 4,5-Dioxovaleric acid is derivatized with 2,3-diaminonaphthalene to form 3-(benzoquinoxalinyl-2)propionic acid (BZQ), a product with favorable UV absorbance and fluorescence properties. The high-performance liquid chromatographic method with UV absorbance and fluorescence detection is simple and its detection limit is approximately 100 fmol. This method was used to detect 4,5-dioxovaleric acid formation during metal-catalyzed 5-aminolevulinic acid (ALA) oxidation. Iron and ferritin were active in the formation of 4,5-dioxovaleric acid in the presence of 5-aminolevulinic acid. In addition, HPLC–MS–MS assay was used to characterize BZQ. The determination of 4,5-dioxovaleric acid is of great interest for the study of the mechanism of the metal-catalyzed damage of biomolecules by 5-aminolevulinic acid. This reaction may play a role in carcinogenesis after lead intoxication. The high frequency of liver cancer in acute intermittent porphyria patients may also be due to this reaction.  相似文献   

7.
An assay for measuring dihydroorotase activity was devised. Radiolabeled substrate and product were separated by high-performance liquid chromatography using a reverse-phase column with ion-pairing, and the radioactivity was quantitated by flow detection.  相似文献   

8.
A simple and highly sensitive high-performance liquid chromatographic method for the direct determination of urinary glucuronide conjugates is described. The method is based on the direct derivatization of the glucuronic acid moiety in glucuronide conjugates with 6,7-dimethoxy-1-methyl-2 (1 H)-quinoxalinone-3-propionylcarboxylic acid hydrazide. The derivatization reaction proceeds in aqueous solution in the presence of pyridine and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at 0–37°C. The resulting fluorescent derivatives are separated on a C18 column using methanol—acetonitrile—0.5% triethylamine in water (1:1:2, v/v) as mobile phase, and are detected spectrofluorimetrically at 445 nm with excitation at 367 nm. The detection limits (signal-to-noise RATIO = 3) for the glucuronides are 13–48 fmol for an injection volume of 10 μl (130–480 fmol per 5 μl of human urine). The method was applied to the measurement of etiocholanorone-3-glucuronide and androsterone-3-glucuronide in human urine. The method is simple and rapid without conventional liquid—liquid extraction of the glucuronides from urine.  相似文献   

9.
A new method for determining cycloserine in plasma samples is described. This method is based on the derivatization of cycloserine with p-benzoquinone, a reaction that takes place at the same time as the process of plasma deproteinization due to the presence of ethanol as solvent in the solution of the derivatization reagent. Four derivatives are obtained from this reaction. The main derivative is well correlated with the cycloserine concentration. The ratio between the volumes of the plasma sample and the reagent solution is 1:2 for a p-benzoquinone concentration of 1000 μg/mL. Elution from a C18 column was isocratic, using a mobile phase containing (v/v) 85% aqueous 0.1% formic acid solution, and 15% (v/v) of a mixture of methanol and acetonitrile (1:1), with a flow-rate of 1 mL/min, at 25°C. Determinations by fluorescence detection were achieved with excitation at 381 nm and emission at 450 nm, with a detection limit of 10 ng/mL for an injection volume of 5 μL. This method was validated and applied to the determination of cycloserine in blood plasma samples of several healthy volunteers.  相似文献   

10.
A reversed-phase high-performance liquid chromatographic method for oxazepam in human urine samples has been developed. The sample preparation consists of an enzymatic hydrolysis with β-glucuronidase, followed by a solid-phase extraction process using Bond-Elut C2 cartridges. The mobile phase used was a methanol—water (60:40, v/v) mixture at a flow-rate of 0.50 ml/min. The column was a 3.5 cm × 4.6 mm I.D. C18 reversed-phase column. The detection system was based on a fluorescence post-column derivatization of oxazepam in mixtures of methanol and acetic acid. A linear range from 0.01 to 1 μg/ml of urine and a limit of detection of 4 ng/ml of urine were attained. Within-day recoveries and reproducibilities from urine samples spiked with 0.2 and 0.02 μg/ml oxazepam were 97.9 and 95.0 and 2.1 and 9.4%, respectively.  相似文献   

11.
A stereospecific high-performance liquid chromatographic method has been developed for the determination of four diastereomers of nadolol in plasma. After the nadolol diastereomers were extracted from plasma using an Extrelut-1 solid-phase extraction cartridge, they were derivatized with (R)-(−)-1-(1-naphthyl)ethylisocyanate to form urea derivatives. These derivatives were then separated on a YMC-AM-303 ODS column using water—acetonitrile (60:40, v/v). The calibration curves of (SR)-, (RS)-, (SS)- and (RR)-nadolol were linear over the range 2.5–200 ng/ml, and the correlation coefficient (r) of the curves were higher than 0.9991 for each diastereomer. The limit of quantification was 2.5 ng/ml for each diastereomer in plasma. This method was used for a pharmacokinetic study in four dogs after oral administration of nadolol (1 mg/kg). The plasma concentrations of nadolol diastereomers showed no significant differences in Cmax, Tmax or AUC values. The assay appears to be readily applicable to the study of diastereoselective nadolol pharmacokinetics in animals and humans.  相似文献   

12.
Several modifications of an HPLC—electrochemical assay method for plasma levels of norepinephrine (NE), epinephrine (EPI), dopamine (DA), dihydroxyphenylglycol (DHPG), dihydroxyphenylalanine (DOPA) and dihydroxyphenylacetic acid (DOPAC) that improve the accuracy and reliability of DHPG, DOPA, and DOPAC measurements are described. In batch alumina extractions, increasing the amount of alumina decreased analytical recoveries of DHPG, DOPA, and especially DOPAC, and increasing the strength of the eluting acid increased recoveries of these catechols, without affecting recoveries of the amines NE, EPI and DA. Refrigeration (4°C) until injection stabilized DOPAC in aqueous solution and therefore improved the reproducibility of plasma DOPAC measurements. Circulation of chilled water (15°C) around the column using a water jacket decreased variability in retention times of the catechols and thereby facilitated identification of peaks, while enhancing separation of DHPG from the solvent front. Use of 6-fluoro-DOPA and 6-fluoro-DOPAC as internal standards did not improve inter-assay reliability. We recommend that in assays of plasma catechols including DOPAC, small (5 mg), precisely measured amounts of alumina be used, with a relatively strong eluting solution (e.g. 0.04 M phosphoric acid—0.2 M acetic acid, 20:80, v/v), and that the samples be refrigerated until injection, with column temperature held constant at less than 20°C.  相似文献   

13.
A simple and selective procedure for the determination of vinorelbine, a new semi-synthetic vinca alkaloid, is presented. The method is based on ion-exchange high-performance liquid chromatography on normal-phase silica with fluorescence detection, combined with liquid—liquid extraction using diethyl ether for sample clean-up. The absence of endogenous interferences and the excellent chromatographic behaviour of vinca alkaloids provides accurate results even at low concentrations. The limit of determination in plasma is 1.5 μg/l (500-μl sample). Reproducible recoveries in urine were obtained if 10–50 μl of sample were processed supplemented with 500 μl of blank plasma.  相似文献   

14.
A rapid, sensitive and reproducible reversed-phase high-performance liquid chromatographic assay was developed for the determination of norfloxacin. Following protein precipitation with 10% trichloroacetic acid, norfloxacin and the internal standard enoxacin were extracted from plasma with chloroform, dried and reconstituted in the mobile phase. The chromatographic separation of norfloxacin and the internal standard enoxacin was achieved on a C8 column with fluorescence detection set at 280 and 418 nm for excitation and emission, respectively. The peaks with a resolution factor greater than 1.5 were free from interferences. Excellent linearity (r2 0.998) was observed over the concentration range 0.025–5.0 μg/ml in plasma. The inter-assay variability was 13.6% or less at all concentrations examined. The suitability of the assay for pharmacokinetic studies was determined by measuring norfloxacin concentration in rat plasma after administration of a single intravenous 10 mg/kg dose.  相似文献   

15.
A selective and sensitive high-performance liquid chromatography (HPLC) method with fluorescence derivatization for the assay of guanylate cyclase (GC) activity is described. GTP and cGMP, which are the substrate and the product of GC, respectively, and other guanine-containing compounds are selectively converted by the reaction with (3,4-dimethoxyphenyl)glyoxal to the fluorescent derivatives. The derivatives were separated by reversed-phase HPLC. The limit of detection at a signal-to-noise ratio of 3 for cGMP was 10 fmol on the column. The sensitivity of this method was less than that of the conventional radioisotopic method, but this method is simple and convenient. Human platelet GC activity was measured, and the effects of some compounds were investigated.  相似文献   

16.
Severe homocystinemia is frequently associated with vascular disease while the pathological consequences of moderate or slightly elevated plasma homocysteine are unknown. Cobalamin and folate deficiencies may result in an elevation of plasma homocysteine. A sensitive and reproducible assay for total plasma homocysteine has been developed. The essential steps in the assay include (i) conversion of homocysteine disulfides to free homocysteine with borohydride reduction; (ii) conjugation of homocysteine with monobromobimane; (iii) separation of homocysteine-bimane from other plasma thiol-bimane adducts by reverse-phase high-performance liquid chromatography; and (iv) detection and quantitation of homocysteine-bimane by fluorometry. The method has a sensitivity of 4.4 pmol of homocysteine and is highly reproducible (intra- and interassay coefficients of variation = 4.97 and 4.53%, respectively). The mean concentration of total plasma homocysteine in nonfasting adult males (n = 12) and females (n = 12) was 15.8 (range, 7.0-23.7) and 16.5 nmol/ml (range, 8.6-20.7), respectively. Markedly elevated levels of homocysteine were found in patients with cobalamin and folate deficiency. Total plasma homocysteine represents approximately 4% of borohydride-generated thiol reactivity in the plasma of normal individuals.  相似文献   

17.
A high-performance liquid chromatography (HPLC) procedure for the separation of choline lysophospholids including 1-acyl-lysophosphatidylcholines and 1-O-alkyl-lysophosphatidyl-cholines, like the lysoform of the platelet activating factor (2-lysoPAF), is described. The lysophospholipids are derivatized at the sn-2 position of the hydroxyl group by 7-diethylaminocoumarin-3-carbonylazide, which converts them into the corresponding carbamoyl derivatives. The derivatized compounds were well separated by reversed-phase HPLC and quantified by fluorimetric detection. This method shows a high sensitivity and allows the separation and quantification of mixtures of lysophospholipids at picomolar level. The method was applied to assay enzyme activities, like phospholipase A2 and PAF-acetylhydrolase, on single phospholipids or their mixtures.  相似文献   

18.
W Xiao  D Stern  M Jain  C G Huber  P J Oefner 《BioTechniques》2001,30(6):1332-1338
Denaturing high-performance liquid chromatography (DHPLC) is a sensitive, robust, and operationally inexpensive method for the detection of single-base substitutions and small deletions and insertions. To increase sample throughout, we have developed a multiplexing strategy using fluorophores to distinguish different PCR products. The system combines recent advances in the synthesis of monolithic poly(styrene-divinylbenzene) capillary columns with four-color confocal argon ion laser-induced fluorescence detection. Depending on the change in retention caused by the fluorophores, adjustments in the analysis temperature may be required to ensure the maximum mutation detection sensitivity.  相似文献   

19.
An efficient method for the determination of atenolol in human plasma and urine was developed and validated. α-Hydroxymetoprolol, a compound with a similar polarity to atenolol, was used as the internal standard in the present high-performance liquid chromatographic analysis with fluorescence detection. The assay was validated for the concentration range of 2 to 5000 ng/ml in plasma and 1 to 20 μg.ml in urine. For both plasma and urine, the lower limit of detection was 1 ng/ml. The intra-day and inter-day variabilities for plasma samples at 40 and 900 ng/ml, and urine samples at 9.5 μg/ml were <3% (n=5).  相似文献   

20.
The simultaneous determination of alpha-lipoic acid (LA) and DHLA (reduced form of LA) was carried out by HPLC with fluorescence detection. DHLA in the sample was first labeled with ABD-F at room temperature for 10 min and then the LA was labeled with SBD-F at 50 degrees C for 1 h after conversion to DHLA using the reducing agent, TCEP. The resulting fluorophores, ABD-DHLA and SBD-DHLA, were separated by reversed-phase chromatography and detected at 510 nm (excitation at 380 nm). Both fluorophors were completely separated without any interference of endogenous thiols and disulfides in the sample and sensitively detected by fluorimetry. The proposed method was applied to the assay of the LA supplement and the determination in human plasma after the oral administration of LA tablets. The concentration (%) of LA in the tablet was reasonable to the stated amount. Furthermore, the result of a time course study in the plasma after the administration of LA did not differ from a previous report. Thus, the present method seems to be applicable to the simultaneous determination of LA and DHLA in various biological specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号