首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Replicate radiations provide powerful comparative systems to address questions about the interplay between opportunity and innovation in driving episodes of diversification and the factors limiting their subsequent progression. However, such systems have been rarely documented at intercontinental scales. Here, we evaluate the hypothesis of multiple radiations in the genus Lupinus (Leguminosae), which exhibits some of the highest known rates of net diversification in plants. Given that incomplete taxon sampling, background extinction, and lineage-specific variation in diversification rates can confound macroevolutionary inferences regarding the timing and mechanisms of cladogenesis, we used Bayesian relaxed clock phylogenetic analyses as well as MEDUSA and BiSSE birth-death likelihood models of diversification, to evaluate the evolutionary patterns of lineage accumulation in Lupinus. We identified 3 significant shifts to increased rates of net diversification (r) relative to background levels in the genus (r = 0.18-0.48 lineages/myr). The primary shift occurred approximately 4.6 Ma (r = 0.48-1.76) in the montane regions of western North America, followed by a secondary shift approximately 2.7 Ma (r = 0.89-3.33) associated with range expansion and diversification of allopatrically distributed sister clades in the Mexican highlands and Andes. We also recovered evidence for a third independent shift approximately 6.5 Ma at the base of a lower elevation eastern South American grassland and campo rupestre clade (r = 0.36-1.33). Bayesian ancestral state reconstructions and BiSSE likelihood analyses of correlated diversification indicated that increased rates of speciation are strongly associated with the derived evolution of perennial life history and invasion of montane ecosystems. Although we currently lack hard evidence for "replicate adaptive radiations" in the sense of convergent morphological and ecological trajectories among species in different clades, these results are consistent with the hypothesis that iteroparity functioned as an adaptive key innovation, providing a mechanism for range expansion and rapid divergence in upper elevation regions across much of the New World.  相似文献   

2.
Whatever criteria are used to measure evolutionary success – species numbers, geographic range, ecological abundance, ecological and life history diversity, background diversification rates, or the presence of rapidly evolving clades – the legume family is one of the most successful lineages of flowering plants. Despite this, we still know rather little about the dynamics of lineage and species diversification across the family through the Cenozoic, or about the underlying drivers of diversification. There have been few attempts to estimate net species diversification rates or underlying speciation and extinction rates for legume clades, to test whether among-lineage variation in diversification rates deviates from null expectations, or to locate species diversification rate shifts on specific branches of the legume phylogenetic tree. In this study, time-calibrated phylogenetic trees for a set of species-rich legume clades – Calliandra, Indigofereae, Lupinus, Mimosa and Robinieae – and for the legume family as a whole, are used to explore how we might approach these questions. These clades are analysed using recently developed maximum likelihood and Bayesian methods to detect species diversification rate shifts and test for among-lineage variation in speciation, extinction and net diversification rates. Possible explanations for rate shifts in terms of extrinsic factors and/or intrinsic trait evolution are discussed. In addition, several methodological issues and limitations associated with these analyses are highlighted emphasizing the potential to improve our understanding of the evolutionary dynamics of legume diversification by using much more densely sampled phylogenetic trees that integrate information across broad taxonomic, geographical and temporal levels.  相似文献   

3.
4.
How will the emerging possibility of inferring ultra-large phylogenies influence our ability to identify shifts in diversification rate? For several large angiosperm clades (Angiospermae, Monocotyledonae, Orchidaceae, Poaceae, Eudicotyledonae, Fabaceae, and Asteraceae), we explore this issue by contrasting two approaches: (1) using small backbone trees with an inferred number of extant species assigned to each terminal clade and (2) using a mega-phylogeny of 55473 seed plant species represented in GenBank. The mega-phylogeny approach assumes that the sample of species in GenBank is at least roughly proportional to the actual species diversity of different lineages, as appears to be the case for many major angiosperm lineages. Using both approaches, we found that diversification rate shifts are not directly associated with the major named clades examined here, with the sole exception of Fabaceae in the GenBank mega-phylogeny. These agreements are encouraging and may support a generality about angiosperm evolution: major shifts in diversification may not be directly associated with major named clades, but rather with clades that are nested not far within these groups. An alternative explanation is that there have been increased extinction rates in early-diverging lineages within these clades. Based on our mega-phylogeny, the shifts in diversification appear to be distributed quite evenly throughout the angiosperms. Mega-phylogenetic studies of diversification hold great promise for revealing new patterns, but we will need to focus more attention on properly specifying null expectation.  相似文献   

5.
Snake diversity varies by at least two orders of magnitude among extant lineages, with numerous groups containing only one or two species, and several young clades exhibiting exceptional richness (>700 taxa). With a phylogeny containing all known families and subfamilies, we find that these patterns cannot be explained by background rates of speciation and extinction. The majority of diversity appears to derive from a radiation within the superfamily Colubroidea, potentially stemming from the colonization of new areas and the evolution of advanced venom-delivery systems. In contrast, negative relationships between clade age, clade size, and diversification rate suggest the potential for possible bias in estimated diversification rates, interpreted by some recent authors as support for ecologically mediated limits on diversity. However, evidence from the fossil record indicates that numerous lineages were far more diverse in the past, and that extinction has had an important impact on extant diversity patterns. Thus, failure to adequately account for extinction appears to prevent both rate- and diversity-limited models from fully characterizing richness dynamics in snakes. We suggest that clade-level extinction may provide a key mechanism for explaining negative or hump-shaped relationships between clade age and diversity, and the prevalence of ancient, species-poor lineages in numerous groups.  相似文献   

6.
Polypteriformes (or Cladistia) and Lepisosteiformes (or Ginglymodi) are two groups of freshwater fishes with ganoid scales. The earliest fossil records of these taxa are Albian (Lepisosteiformes) and Cenomanian (Polypteriformes) respectively in Gondwana; they are still extant. The 'first' appearance of the two groups in the fossil record (explosive in polypteriforms, gradual in lepisosteiforms) as well as their evolutionary mode (diversification/disparity or replacement) is described in detail. The lepisosteiforms appear to show a rapid radiation of post-Palaeozoic clades immediately upon origination, while the polypteriforms represent a counter-example with their sudden diversification and their sudden acquisition of several 'key innovations'.  相似文献   

7.
Understanding the origin of diversity is a fundamental problem in biology. Evolutionary diversification has been intensely explored during the last years due to the development of molecular tools and the comparative method. However, most studies are conducted using only information from extant species. This approach probably leads to misleading conclusions, especially because of inaccuracy in the estimation of extinction rates. It is critical to integrate the information generated by extant organisms with the information obtained from the fossil record. Unfortunately, this integrative approach has been seldom performed, and thus, our understanding of the factors fueling diversification is still deficient. Ecological interactions are a main factor shaping evolutionary diversification by influencing speciation and extinction rates. Most attention has focused on the effect of antagonistic interactions on evolutionary diversification. In contrast, the role of mutualistic interactions in shaping diversification has been much less explored. In this study, by combining phylogenetic, neontological, and paleontological information, we show that a facultative mutualistic plant-animal interaction emerging from frugivory and seed dispersal has most likely contributed to the diversification of our own lineage, the primates. We compiled diet and seed dispersal ability in 381 extant and 556 extinct primates. Using well-established molecular phylogenies, we demonstrated that mutualistic extant primates had higher speciation rates, lower extinction rates, and thereby higher diversification rates than nonmutualistic ones. Similarly, mutualistic fossil primates had higher geological durations and smaller per capita rates of extinction than nonmutualistic ones. As a mechanism underlying this pattern, we found that mutualistic extinct and extant primates have significantly larger geographic ranges, which promotes diversification by hampering extinction and increasing geographic speciation. All these outcomes together strongly suggest that the establishment of a facultative mutualism with plants has greatly benefited primate evolution and fueled its taxonomic diversification.  相似文献   

8.
Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614–622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of the process of adaptive radiation in a few extant clades, but also from the maintenance of evolvability on vast time scales across the history of life, in key lineages.  相似文献   

9.
The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC) is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE) and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution.  相似文献   

10.
The marine‐terrestrial richness gradient is among Earth's most dramatic biodiversity patterns, but its causes remain poorly understood. Here, we analyse detailed phylogenies of amniote clades, paleontological data and simulations to reveal the mechanisms underlying low marine richness, emphasising speciation, extinction and colonisation. We show that differences in diversification rates (speciation minus extinction) between habitats are often weak and inconsistent with observed richness patterns. Instead, the richness gradient is explained by limited time for speciation in marine habitats, since all extant marine clades are relatively young. Paleontological data show that older marine invasions have consistently ended in extinction. Simulations show that marine extinctions help drive the pattern of young, depauperate marine clades. This role for extinction is not discernible from molecular phylogenies alone, and not predicted by most previously hypothesised explanations for this gradient. Our results have important implications for the marine‐terrestrial biodiversity gradient, and studies of biodiversity gradients in general.  相似文献   

11.
Tree snails of the endemic subfamily Achatinellinae comprise a diverse and important component of the Hawaiian fauna. In recent decades anthropogenic impacts have resulted in devastating extinction rates in Hawaiian tree snails. To address long-standing biogeographic, systematic, and evolutionary questions we used cytochrome c oxidase subunit I (COI) gene sequences to reconstruct the phylogeny of 23 extant species spanning the range of the subfamily from five Hawaiian Islands. To investigate family-level relationships, data were analyzed from 11 terrestrial pulmonate families. Although nodal support for monophyly of the endemic Pacific family Achatinellidae and endemic Hawaiian subfamily Achatinellinae was strong, bifurcation order among deeper ingroup nodes was not well-supported by bootstrap resampling. We hypothesize that lineage extinction and rapidity of lineage formation may have rendered evolutionary reconstruction difficult using a standard phylogenetic approach. Use of an optimized evolutionary model, however, improved resolution and recovered three main clades. The diversification pattern inferred contradicts the traditional biogeographic hypothesis of a Maui origin of the achatinelline lineage. Taxa comprising the basal ingroup clade (Achatinella spp.) and seeding lineages for subsequent clades originated on O'ahu. Therefore it appears that the ancestral colonizing species of achatinellines arrived first on O'ahu from an unknown source, and that O'ahu is the Hawaiian origin of the subfamily. Species previously defined by morphological criteria were generally found to be phylogenetically distinct, and the overall colonization pattern follows the island-age progression rule with several instances of generic polyphyly and back-colonization.  相似文献   

12.
Most extant species are in clades with poor fossil records, and recent studies of comparative methods show they have low power to infer even highly simplified models of trait evolution without fossil data. Birds are a well‐studied radiation, yet their early evolutionary patterns are still contentious. The fossil record suggests that birds underwent a rapid ecological radiation after the end‐Cretaceous mass extinction, and several smaller, subsequent radiations. This hypothesized series of repeated radiations from fossil data is difficult to test using extant data alone. By uniting morphological and phylogenetic data on 604 extant genera of birds with morphological data on 58 species of extinct birds from 50 million years ago, the “halfway point” of avian evolution, I have been able to test how well extant‐only methods predict the diversity of fossil forms. All extant‐only methods underestimate the disparity, although the ratio of within‐ to between‐clade disparity does suggest high early rates. The failure of standard models to predict high early disparity suggests that recent radiations are obscuring deep time patterns in the evolution of birds. Metrics from different models can be used in conjunction to provide more valuable insights than simply finding the model with the highest relative fit.  相似文献   

13.
Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.  相似文献   

14.
The recent evidence that extant cycads are not living fossils triggered a renewed search for a better understanding of their evolutionary history. In this study, we investigated the evolutionary diversification history of the genus Encephalartos, a monophyletic cycad endemic to Africa. We found an antisigmoidal pattern with a plateau and punctual explosive radiation. This pattern is typical of a constant radiation with mass extinction. The rate shift that we found may therefore be a result of a rapid recolonization of niches that have been emptied owing to mass extinction. Because the explosive radiation occurred during the transition Pliocene–Pleistocene, we argued that the processes might have been climatically mediated.  相似文献   

15.
A common pattern in time-calibrated molecular phylogenies is a signal of rapid diversification early in the history of a radiation. Because the net rate of diversification is the difference between speciation and extinction rates, such "explosive-early" diversification could result either from temporally declining speciation rates or from increasing extinction rates through time. Distinguishing between these alternatives is challenging but important, because these processes likely result from different ecological drivers of diversification. Here we develop a method for estimating speciation and extinction rates that vary continuously through time. By applying this approach to real phylogenies with explosive-early diversification and by modeling features of lineage-accumulation curves under both declining speciation and increasing extinction scenarios, we show that a signal of explosive-early diversification in phylogenies of extant taxa cannot result from increasing extinction and can only be explained by temporally declining speciation rates. Moreover, whenever extinction rates are high, "explosive early" patterns become unobservable, because high extinction quickly erases the signature of even large declines in speciation rates. Although extinction may obscure patterns of evolutionary diversification, these results show that decreasing speciation is often distinguishable from increasing extinction in the numerous molecular phylogenies of radiations that retain a preponderance of early lineages.  相似文献   

16.
Bats are a unique mammalian group, which belong to one of the largest and most diverse mammalian radiations, but their early diversification is still poorly understood, and conflicting hypotheses have emerged regarding their biogeographic history. Understanding their diversification is crucial for untangling the enigmatic evolutionary history of bats. In this study, we elucidated the rate of diversification and the biogeographic history of extant bat lineages using genus‐level chronograms. The results suggest that a rapid adaptive radiation persisted from the emergence of crown bats until the Early Eocene Climatic Optimum, whereas there was a major deceleration in diversification around 35–49 Ma. There was a positive association between changes in the palaeotemperature and the net diversification rate until 35 Ma, which suggests that the palaeotemperature may have played an important role in the regulation of ecological opportunities. By contrast, there were unexpectedly higher diversification rates around 25–35 Ma during a period characterized by intense and long‐lasting global cooling, which implies that intrinsic innovations or adaptations may have released some lineages from the intense selective pressures associated with these severe conditions. Our reconstruction of the ancestral distribution suggests an Asian origin for bats, thereby indicating that the current panglobal but disjunct distribution pattern of extant bats may be related to events involving seriate cross‐continental dispersal and local extinction, as well as the influence of geological events and the expansion and contraction of megathermal rainforests during the Tertiary.  相似文献   

17.
The ‘Age of Mammals’ began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous–Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small‐to‐large‐bodied, diverse taxa has driven a hypothesis that the end‐Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of ‘condylarths’. Protungulatum is resolved as a stem eutherian, meaning that no crown‐placental mammal unambiguously pre‐dates the Cretaceous–Palaeogene boundary. Our results support an Atlantogenata–Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic. The inclusion of Paleocene taxa in a placental phylogeny alters interpretations of relationships and key events in mammalian evolutionary history. Paleocene mammals are an essential source of data for understanding fully the biotic dynamics associated with the end‐Cretaceous mass extinction. The relationships presented here mark a critical first step towards accurate reconstruction of this important interval in the evolution of the modern fauna.  相似文献   

18.
Identifying nonrandom clade diversification is a critical first step toward understanding the evolutionary processes underlying any radiation and how best to preserve future phylogenetic diversity. However, differences in diversification rates have not been quantitatively assessed for the majority of groups because of the lack of necessary analytical tools (e.g., complete species-level phylogenies, estimates of divergence times, and robust statistics which incorporate phylogenetic uncertainty and test appropriate null models of clade growth). Here, for the first time, we investigate diversification rate heterogeneity in one of the largest groups studied thus far, the bats (Mammalia: Chiroptera). We use a recent, robust statistical approach (whole-tree likelihood-based relative rate tests) on complete dated species-level supertree phylogenies. As has been demonstrated previously for most other groups, among-lineage diversification rate within bats has not been constant. However, we show that bat diversification is more heterogeneous than in other mammalian clades thus far studied. The whole-tree likelihood-based relative rates tests suggest that clades within the families Phyllostomidae and Molossidae underwent a number of significant changes in relative diversification rate. There is also some evidence for rate shifts within Pteropodidae, Emballonuridae, Rhinolophidae, Hipposideridae, and Vespertilionidae, but the significance of these shifts depends on polytomy resolution within each family. Diversification rate in bats has also not been constant, with the largest diversification rate shifts occurring 30-50 million years ago, a time overlapping with the greatest number of shifts in flowering plant diversification rates.  相似文献   

19.
Modern whales are frequently described as an adaptive radiation spurred by either the evolution of various key innovations (such as baleen or echolocation) or ecological opportunity following the demise of archaic whales. Recent analyses of diversification rate shifts on molecular phylogenies raise doubts about this interpretation since they find no evidence of increased speciation rates during the early evolution of modern taxa. However, one of the central predictions of ecological adaptive radiation is rapid phenotypic diversification, and the tempo of phenotypic evolution has yet to be quantified in cetaceans. Using a time-calibrated molecular phylogeny of extant cetaceans and a morphological dataset on size, we find evidence that cetacean lineages partitioned size niches early in the evolutionary history of neocetes and that changes in cetacean size are consistent with shifts in dietary strategy. We conclude that the signature of adaptive radiations may be retained within morphological traits even after equilibrium diversity has been reached and high extinction or fluctuations in net diversification have erased any signature of an early burst of diversification in the structure of the phylogeny.  相似文献   

20.
Higher-level relationships within, and the root of Placentalia, remain contentious issues. Resolution of the placental tree is important to the choice of mammalian genome projects and model organisms, as well as for understanding the biogeography of the eutherian radiation. We present phylogenetic analyses of 63 species representing all extant eutherian mammal orders for a new molecular phylogenetic marker, a 1.3kb portion of exon 26 of the apolipoprotein B (APOB) gene. In addition, we analyzed a multigene concatenation that included APOB sequences and a previously published data set (Murphy et al., 2001b) of three mitochondrial and 19 nuclear genes, resulting in an alignment of over 17kb for 42 placentals and two marsupials. Due to computational difficulties, previous maximum likelihood analyses of large, multigene concatenations for placental mammals have used quartet puzzling, less complex models of sequence evolution, or phylogenetic constraints to approximate a full maximum likelihood bootstrap. Here, we utilize a Unix load sharing facility to perform maximum likelihood bootstrap analyses for both the APOB and concatenated data sets with a GTR+Gamma+I model of sequence evolution, tree-bisection and reconnection branch-swapping, and no phylogenetic constraints. Maximum likelihood and Bayesian analyses of both data sets provide support for the superordinal clades Boreoeutheria, Euarchontoglires, Laurasiatheria, Xenarthra, Afrotheria, and Ostentoria (pangolins+carnivores), as well as for the monophyly of the orders Eulipotyphla, Primates, and Rodentia, all of which have recently been questioned. Both data sets recovered an association of Hippopotamidae and Cetacea within Cetartiodactyla, as well as hedgehog and shrew within Eulipotyphla. APOB showed strong support for an association of tarsier and Anthropoidea within Primates. Parsimony, maximum likelihood and Bayesian analyses with both data sets placed Afrotheria at the base of the placental radiation. Statistical tests that employed APOB to examine a priori hypotheses for the root of the placental tree rejected rooting on myomorphs and hedgehog, but did not discriminate between rooting at the base of Afrotheria, at the base of Xenarthra, or between Atlantogenata (Xenarthra+Afrotheria) and Boreoeutheria. An orthologous deletion of 363bp in the aligned APOB sequences proved phylogenetically informative for the grouping of the order Carnivora with the order Pholidota into the superordinal clade Ostentoria. A smaller deletion of 237-246bp was diagnostic of the superordinal clade Afrotheria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号