首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Mesenchymal stem cells (MSCs) can not only support the expansion of hematopoietic stem cells in vitro, but also alleviate complications and accelerate recovery of hematopoiesis during hematopoietic stem cell transplantation. However, it proved challenging to culture MSCs from umbilical cord blood (UCB) with a success rate of 20–30%. Many cell culture parameters contribute to this outcome and hence optimization of culture conditions is critical to increase the probability of success. In this work, fractional factorial design was applied to study the effect of cell inoculated density, combination and dose of cytokines, and presence of serum and stromal cells. The cultured UCB‐MSC‐like cells were characterized by flow cytometry and their multilineage differentiation potentials were tested. The optimal protocol was identified achieving above 90% successful outcome: 2 × 106 cells/mL mononuclear cells inoculated in Iscove's modified Dulbecco's medium supplied with 10% FBS, 15 ng/mL IL‐3, and 5 ng/mL Granulocyte‐macrophage colony‐stimulating factor (GM‐CSF). Moreover, the UCB‐MSC‐like cells expressed MSC surface markers of CD13, CD29, CD105, CD166, and CD44 positively, and CD34, CD45, and human leukocyte antigens‐DR (HLA‐DR) negatively. Meanwhile, these cells could differentiate into osteoblasts, chondrocytes, and adipocytes similarly to MSCs derived from bone marrow. In conclusion, we have developed an efficient protocol for the primary culture of UCB‐MSCs by adding suitable cytokines into the culture system. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

2.
Umbilical cord blood (UCB) transplantation has emerged as a promising therapy, but it is challenged by scarcity of stem cells. Eltrombopag is a non-peptide, thrombopoietin (TPO) receptor agonist, which selectively activates c-Mpl in humans and chimpanzees. We investigated eltrombopag's effects on human UCB hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) expansion, and its effects on hematopoiesis in vivo. Eltrombopag selectively augmented the expansion of human CD45+, CD34+, and CD41+ cells in bone marrow compartment without effects on mouse bone marrow cells in the NOD/SCID mice xenotransplant model. Consequently, eltrombopag increased peripheral human platelets and white blood cells. We further examined effects in the STAT and AKT signaling pathways in serum-free cultures. Eltrombopag expanded human CD34+ CD38-, CD34+, and CD41+ cells. Both eltrombopag and recombinant human TPO (rhTPO) induced phosphorylation of STAT5 of CD34+ CD41-, CD34- CD41+, and CD34- CD41- cells. rhTPO preferentially induced pSTAT3, pAKT, and more pSTAT5 in CD34- C41+ cells, while eltrombopag had no effects on pSTAT3. In conclusion, eltrombopag enhanced expansion of HSCs/HPCs of human UCB in vivo and in vitro, and promoted multi-lineage hematopoiesis through the expansion of bone marrow HSCs/HPCs of human UCB in vivo. Eltrombopag differed somewhat from rhTPO in the signal transduction pathways by favoring earlier HSC/HPC populations.  相似文献   

3.
Survivin is a member of the inhibitor of apoptosis protein (IAP) family that is over-expressed during G2/M phase in most cancer cells. In contrast, we previously reported that Survivin is expressed throughout the cell cycle in normal CD34+ hematopoietic stem and progenitor cells stimulated by the combination of Thrombopoietin (Tpo), Stem Cell Factor (SCF) and Flt3 ligand (FL). In order to address whether Survivin expression is specifically up-regulated by hematopoietic growth factors before cell cycle entry, we isolated quiescent CD34+ cells and investigated Survivin expression in response to growth factor stimulation. Survivin is up-regulated in CD34+ cells with 2N DNA content following growth factor addition, suggesting it becomes elevated during G0/G1. Survivin is barely detectable in freshly isolated umbilical cord blood (UCB) Ki-67negative and Cyclin Dnegative CD34+ cells, however incubation with Tpo, SCF and FL for 20 hrs results in up-regulation without entry of cells into cell cycle. Culture of G0 CD34+ cells isolated based on Hoechst 33342/PyroninY staining with Tpo, SCF and FL for 48 hrs, results in significantly elevated Survivin mRNA and protein levels. Moreover, labeling of fresh G0 CD34+ cells with 5-(and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE) before culture with growth factors for up to 72 hrs, revealed that Survivin expression was elevated in CFSEbright G0 CD34+ cells, indicating that up-regulation occurred before entry into G1. These results suggest that up-regulation of Survivin expression in CD34+ cells is an early event in cell cycle entry that is regulated by hematopoietic growth factors and does not simply reflect cell cycle progression and cell division.

Key Words:

Survivin, Cord blood, CD34+ cells, Cell cycle  相似文献   

4.
Ex vivo expansion of residual autologous hematopoietic stem and progenitor cells collected from victims soon after accidental irradiation (autologous cell therapy) may represent an additional or alternative approach to cytokine therapy or allogeneic transplantation. Peripheral blood CD34+ cells could be a useful source of cells for this process provided that collection and ex vivo expansion of hematopoietic stem and progenitor cells could be optimized. Here we investigated whether mesenchymal stem cells could sustain culture of irradiated peripheral blood CD34+ cells. In vitro irradiated (4 Gy 60Co gamma rays) or nonirradiated mobilized peripheral blood CD34+ cells from baboons were cultured for 7 days in a serum-free medium supplemented with stem cell factor+thrombopoietin+interleukin 3+FLT3 ligand (50 ng/ml each) in the presence or absence of mesenchymal stem cells. In contrast to cultures without mesenchymal stem cells, irradiated CD34+ cells cultured with mesenchymal stem cells displayed cell amplification, i.e. CD34+ (4.9-fold), CD34++ (3.8-fold), CD34++/Thy-1+ (8.1-fold), CD41+ (12.4-fold) and MPO+ (50.6-fold), although at lower levels than in nonirradiated CD34+ cells. Fourteen times more clonogenic cells, especially BFU-E, were preserved when irradiated cells were cultured on mesenchymal stem cells. Moreover, we showed that the effect of mesenchymal stem cells is related mainly to the reduction of apoptosis and involves cell-cell contact rather than production of soluble factor(s). This experimental model suggests that mesenchymal stem cells could provide a crucial tool for autologous cell therapy applied to accidentally irradiated victims.  相似文献   

5.
To investigate the sensitivity of human hematopoietic stem cell populations to radiation and its relevance to intracellular events, specifically alteration in cellular energy production systems, we examined the frequency of apoptotic cells, generation of superoxide anions (O*2-), and changes in cytosol pH in umbilical cord blood (UCB) CD34+/CD38-, CD34+/CD38+ and CD34-/CD38+ cells before and after 5Gy of X-irradiation. Human UCB mononucleated cells were used in this study. After X-irradiation and staining subgroups of the cells with fluorescence (FITC, PE, or CY)-labeled anti-CD34 and anti-CD38 antibodies, analyses were performed by FACScan using as stains 7-amino-actinomycin D (7-AAD) for the detection of apoptosis, and hydroethidine (HE) for the measurement of O*2- generation in the cells. For intracellular pH, image analysis was conducted using confocal laser microscopy after irradiation and staining with carboxy-SNAFR-1. The frequency of apoptotic cells, as determined by cell staining with 7-AAD, was highest in the irradiated CD34+/CD38- cell population, where the level of O*2- detected by the oxidation of HE was also most highly elevated. Intracellular pH measured with carboxy-SNARF-1-AM by image cytometer appeared to be lowest in the same irradiated CD34+/CD38- cell population, and this intracellular pH decreased as early as 4 h post-irradiation, virtually simultaneous with the significant elevation of O*2- generation. These results suggest that the CD34+/CD38- stem cell population is sensitive to radiation-induced apoptosis as well as production of intracellular O*2-, compare to more differentiated CD34+/CD38+ and CD34-/CD38+ cells and that its intracellular pH declines at an early phase in the apoptosis process.  相似文献   

6.
It is known that umbilical cord blood (UCB) is a rich source of stem cells with practical and ethical advantages. Three important types of stem cells which can be harvested from umbilical cord blood and used in disease treatment are hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). Since these stem cells have shown enormous potential in regenerative medicine, numerous umbilical cord blood banks have been established. In this study, we examined the ability of banked UCB collected to produce three types of stem cells from the same samples with characteristics of HSCs, MSCs and EPCs. We were able to obtain homogeneous plastic rapidly-adherent cells (with characteristics of MSCs), slowly-adherent (with characteristics of EPCs) and non-adherent cells (with characteristics of HSCs) from the mononuclear cell fractions of cryopreserved UCB. Using a protocol of 48?h supernatant transferring, we successfully isolated MSCs which expressed CD13, CD44 and CD90 while CD34, CD45 and CD133 negative, had typical fibroblast-like shape, and was able to differentiate into adipocytes; EPCs which were CD34, and CD90 positive, CD13, CD44, CD45 and CD133 negative, adherent with cobble-like shape; HSCs which formed colonies when cultured in MethoCult medium.  相似文献   

7.
BACKGROUND: CD133 is a newly developed hematopoietic stem cell marker but little is known about its function. Whether CD133(+) cell selection provides any advantage over CD34(+) selection for hematopoietic stem cell isolation and transplantation is unclear. The present study compared colony formation and endothelial cell differentiation of these two cell types from umbilical cord blood (UCB). METHODS: Mononuclear cells from the same UCB samples were used for both CD133(+) and CD34(+) cell selection. Cells with 97.1% purity were incubated in semi-solid culture medium containing stem cell growth factor (SCGF) and G-CSF or erythropoietin (EPO). Purified cells were also cultured in M199 containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor-1 (IGF-1). RESULTS: CD34(+) and CD133(+) cells produced similar numbers of CFU-GM colonies (median 43.25 and 30.5, respectively; P>0.2). However, a greater than four-fold difference in BFU-E colony formation was observed from CD34(+) cells compared with CD133(+) cells (median 35 and 8, respectively; P<0.04). CD34(+) cells gave rise to endothelial-like cells when stimulated with VEGF, bFGF and IGF-1. CD133(+) cells were unable produce this cell type under the same conditions. DISCUSSION: CD133(+) cells produced smaller BFU-E colonies and were unable to differentiate into mature endothelial cells. CD34(+) cells contained endothelial progenitors that could differentiate into mature cells of this lineage. Based on these data, it appears that CD133 offers no distinct advantage over CD34 as a selective marker for immunoaffinity-based isolation of hematopoietic stem cells and endothelial progenitor cells.  相似文献   

8.
BACKGROUND: During the last few years there has been increasing interest, from both biologic and clinical points of view, in the ex vivo expansion of umbilical cord blood (UCB)-derived hematopoietic cells. This has brought about the need to characterize different cell populations present in UCB, and to explore different ex vivo approaches for the culture, expansion and biologic manipulation of these cells. METHODS: By using a negative-selection method, two UCB cell populations were obtained that were enriched for primitive lineage-negative (Lin-) cells, including those expressing the CD34 Ag (35-93% of the total cells in each fraction). Population I was enriched for CD34+ Lin- cells, whereas population II was enriched for CD34+ CD38- Lin- cells. Both populations were cultured in serum-free liquid cultures supplemented with different combinations of early and late-acting recombinant cytokines (all of them added at 10 ng/mL). Every 5-7 days proliferation, expansion and differentiation capacities of each population were determined, for a total period of 25-42 days. RESULTS: Both cell populations showed extensive proliferation and expansion capacities; however, population II [2300- and 232-fold increase in nucleated and colony-forming cell (CFC) numbers, respectively] was clearly superior in both parameters compared with population I (1120- and 20-fold increase in nucleated and CFC numbers, respectively). Depending on the cytokine combination used, granulocytes, macrophages and erythroblasts were preferentially produced. We also observed that both populations were highly sensitive to the inhibitory effects of tumor necrosis factor-alpha, even in the presence of stimulatory cytokines. DISCUSSION: This study demonstrates that the two progenitor cell-enriched populations obtained by negative selection possess extensive proliferation and expansion potentials in vitro, generating significant numbers of both primitive and mature cells. These cells may be a good alternative to purified CD34+ cells, obtained by positive selection, for pre-clinical and clinical protocols aimed at the ex vivo expansion of UCB cells.  相似文献   

9.
BACKGROUND: Umbilical cord blood (UCB) is an important source of hematopoietic stem and progenitor cells (HSC/HPC) for the reconstitution of the hematopoietic system after clinical transplantation. Cryopreservation of these cells is critical for UCB banking and transplantation as well as for research applications by providing readily available specimens. The objective of this study was to optimize cryopreservation conditions for CD34+ HSC/HPC from UCB. METHODS: Cryopreservation of CD34+ HSC/HPC from UCB after mononuclear cell (MNC) preparation was tested in a research-scale setup. Experimental variations were concentration of the cryoprotectant, the protein additive and cell concentration. In addition, protocols involving slow, serial addition and removal of DMSO were compared with standard protocols (fast addition and removal of DMSO) in order to avoid osmotic stress for the cryopreserved cells. Viability and recoveries of MNC, CD34+ cells and total colony-forming units (CFU) were calculated as read-outs. In addition, sterility testing of the collected UCB units before further processing was performed. RESULTS: The optimal conditions for cryopreservation of CD34+ HPC in MNC preparations were 10% DMSO and 2% human albumin at high cell concentrations (5 x 10(7) MNC/mL) with fast addition and removal of DMSO. After cryopreservation using a computer-controlled freezer, high viabilities (89%) and recoveries for CD34+ cells (89%) as well as for CFU (88%) were observed. Microbial contamination of the collected UCB samples was reduced to a rate of 6.4%. DISCUSSION: Optimized cryopreservation conditions were developed for UCB MNC in respect of the composition of the cryosolution. In addition, our results showed that fast addition of DMSO is essential for improved cryopreservation and post-thaw quality assessment results, whereas the speed of DMSO removal after thawing has little influence on the recoveries of CD34+ cells and CFU.  相似文献   

10.
It has been suggested that epigenetic regulation plays an important role in maintaining the stemness and lineage differentiation of hematopoietic stem cells (HSCs), 5-aza-deoxycytidine (aza-D) and Trichostatin A (TSA) being candidate additives for HSC ex vivo expansion. Although they have potent activity to maintain the stemness, they can also cause serious cell death. This study examined the effects of mesenchymal stem cells (MSCs) on the maintenance of CD34+ cells driven by aza-D and TSA in culture with the combined cytokines of thrombopoietin, flt-3 ligand, stem cell factor, interleukin-3, and interleukin-6. In cultures without MSCs, although aza-D and TSA retained the CD34 frequency 4 to 8 times more than in the cytokines alone, a large portion of cells underwent apoptotic cell death. Consequently, CD34+ cell expansion could not be achieved in any condition without MSCs. In cultures with MSCs, the total cell number was higher in aza-D or TSA than in any conditions in the cultures without MSCs. The CD34 frequency was also similar to the level in the cultures in aza-D or TSA without the MSCs. These results suggest that a co-culture of CD34+ cells with the MSCs might not simply deliver the proliferation signals but also stemness and survival signals, and overlap the action of epigenetic regulators.  相似文献   

11.
12.
Natural killer (NK) cell-based adoptive immunotherapy is a promising treatment approach for many cancers. However, development of protocols that provide large numbers of functional NK cells produced under GMP conditions are required to facilitate clinical studies. In this study, we translated our cytokine-based culture protocol for ex vivo expansion of NK cells from umbilical cord blood (UCB) hematopoietic stem cells into a fully closed, large-scale, cell culture bioprocess. We optimized enrichment of CD34(+) cells from cryopreserved UCB units using the CliniMACS system followed by efficient expansion for 14 days in gas-permeable cell culture bags. Thereafter, expanded CD34(+) UCB cells could be reproducibly amplified and differentiated into CD56(+)CD3(-) NK cell products using bioreactors with a mean expansion of more than 2,000 fold and a purity of >90%. Moreover, expansion in the bioreactor yielded a clinically relevant dose of NK cells (mean: 2×10(9) NK cells), which display high expression of activating NK receptors and cytolytic activity against K562. Finally, we established a versatile closed washing procedure resulting in optimal reduction of medium, serum and cytokines used in the cell culture process without changes in phenotype and cytotoxic activity. These results demonstrate that large numbers of UCB stem cell-derived NK cell products for adoptive immunotherapy can be produced in closed, large-scale bioreactors for the use in clinical trials.  相似文献   

13.
不同降温速率对脐血干细胞冷冻复苏后生物学特性的影响   总被引:4,自引:0,他引:4  
考察了不同降温速率对脐血造血干细胞各种生物学特性的影响。在4℃~-40℃的降温范围内,分别选择-0.5℃/min, -1℃/min, -5℃/min的降温速率进行降温,对复苏后的脐血单个核细胞的回收率、活性和CD34+含量的变化以及BFU-E、CFUGM和CFU-MK集落的回收率进行了考察,发现在-1℃/min的降温速率下,脐血MNC回收率可达93.3%±1.8%,活性可达95.0%±3.9%, CD34细胞回收率达80.0%±17.9%,BFUE回收率为87.1%±5.5%,CFUGM回收率达88.5%±8.9%,CFUMK的回收率也达到86.2%±7.4%。并且对复苏后的细胞进一步进行体外培养,发现在-1℃/min的降温速率下复苏的细胞仍然具有与未经冷冻细胞相似的扩增能力,而-0.5℃/min和-5℃/min这两种降温速率条件下复苏的细胞与未经冷冻的细胞相比差距较大。因而-1℃/min的降温速率对冻存脐血干细胞比较合适。  相似文献   

14.
Survivin is a member of the inhibitor of apoptosis protein (IAP) family that is overexpressed during G(2)/M phase in most cancer cells. In contrast, we previously reported that Survivin is expressed throughout the cell cycle in normal CD34(+) hematopoietic stem and progenitor cells stimulated by the combination of Thrombopoietin (Tpo), Stem Cell Factor (SCF) and Flt3 ligand (FL). In order to address whether Survivin expression is specifically up-regulated by hematopoietic growth factors before cell cycle entry, we isolated quiescent CD34(+) cells and investigated Survivin expression in response to growth factor stimulation. Survivin is up-regulated in CD34(+) cells with 2N DNA content following growth factor addition, suggesting it becomes elevated during G(0)/G(1). Survivin is barely detectable in freshly isolated umbilical cord blood (UCB) Ki-67(negative) and Cyclin D(negative) CD34(+) cells, however incubation with Tpo, SCF and FL for 20 hrs results in up-regulation without entry of cells into cell cycle. Culture of G(0) CD34(+) cells isolated based on Hoechst 33342/PyroninY staining with Tpo, SCF and FL for 48 hrs, results in significantly elevated Survivin mRNA and protein levels. Moreover, labeling of fresh G(0) CD34(+) cells with 5-(and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE) before culture with growth factors for up to 72 hrs, revealed that Survivin expression was elevated in CFSE(bright) G(0) CD34(+) cells, indicating that up-regulation occurred before entry into G1. These results suggest that up-regulation of Survivin expression in CD34(+) cells is an early event in cell cycle entry that is regulated by hematopoietic growth factors and does not simply reflect cell cycle progression and cell division.  相似文献   

15.
The sparing of viable hematopoietic stem and progenitor cells located in underexposed bone marrow territories associated with the relative radioresistance of certain stem cell populations is the rationale for autologous cell therapy consisting of ex vivo expansion of residual cells after collection postirradiation. The feasibility of this treatment mainly depends on time constraints and hematopoietic cell threshold. We showed in this study that in the absence of early-acting mobilizing agent administration, subliminar amounts of CD34+ cells can be collected (1 x 10(6) CD34+ cells/100 mL bone marrow or for 1 L apheresis) from 6-Gy gamma globally irradiated baboons. Residual CD34+ cells were successfully expanded in serum-free medium in the presence of antiapoptotic cytokine combination (stem cell factor + FLT-3 ligand + thrombopoietin + interleukin 3, 50 ng/mL each, i.e., 4F): KCD34+ = x2.8 and x13.7 (n = 2). Moreover, we demonstrated the short-term neutrophil engraftment potential of a low-size mixed expanded graft (1.5 x 106 final CD34+cells/kg) issued from the coculture of unirradiated (20%) and 2.5-Gy in vitro irradiated (80%) CD34+ cells on an allogeneic stromal cell layer in the presence of 4F. Further preclinical research needs to be performed to clearly establish this therapeutic approach that could be optimized by the early administration of antiapoptotic cytokines.  相似文献   

16.
BACKGROUND: During long-term culture of primitive hematopoietic cells large numbers of mature cells are generated that, on the one hand, consume nutrients and cytokines present in the medium and, on the other hand, may produce or elicit the production of soluble factors that limit the growth of primitive cells. Thus it is possible that under standard culture conditions hematopoietic stem and progenitor cells are unable to display their true proliferation and expansion potentials. METHODS: Hematopoietic cell populations, enriched for CD34+ cells, were obtained from both umbilical cord blood (UCB) and mobilized peripheral blood (MPB), and cultured in cytokine-supplemented liquid culture, under continuous removal of mature cells by means of weekly re-selection of primitive, lineage-negative (Lin-) cells. Proliferation and expansion capacities of such cells were determined weekly for a 42-day culture period. RESULTS: As expected, based on our previous studies in standard liquid cultures, throughout the culture period there was a continuous decrease in the proportion of progenitor cells; however, after every re-selection on days 7, 14 and 21, there was a significant enrichment for both CD34+ cells and colony-forming cells (CFC). As a result of such an enrichment, the cumulative increase in the numbers of total cells and CFC in cultures with two, three or four selections was significantly higher than the increments observed in standard cultures, in which only a single selection was performed on day 0. Cultures of UCB cells showed consistently higher levels of both total cells and CFC than cultures of MPB cells. DISCUSSION: Taken together, these results indicate that continuous removal of mature cells from liquid cultures of primitive progenitors results in higher increments in the levels of both total cells and CFC.  相似文献   

17.
Umbilical cord blood (UCB) is increasingly being used for human hematopoietic stem cell (HSC) transplantation in children but often requires pooling multiple cords to obtain sufficient numbers for transplantation in adults. To overcome this limitation, we have used an ex vivo two-week culture system to expand the number of hematopoietic CD34(+) cells in cord blood. To assess the in vivo function of these expanded CD34(+) cells, cultured human UCB containing 1 x 10(6) CD34(+) cells were transplanted into conditioned NOD-scid IL2rgamma(null) mice. The expanded CD34(+) cells displayed short- and long-term repopulating cell activity. The cultured human cells differentiated into myeloid, B-lymphoid, and erythroid lineages, but not T lymphocytes. Administration of human recombinant TNFalpha to recipient mice immediately prior to transplantation promoted human thymocyte and T-cell development. These T cells proliferated vigorously in response to TCR cross-linking by anti-CD3 antibody. Engrafted TNFalpha-treated mice generated antibodies in response to T-dependent and T-independent immunization, which was enhanced when mice were co-treated with the B cell cytokine BLyS. Ex vivo expanded CD34(+) human UCB cells have the capacity to generate multiple hematopoietic lineages and a functional human immune system upon transplantation into TNFalpha-treated NOD-scid IL2rgamma(null) mice.  相似文献   

18.
Umbilical cord blood (UCB) is a source of hematopoietic stem cells and other stem cells, and human UCB cells have been reported to contain transplantable hepatic progenitor cells. However, the fractions of UCB cells in which hepatic progenitor cells are rich remain to be clarified. In the present study, first, the fractionated cells by CD34, CD38, and c-kit were transplanted via portal vein of NOD/SCID mice, and albumin mRNA expression was examined in livers at 1 and 3 months posttransplantation. At 1 and 3 months, albumin mRNA expression in CD34+UCB cells-transplanted livers was higher than that in CD34- cells-transplanted livers. Albumin mRNA expression in CD34+CD38+ cells-transplanted livers was higher than that in CD34+CD38- cells-transplanted [corrected] liver at 1 month. However, it was much higher [corrected] in CD34+CD38- cell-transplanted livers at 3 months. Similar expression of albumin mRNA was obtained between CD34+CD38+c-kit+ cells- and CD34+CD38-c-kit- cells-transplanted livers, and between CD34+CD38-c-kit+ cells- and CD34+CD38-c-kit- cells-transplanted livers, respectively. Second, fluorescence in situ hybridization and immunohistochemistry were performed to examine whether UCB cells really transdifferentiated into hepatocytes or they only fused with mouse hepatocytes. In mouse liver sections, of 1.2% cells which had human chromosomes, 0.9% cells were due to cell fusion, whereas 0.3% cells were transdifferentiated into human hepatocytes. These results suggest that CD34+UCB cells are rich fractions in hepatic progenitor cells, and that transdifferentiation from UCB cells into hepatocytes as well as cell fusion simultaneously occur in this situation.  相似文献   

19.
Although umbilical cord blood is increasingly being used in allogeneic marrow transplantation, delayed platelet engraftment is often a concern for cord blood transplant recipients. We evaluated the potential of ex vivo expansion and clonality in CD34+ cells separated from a bone marrow source, and cord blood, in a serum-free Media. The CD34+ cells, selected from bone marrow (BM) and umbilical cord blood (CB), were expanded with hematopoietic growth factors. They were then cultured for burst-forming units of erythrocytes (BFU-E), colony-forming units of granulocytes and monocytes (CFU-GM) and colony-forming units of megakaryocytes (CFU-Mk) at days 0, 4, 7, and 14 under the combination of growth factors, with cell counts. The cytokines included the recombinant human megakaryocyte growth and development (100 ng/ml), interleukin-3 (10 ng/ml), stem cell factor (100 ng/ml), flt-3 ligand (50 ng/ml) and interleukin-11 (200 ng/ml). The CB-selected CD34+ cells showed significantly higher total cell expansion than those from the BM at day 7 (3.0 fold increase than BM), day 14 (2.4 fold), and day 17 (2.6 fold). The colony count of the BFU-E/CFU-E per CD34+ cell at day 0 was 0.14 +/- 0.023 in the CB, which was significantly higher than 0.071 +/- 0.015 in the BM. The CB-selected CD34+ cells produced more BFU-E colonies than the BM on culture days 4, 7, and 14. The BFU-E colonies from the CB cells increased markedly on culture days 4 and 7, with a 4-fold increase at day 14. The colony count of the CFU-Mk per CD34+ cell at day 0 was 0.047 +/- 0.011 in the CB-selected CD34+ cells cultures, which was higher than the 0.026 +/- 0.014 in the BM. The CB-selected CD34+ cells produced more CFU-Mk colonies than the BM on culture days 4, 7 and 14. In conclusion, the ex vivo expansion of the CB cells may be very promising in producing total cellular expansion, CFU-Mk and BFU-E compared with BM, especially at day 7. The ex vivo expansion of the CB may have rationale in making an ex vivo culture for 7 to 14 d.  相似文献   

20.
Megakaryocytopoiesis and thrombocytopoiesis result from the interactions between hematopoietic progenitor cells, humoral factors, and marrow stromal cells derived from mesenchymal stem cells (MSCs) or MSCs directly. MSCs are self-renewing marrow cells that provide progenitors for osteoblasts, adipocytes, chondrocytes, myocytes, and marrow stromal cells. MSCs are isolated from bone marrow aspirates and are expanded in adherent cell culture using an optimized media preparation. Culture-expanded human MSCs (hMSCs) express a variety of hematopoietic cytokines and growth factors and maintain long-term culture-initiating cells in long-term marrow culture with CD34(+) hematopoietic progenitor cells. Two lines of evidence suggest that hMSCs function in megakaryocyte development. First, hMSCs express messenger RNA for thrombopoietin, a primary regulator for megakaryocytopoiesis and thrombocytopoiesis. Second, adherent hMSC colonies in primary culture are often associated with hematopoietic cell clusters containing CD41(+) megakaryocytes. The physical association between hMSCs and megakaryocytes in marrow was confirmed by experiments in which hMSCs were copurified by immunoselection using an anti-CD41 antibody. To determine whether hMSCs can support megakaryocyte and platelet formation in vitro, we established a coculture system of hMSCs and CD34(+) cells in serum-free media without exogenous cytokines. These cocultures produced clusters of hematopoietic cells atop adherent MSCs. After 7 days, CD41(+) megakaryocyte clusters and pro-platelet networks were observed with pro-platelets increasing in the next 2 weeks. CD41(+) platelets were found in culture medium and expressed CD62P after thrombin treatment. These results suggest that MSCs residing within the megakaryocytic microenvironment in bone marrow provide key signals to stimulate megakaryocyte and platelet production from CD34(+) hematopoietic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号