首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratory-simulated lettuce production chain. Dairy cows were fed three different roughage types: high-digestible grass silage plus maize silage (6:4), low-digestible grass silage, and straw. Each was adjusted with supplemental concentrates to high and low crude protein levels. The pathogens were added to manure, which was subsequently mixed (after 56 and 28 days for E. coli O157:H7 and Salmonella serovar Typhimurium, respectively) with two pairs of organically and conventionally managed loamy and sandy soil. After another 14 days, iceberg lettuce seedlings were planted and then checked for pathogens after 21 days of growth. Survival data were fitted to a logistic decline function (exponential for E. coli O157:H7 in soil). Roughage type significantly influenced the rate of decline of E. coli O157:H7 in manure, with the fastest decline in manure from the pure straw diet and the slowest in manure from the diet of grass silage plus maize silage. Roughage type showed no effect on the rate of decline of Salmonella serovar Typhimurium, although decline was significantly faster in the manure derived from straw than in the manure from the diet of grass silage plus maize silage. The pH and fiber content of the manure were significant explanatory factors and were positively correlated with the rate of decline. With E. coli O157:H7 there was a trend of faster decline in organic than in conventional soils. No pathogens were detected in the edible lettuce parts. The results indicate that cattle diet and soil management are important factors with respect to the survival of human pathogens in the environment.  相似文献   

2.
研究华北冬绿肥二月兰对不同供氮水平的响应特征,确定实现绿肥高产高效的土壤适宜供氮量,可为华北集约化农田最大化发挥绿肥生态效应和优化春玉米/冬绿肥轮作体系氮素管理提供理论依据和技术参考.选取多年不施肥试验地设置供氮梯度试验,研究了不同供氮水平对冬绿肥二月兰翻压前地上部生物量累积、氮素吸收、土壤无机氮残留和冬绿肥季土壤氮素平衡的影响.结果表明: 在土壤无机氮含量较低(0~90 cm土层15 kg·hm-2)条件下,施氮显著提高二月兰生物量和吸氮量.其中,施氮90 kg·hm-2处理表现最高,绿肥生物量(干质量)和吸氮量分别为2031.0和42.0 kg·hm-2;土壤无机氮残留量随施氮量增加而增加,且在施氮量高于60 kg·hm-2后呈现快速增加趋势;随施氮量增加二月兰生长季的表观氮平衡表现出由亏缺到盈余的变化特征,在施氮量为60~90 kg·hm-2条件下氮收支基本平衡.土壤供氮量(绿肥播前0~90 cm土壤无机氮含量与施氮量之和)与二月兰生物量、吸氮量和绿肥翻压前土壤无机氮含量的关系可以分别用二次、线性加平台和指数方程进行模拟,依据模型计算二月兰生物量最高值(2010 kg·hm-2)时的播前土壤供氮量和绿肥翻压前土壤无机氮残留量分别是136和78 kg·hm-2;而在二月兰吸氮量最高值40 kg·hm-2时,二月兰生物量为1919 kg·hm-2,相当于最高生物量的95%,绿肥翻压前土壤残留无机氮降低至57 kg·hm-2,与之对应的播前土壤供氮量为105 kg·hm-2,该值与目前华北地区优化施氮下玉米收获后土壤残留无机氮推荐含量(100 kg·hm-2)基本相当.综合考虑绿肥的农学和环境效应,春玉米/冬绿肥轮作体系中二月兰播前土壤供氮量应控制在100~105 kg·hm-2.  相似文献   

3.
Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratory-simulated lettuce production chain. Dairy cows were fed three different roughage types: high-digestible grass silage plus maize silage (6:4), low-digestible grass silage, and straw. Each was adjusted with supplemental concentrates to high and low crude protein levels. The pathogens were added to manure, which was subsequently mixed (after 56 and 28 days for E. coli O157:H7 and Salmonella serovar Typhimurium, respectively) with two pairs of organically and conventionally managed loamy and sandy soil. After another 14 days, iceberg lettuce seedlings were planted and then checked for pathogens after 21 days of growth. Survival data were fitted to a logistic decline function (exponential for E. coli O157:H7 in soil). Roughage type significantly influenced the rate of decline of E. coli O157:H7 in manure, with the fastest decline in manure from the pure straw diet and the slowest in manure from the diet of grass silage plus maize silage. Roughage type showed no effect on the rate of decline of Salmonella serovar Typhimurium, although decline was significantly faster in the manure derived from straw than in the manure from the diet of grass silage plus maize silage. The pH and fiber content of the manure were significant explanatory factors and were positively correlated with the rate of decline. With E. coli O157:H7 there was a trend of faster decline in organic than in conventional soils. No pathogens were detected in the edible lettuce parts. The results indicate that cattle diet and soil management are important factors with respect to the survival of human pathogens in the environment.  相似文献   

4.
Measurements of net mineralization using a field incubation method were made over a full growing season (180 d). Soil cores, taken from cut swards which for many years had been previously grazed by cattle, were placed in jars in the field for successive incubation periods of 14 d. Acetylene was added to the incubation jars to inhibit nitrification in the soil cores and thereby prevent losses of N through denitrification. Net mineralization over 180 d amounted to 415, 321 and 310 kg N ha–1 under grass/clover, unfertilized grass and grass receiving 420 kg N ha–1 y–1, respectively. At the start of the growing season, an index of potentially mineralizable N in the soil was estimated by a chemical extraction method, but this index was <50% of the estimates obtained by field incubation. The amount of N in herbage harvested regularly from the swards also under-estimated the supply of N from the soil, with apparent recoveries of 53, 82 and 74% and total yields of N of 240, 263 and 538 (kg N ha–1) from grass/clover, unfertilized grass and fertilized grass, respectively. Mineralization rates varied significantly with seasonal soil temperature fluctuations, but the incubation method was apparently less sensitive in relation to changes in soil water content. Rates of N-turnover (as % of total soil N) were highest under grass/clover (9%), but similar under fertilized and unfertilized grass swards (approximately 5%).  相似文献   

5.
黄土高原南部春玉米地膜栽培的水肥效应与氮肥去向   总被引:8,自引:0,他引:8  
在黄土高原南部采用田间小区和微区试验,研究了春玉米地膜栽培下氮肥-水分-产量关系与氮肥去向。结果表明,相同施肥条件下地膜栽培(N120C)比平作栽培(N120UC)增产显著(46.7%),施用氮肥显著地发挥了地膜的增产潜力,处理N120(尿素氮120kg·hm^-2)、N180(尿素氮180kg·hm^-2)和N120M(尿素氮120kg·hm^-2+有机肥氮60kg·hm^-2),籽粒产量比对照CK(不施氮)分别增产41.8%、43.9%和34.7%,地膜栽培或施用氮肥都极大地改善了玉米水分生产效率(WUE)和降水利用率(RUE),试验中N120C比N120UC水分生产效率提高57.9%。降水利用效率提高54.5%;处理N120、N180和N120M比CK处理WUE分别提高38.4%、47.4%和32.4%,RUE分别提高42.3%、43.9%和34.7%,由于供试有机肥是半腐解的牛粪,比尿素氮素供给迟缓,所以对玉米产量和WUE提高幅度小,试验水分测定反映出,玉米利用的水分73.0%~83.7%来自降雨,表明决定春玉米产量的关键水分是生育期降水,玉米地膜栽培对氮肥去向有微弱影响,相对于平作玉米,氮肥总的回收率差异不大,但氮肥利用率下降7.3个百分点,土壤残留率上升6.4个百分点,土壤当季残留氮主要集中在0~20cm,不会发生向深层大量的淋溶和累积。  相似文献   

6.
有机肥对农田土壤二氧化碳和甲烷通量的影响   总被引:19,自引:0,他引:19  
研究了不同有机肥施用(鸡粪、猪粪、牛粪)对夏玉米田土壤CO2和CH4通量的影响.结果表明,不同处理的CO2通量具有相同的季节变化趋势,受土壤温度和湿度的共同影响,土壤CO 2通量和大气温度、地表温度、地下温度呈显著正相关,当温度不是限制因子的时候,CO2通量和土壤水分含量呈显著正相关(P<0.05).玉米整个生长季大部分时间土壤为CH4的吸收汇,源汇的变化受环境因子的影响,但是相关分析并不显著.不同处理的土壤CO2季节平均排放通量为0.5124~0.8518 g·m-2·h-1,和CK2相比,玉米种植促进了CO2的排放,施用有机肥也增加了CO2的排放,所有有机肥处理的平均排放通量和CK2差异显著,但只有S2和P2和CK1的差异显著.不同处理农田土壤CH4的季节平均通量为-0.0068~-0.0484 mg·m-2·h-1,有机肥施用抑制了土壤对CH4的吸收,施肥量高抑制作用强,但是统计分析差异并不显著.  相似文献   

7.
A computer simulation model of the turnover of organic matter in soil was adapted to simulate the change in soil organic C and N contents of soil during several years following annual additions of farm slurry to maize fields. The model proved successful in estimating the build-up of both C and N in soil and the leaching of N to ground-water in response to applications of slurry ranging from 50 to 300 tons per hectare per year. The model was then used to estimate the build-up of organic matter in soil under crops of fodder maize that were grown using the excess of manure produced during the last 20 years in the Netherlands. The build-up of organic matter from these applications was estimated to lead to about 70 kg extra nitrogen mineralized ha-1 yr-1. As a result of legislation manure applications have decreased and are expected to decrease further in the immediate future. Calculations suggest that after 10 years of manure applied at rates no longer exceeding the amount needed to replace the phosphorus removed by crops, the extra mineralization of N will still be between 45 and 60 kg ha-1 yr-1. If manure applications cease altogether then the extra mineralization will be about 25–30 kg N ha-1 yr-1.  相似文献   

8.
A study on the effect of different rates of mineral fertilizer and manure on yield parameters of lucerne under optimal and water deficit conditions was carried out. Leached chernozem soil and lucerne cultivar Victoria were used. The soil was treated with ammonium nitrate and fully matured cattle manure. The plants were grown under optimum moisture content of 80% and 40% of field capacity. The water deficit stress decreased top and root biomass by 11-75% and 3-29% at mineral and organic fertilization, respectively. The applied mineral and organic N strongly depressed nodules development. Both mineral fertilizer and organic manure at dose of 210 mg N kg(-1) soil completely inhibited the appearance of nodules. Next to nitrogen, water deficit stress further inhibited the development of nodules. Nitrogen fertilization increased seed productivity in the two experimental moisture conditions. The water deficit stress decreased seed productivity by 18 to 33% as compared to optimum conditions. The plant treatments with manure were much more resistant to water deficit and recovering ability of plants was faster as compared to treatments with mineral fertilizer. The application of manure stimulates development of drought-stress tolerance in lucerne. However, the results obtained can be considered for the soil type and experimental conditions used.  相似文献   

9.
基于煤矿区不同复垦年限土壤,研究有机肥的分解动态及其驱动因素,可为有机肥合理施用和矿区土壤培肥提供科学依据。本研究以山西煤矿复垦区为试验平台,采用尼龙网袋填埋法,在复垦年限为1年(复垦初期阶段,R1)、10年(复垦中期阶段,R10)和30年(复垦长期阶段,R30)的土壤中进行有机肥分解试验(有机肥碳量与土壤重量比例为4∶100)。供试有机肥为牛粪和猪粪,以不添加有机肥为对照(CK),填埋深度为15 cm。在填埋后的第12、23、55、218、281和365 d采集尼龙网袋样品,测定有机肥残留量、土壤微生物生物量碳(MBC)和可溶性有机碳(DOC)含量,采用方差分解分析(VPA)量化土壤性质、有机肥性质和水热条件对有机肥分解的贡献率。结果表明: 猪粪的分解速率显著高于牛粪。猪粪的腐殖化系数(46.3%)显著低于牛粪(71.7%);猪粪在复垦30年的土壤中的腐殖化系数(44.5%)显著低于复垦1年和10年的土壤(47.2%);而牛粪在3种复垦年限土壤中的腐殖化系数无显著差异。猪粪和牛粪的易分解碳库占总碳库的比例分别为52%和26%,易分解碳库分解速率常数分别为0.00085和0.00074 ℃-1,且差异显著。在0~218 d填埋时间段内,猪粪还田对复垦土壤MBC和DOC的提升作用显著高于牛粪,在281~365 d填埋时间段内,两者差异不显著。有机肥还田下,3种复垦年限土壤中MBC和DOC的增长幅度均表现为R1 >R10 ≈ R30。在土壤性质、物料性质和水热条件中,有机肥性质是其分解的主要影响因子,对有机肥分解的单独贡献率最大,为17.9%。综上,猪粪的分解受到土壤复垦年限的影响,而牛粪的分解不受土壤复垦年限的影响。在不同复垦年限土壤中,牛粪的腐殖化系数显著高于猪粪,在煤矿复垦区建议选择腐熟的牛粪进行有机肥还田,以提高土壤肥力。  相似文献   

10.
Recurrent application of animal manure to the soil often results in accumulation of phosphorus (P) in the soil over time. Use of temperate forages like Lolium multiflorum capable of extracting excess P from manure impacted soil is an attractive strategy for P phytoremediation. Two genotypes of L. multiflorum, 'Gulf and Marshall' were grown in soil and hydroponic media containing various concentrations of poultry manure and their P accumulation potential was determined. A decline in the biomass with an increase in manure concentration beyond 10 g kg(-1) soil in Gulf and 25 g kg(-1) soil in Marshall was noticed. Gulf grass accumulated more P content (7 g kg(-1) dry weight) as compared to Marshall (6 g kg(-1) dry weight) in both roots and shoots. Maximum shoot P content was observed in the soil amended with 10 g poultry manure, while root P was highest at the concentration of 50 g poultry manure kg(-1) in the soil. Both cultivars yielded the highest biomass when grown in the presence of 10 g poultry manure in modified Hoagland's media. Presence of chelators in the media did not produce any noticeable effect on P accumulation in either grass and the biomass was appreciably enhanced by all concentrations of the chelators. Gulf and Marshall ryegrass seedlings were grown hydroponically in various poultry manure fractions. Both phytase and acid phosphatase (APase) enzyme activities in the root increased substantially in response to P-sufficient condition. In the presence of various poultry manure fractions, an intermediate level of both enzymes was measured compared to the P-sufficient condition, while the lowest enzyme activity was observed in the absence of any P source in the media. The level of APase and phytase activities was more or less the same in the two grasses under various growth conditions. An additional APase isoform was induced specifically in response to P-starvation from the two grass cultivars. Phytase and APase assays carried out in the P-starved and P-replenished grass seedlings further confirmed that during P deficiency, the enzyme activity was lowest and results of PAGE indicated that an APase isoform was induced under P-starvation.  相似文献   

11.
2012年5月—2014年6月,采用田间小区试验方法,研究了不同氮肥管理对N2O与CH4的排放、土壤硝态氮含量以及苜蓿干草产量的影响.试验共设5个处理:对照(CK)、单施尿素处理(100 kg N·hm-2, CF)、尿素(100 kg N·hm-2)与腐熟牛粪(60 kg N·hm-2)混施处理(DM1)、尿素(100 kg N·hm-2)与沼液(60 kg N·hm-2)混施处理(DT)及减量尿素(40 kg N·hm-2)与牛粪(60 kg N·hm-2)混施处理(DM2).结果表明: 与CK相比,CF、DM1、DT和DM2处理苜蓿干草产量分别增加44.2%、38.9%、56.3%和30.6%,N2O排放分别比对照增加52.2%、89.1%、133.7%和59.4%,但各施肥处理对甲烷吸收表现出不同程度的抑制作用.苜蓿生产中,尿素和牛粪处理N2O-N排放与肥料氮素投入量比值(排放系数)为0.25%~0.28%,而沼液处理N2O-N排放系数为0.64%,显著高于前者.苜蓿生产中,施用化肥或有机无机混施均能显著增加苜蓿干物质产量,土壤硝态氮深层淋洗风险较小,但增加了CO2-equivalent净排放量.  相似文献   

12.
应用化学分析和变性梯度凝胶电泳(DGGE)技术分离PCR扩增的16S rDNA的方法,研究了不同施肥制度对土壤微生物量碳、氮变化及微生物多样性的影响。结果表明,连续15a长期试验下,土壤微生物量碳(SMB-C)和微生物量氮(SMB-N)的含量大小均为长期撂荒(CK0)土壤高于农田土壤,而在农田土壤中,长期施肥的处理(NPK、NPKM、NPKSt和NPKF)高于长期不施肥处理(CK),不同的种植制度中,长期复种轮作(NPKF)高于长期复种连作(NPK);各处理的SMB-C/SOC(土壤有机碳)和SMB-N/TN(全氮)的比值的变化趋势与SMB-C和SMB-N变化一致;从PCR-DGGE分析,长期氮磷钾化肥配施有机肥(NPKM)处理的微生物量碳、氮的含量最高,微生物丰度最高,细菌物种最多,其次为长期撂荒(CK0),CK处理细菌物种最少。UPGMC聚类分析表明NPK和NPKF处理细菌的群落结构相似,CK和CK0处理细菌的群落结构相似,而NPKM和NPKSt处理细菌的群落结构相似。  相似文献   

13.
In organic farming, maximising the amount of nitrogen (N) which is fixed and retained within the soil is of paramount importance for the yield of the following crop. The aim of this study was to establish the extent to which increased soil fertility, farmyard manure (FYM) applications and/or mulching, could adversely affect fixation. At two sites, situated in the South West (SW) and North East (NE) of England, N(2) fixation was estimated in 'organically' managed red clover/grass plots, both with and without green manure (i.e. surface mulched) and/or the addition of FYM. The FYM was incorporated into the seedbeds at both sites in autumn 2002 at the rate of 170 kg total Nha(-1), as either well-composted (SW site), or not actively-composted (NE site) manures. The same FYM application rate was repeated as top-dressings to both sites in autumn 2003. The plots were cut three or four times each year over two growing seasons. In the first harvest year (2003), incorporation of FYM had beneficial effects of increasing dry matter and N yields significantly at the first cut, but there were no significant differences in subsequent cuts. The same pattern was found in the second harvest year (2004) after the top dressings of FYM, suggesting that most of the N in both types of FYM was in recalcitrant forms. Over the two growing seasons, mulching did not affect red clover/grass dry matter or N yields, but did reduce the proportion of N(2) fixed, by up to 60 kg Nha(-1) when compared with plots from which the clover/grass herbage was cut and removed. Thus, the gain in N from FYM or green manure tended to be offset by a similar reduction in N(2) fixation. These results demonstrate the close association between the availability of soil N and the feed-back system which operates on N(2) fixation by red clover.  相似文献   

14.
The main objective of the second Darmstadt trial was to investigate the effects of vegetal fertilizers on soil properties and crop yield in comparison with farmyard manure. The experiment consisted of seven treatments: (i) inorganic fertilizers, (ii) vegetal organic fertilizers, (iii) vegetal organic fertilizers equivalent to biodynamic preparations, (iv) cattle farmyard manure, (v) cattle farmyard manure with addition of biodynamic preparations, (vi) high level of cattle farmyard manure, and (vii) high level of cattle farmyard manure with biodynamic preparations. The soil properties analyzed were pH, soil organic C, N, P, and S, soil microbial biomass C, N, and P, basal respiration and fungal ergosterol. The application of vegetal fertilizers had slightly negative effects on soil organic C, no effects on crop yield (potato, winter rye) and microbial biomass, but positive effects on ergosterol in comparison with farmyard manure. The increase in ergosterol was caused by straw return in the vegetal, but also in the inorganic fertilizer treatments. The biodynamic preparations did not affect the contents of soil organic C and total N. The low effectiveness of vegetal fertiliser in maintaining soil organic C levels is of particular importance for organic cropping systems and should be examined further under different site conditions.  相似文献   

15.
16.
Improving nitrogen efficiency: lessons from Malawi and Michigan   总被引:1,自引:0,他引:1  
Two case studies are presented here of nitrogen (N) dynamics in potato/maize systems. Contrasting systems were investigated from (1) the highland tropics of Dedza, Malawi in southern Africa and (2) the northern temperate Great Lakes region of Michigan. Formal surveys were conducted to document grower perceptions and N management strategies. Survey data were linked with N budgets conducted by reviewing on-farm data from representative farms in the targeted agroecosystems and simulation modeling to estimate N losses. Potential N-loss junctures were identified. Interventions that farmers might accept are discussed. The Malawi system uses targeted application of very small amounts of fertilizer (average 18 kg N ha(-1)) to growing plants. This low rate is on the steep part of plant response to N curve and should serve to enhance efficiency; plant growth, however, is generally stunted in Malawi due to degraded soils and weed competition. Very limited crop yields reduce N efficiency from a simulated 60 kg grain per kg N to an actual of approximately 20 kg grain per kg N (at 40 kg N ha(-1) applied). Legume-intensified systems could improve growth potential and restore N use efficiency through amelioration of soil quality and transfer functions and from biological fixation N inputs. In the Michigan system, N efficiency is enhanced currently through multiple, split applications of N fertilizer tailored to plant growth rate and demand. Fertilizer N rates used by growers, however, averaged 32% higher than recommended rates and 40% higher than N removed in crop product. Application of 50 kg N ha(-1) to cover crops in the fall may contribute to the apparent high potential for N leaching losses. Careful consideration of N credits from legumes and residual soil N would improve N efficiency. Overall, N budgets indicated 0 to 20 kg N ha(-1) loss potential from the Malawi systems and tenfold higher loss potential from current practice in Michigan maize/potato rotations. Best management practices, with or without integration of legumes, could potentially reduce N losses in Michigan to a more acceptable level of about 40 kg N ha(-1).  相似文献   

17.
A long-term field experiment was established on a kaolinitic Alfisol in Ibadan, Nigeria, in 1972. The land was cleared manually from secondary forest and used for (i) continuous no-till cropping with maize (Zea mays L.) and maize/cassava (Manihot esculenta Crantz) intercropping, (ii) planted fallow of guinea grass (Panicum maximum Jacq.), leucaena (Leucaena leucocephala de Wit), and pigeon pea (Cajanus cajan Millsp.), and (iii) natural bush regrowth in a randomized complete block design with three replications. At the end of 15 years, the fallow plots were cleared manually and cropped with maize for three years. The chemical and physical soil properties and crop performance of the newly-cleared plots were compared with those under 15 years of continuous cultivation. A total of 26 woody species were identified on the bush regrowth plots. Above-ground biomass accumulation of the bush plots was 157 Mg ha-1 containing 1316 kg N ha-1. Guinea grass, leucaena and natural bush regrowth plots had comparable organic C concentrations (approximately 20 g kg-1) in the surface soil (0 to 10 cm) after 15 years. The organic C concentration in the surface soil under pigeon pea was the lowest (9.5 g kg-1) among the four fallow treatments. Soil under 15 years of continuous no-till maize with and without residue mulch, respectively, contained approximately half (10 g kg-1) and a quarter (5.7 g kg-1) of the organic C under natural bush or guinea grass fallow. The levels of exchangeable Ca, K, Mg and effective cation exchange capacity (ECEC) were lower in the soils under continuous cultivation than in those under natural bush and planted fallow. Soil acidification occurred in soils under continuous cropping as depicted by the lower pH values and greater exchangeable Al and Mn concentrations compared to the fallow plots. Grain yield of maize (3 to 5 Mg ha-1) without fertilizer application in the plots newly cleared from natural bush, guinea grass and leucaena fallow was comparable with that of continuous no-till maize with residue mulch and chemical fertilizer (N, P, K, Mg, Zn) applications. Among the four fallow treatments, maize grain and stover yields were the lowest in plots cleared from pigeon pea fallow.  相似文献   

18.
Data for the historical years 1970 and 1995 and the FAO-Agriculture Towards 2030 projection are used to calculate N inputs (N fertilizer, animal manure, biological N fixation and atmospheric deposition) and the N export from the field in harvested crops and grass and grass consumption by grazing animals. In most industrialized countries we see a gradual increase of the overall N recovery of the intensive agricultural production systems over the whole 1970-2030 period. In contrast, low N input systems in many developing countries sustained low crop yields for many years but at the cost of soil fertility by depleting soil nutrient pools. In most developing countries the N recovery will increase in the coming decades by increasing efficiencies of N use in both crop and livestock production systems. The surface balance surplus of N is lost from the agricultural system via different pathways, including NH3 volatilization, denitrification,N2O and NO emissions, and nitrate leaching from the root zone. Global NH3-N emissions from fertilizer and animal manure application and stored manure increased from 18 to 34 Tg.yr-1 between 1970 and 1995, and will further increase to 44 Tg.yr-1 in 2030. Similar developments are seen for N2O-N (2.0 Tg.yr-1 in 1970, 2.7 Tg.yr-1 in 1995 and 3.5 Tg.yr-1 in 2030) and NO-N emissions (1.1 Tg.yr-1 in 1970, 1.5 Tg-yr-1 in 1995 and 2.0 Tg.yr-1 in 2030).  相似文献   

19.
孟鹏飞  郭涛  刘文 《微生物学通报》2023,50(3):1111-1122
【背景】在农田生态系统中,土壤微生物与植物互作的机制仍不清楚。【目的】进一步加强对植物-微生物互作的认识,筛选出引起不同反馈作用的关键微生物或微生物类群。【方法】采集豆科绿肥救荒野豌豆(Vicia sativa, V)、十字花科绿肥油菜(Brassica napus, N)和荒坡土壤(remnant prairie, R)驯化的田块土壤0-20 cm作为菌剂在温室进行植物-土壤反馈(plant-soil feedback,PSF)试验。土壤菌剂的接种量为10%,即有90%理化性质一致的灭菌土壤作为背景土,同时设置灭菌土壤菌剂作为对照(CK),种植玉米。每组土壤菌剂处理均分为50 mg/kg高磷(high phosphorus,HP)和5 mg/kg低磷(low phosphorus, LP)两个磷浓度处理。玉米收获后,测定产量和植株地上部磷含量,并取土壤样品进行高通量测序,解析不同养分供给情况下微生物对作物生长的反馈效应。【结果】高磷和土壤反馈效应均促进了玉米的生长。在低磷水平下,V、N和R处理的玉米地上部生物量均高于CK处理,但N处理的玉米地上部生物量增加最多(38%),且增幅显著高...  相似文献   

20.
In the northern Guinea Savanna of Ghana (1984–1987) a field experiment was conducted to study the reasons for beneficial effects of rotating maize (Zea mays) and cowpea (Vigna unguiculata) on yield and N and P use of maize. The treatments included two cropping systems, maize monocropping and maize/cowpea rotation, two levels of nitrogen (0 and 80 kg N ha-1 as urea) and two levels of phosphorus application (0 and 60 kg ha-1 P as Volta phosphate rock). Yields and nutrient accumulation of maize were larger in rotation than in monocropping, independent of the N and P level. Fertilizer application (N and P) increased yields of maize in both cropping systems to the same extent. Nitrate contents of the soil after cowpea and after maize monoculture were comparable at the beginning of the cropping period. Also, potential nitrogen mineralization was only slightly larger after cowpea in the unfertilized plots. However, soil nitrate of fertilized plots was similar or even higher under monocropping than under crop rotation, especially in deeper soil layers and at the end of the cropping period. This indicates that in addition to the availability of mineral N, its use by the plants was limiting for the productivity of maize. Root length densities of maize were significant lower in monocropped maize than in maize grown in rotation. Soil physical parameters (infiltration, bulk density, aggregate stability and water capacity) showed a significant deterioration compared to a bush fallow plot, but differed only slightly between the cropping systems. Also in a pot experiment maize growth was much better in the soil from the crop rotation than from the monocropping plots, provided P was eliminated as the main growth-limiting factor. Since this effect persisted in spite of N application and optimization of soil physical properties by mixing the soil with polystyrol it is concluded that the results indicate that yield decline in maize monocropping might be due to allelopathic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号