共查询到18条相似文献,搜索用时 31 毫秒
1.
比较研究伊犁地区两种典型杨树苗大叶杨(大叶钻天杨P.balsanifera Linn(Da))和伊犁杨5号(P.euramerieana cv(I-467))对太阳辐射光能的利用和耗散特性。光照条件下光合系统Ⅱ反应中心(PSⅡ)的最大光化学效率(Fv′/Fm′)、实际光化学效率(ΦPSⅡ)和光合功能的相对限制(L(PDF))的分析表明,高的光合有效辐射强度(PAR)会导致光合作用的光抑制,但并不造成PSⅡ反应中心的不可逆破坏。淬灭分析表明,Da的光化学淬灭系数(qP)大于I-467,非光化学淬灭(NPQ)则相反(p〈0.05)。Da的NPQ显著小于I-467的,意味着I-467将PSⅡ反应中心吸收的过剩光能以热耗散等非光化学过程消耗的能力大于Da,因而相应降低了用于qP的份额。两种杨树的NPQ日变化趋势很相似;Fv′/Fm′和ΦPSⅡ的日变化趋势相似。Da的PSⅡ天线色素吸收光能中分配于光化学反应平均的相对份额(P)高于I-467,在较低的PAR环境中Da比I-467能更好的利用光能;Da用于天线热能耗散的相对份额(D)则小于I-467,两者具有极显著差异(p〈0.01)。Da的ΦPSⅡ比I-467大,是因为PSⅡ天线色素吸收的光能中分配于P或光化学淬灭的比例较大,而分配于D或非光化学过程的比例较小的缘故,反应中心的ΦPSⅡ也较Da小。在有效的利用光能方面,Da比I-467更适宜在新疆伊犁地区大面积推广栽植。 相似文献
2.
分别通过黄嘌呤(X)与黄嘌呤氧化酶(XO)反应和甲基紫金(MV)的作用,观察了O·-2诱导莴苣叶绿体的叶绿素荧光猝灭过程.结果表明,O-·2的产生明显使光化学猝灭(qP)和非光化学猝灭(qN)增加.叶绿体内SOD被DDC抑制后,X+XO诱导的叶绿素荧光猝灭过程中,qP下降,qN上升;MV诱导的叶绿素荧光猝灭过程中,qP上升幅度不大,qN增加不明显.当碳代谢被碘乙酰胺(JAA)抑制后, qP下降,qN上升.解偶联剂NH4Cl增加质子跨类囊体膜的通透性,导致qP增加和qN降低,加入MV后qP和qN增加不明显.分析认为,-·2的产生和及时被清除对保持光合电子传递和增加跨膜ΔpH有很重要的作用,有利于叶绿体吸收的光能得到转化和耗散,在一定程度上减轻过量光能引起的光抑制损伤. 相似文献
3.
珊瑚树和大豆叶片叶绿素荧光的非光化学猝灭 总被引:8,自引:0,他引:8
用PAM-2000型荧光仪和754型分光光度计观测了珊瑚树和大豆叶片叶绿素荧光的非光化学猝灭性,中和慢3个组分和505nm光吸收的日变化。主要结果如下:(1)中午,珊瑚树叶片的qN8比qNf大得多,而大豆叶片的这两个参数却几乎处于同一水平。它们的qNm虽然也随光强变化,但与qN8和qNm相比,除早期和傍晚以外全天的水平都是最低的。 相似文献
4.
研究了3个叶黄素组分缺失的拟南芥核基因突变体,npq1(缺乏玉米黄质Z和单环氧玉米黄质A)、lut2(缺乏lutein)和lut2-npq1(双突变体,同时缺Z和lutein),及其对照野生型(WT)在强光诱导下叶绿素荧光猝灭的特性.与WT相比,3个突变体的叶绿素a/b没有明显的差异,Fv/Fm则有不同幅度的增加,缺乏lutein的突变体lut2和lut2-npq1的叶黄素循环库(V+A+Z)显著增大.缺乏Z的突变体npq1和lut2-npq1在强光下,荧光的非光化学猝灭(NPQ)的诱导受到明显抑制,lut2的NPQ形成也受到部分抑制.强光处理9 min后,3个突变体和WT的NPQ大小顺序为WT>lut2>npq1>npq1-lut2.强光诱导过程中突变体的光化学猝灭(qP)都小于WT.强光下突变体显示较弱的抗光抑制能力,其抗光抑制能力的强弱顺序为:WT>lut2>npq1>lut2-npq1.结果表明叶黄素循环不但与NPQ的形成直接相关也与qP有关. 相似文献
5.
珊瑚树叶片叶绿素荧光非光化学猝灭的日变化和季节变化 总被引:17,自引:0,他引:17
用脉冲调制荧光仪观测了珊瑚树叶片叶绿素荧光化学猝灭的日变化和季节变化后发现:在晴天,qE及慢弛豫组分随着光强的增加而升高,中午达最高值,之后随光强的减弱而下降,阴天时,这两个指标的日变化不明显。在不同季节,相同日时间和同一光照强度下测定瑚叶片的qE和qE-slow,两个指标在冬季明显高于春,秋两季;在短时间内改变强光下的叶片周围的温度,叶片的qE和qe-SKOW在高温和低温下均高于适温下测定的结果 相似文献
6.
珊瑚树叶片叶绿素荧光非光化学猝灭的日变化和季节变化 总被引:2,自引:0,他引:2
用脉冲调制荧光仪观测了珊瑚树叶片叶绿素荧光非光化学猝灭(qE)的日变化和季节变化后发现:在晴天,qE及其慢弛豫组分(qE-slow)随着光强的增加而升高,中午达最高值,之后随光强的减弱而下降;阴天时,这两个指标的日变化不明显。在不同季节,相同日时间和同一光照强度下测定珊瑚树叶片的qE和qE-slow,两个指标在冬季明显高于春、秋两季;在短时间(1d)内改变强光下的叶片周围的温度,叶片的qE和qE-slow在高温和低温下均高于过温下测定的结果。 相似文献
7.
塔里木河下游地下水位对柽柳叶绿素荧光特性的影响 总被引:1,自引:0,他引:1
选取塔里木河下游3处地下水埋深6m的监测井位作为研究点,结合典型生态监测断面的地下水位监测数据,分析不同地下水埋深处柽柳的叶绿素荧光特性和光系统的光合活性.结果表明:随着地下水埋深加大和干旱胁迫加剧,柽柳叶片的实际光化学效率、电子传输速率和光化学猝灭等参数普遍下降;非光化学猝灭和调节性能量耗散量子产量等参数显著升高,而最大光量子产量总体处于相对适宜状态.干旱胁迫下柽柳的PSII光合活性随地下水埋深增大而下降,捕获光能的过剩程度加剧,发生光抑制的几率增大,其自身良好的抗旱性和自我调节机制,使光系统II尚未发生显著光损伤. 相似文献
8.
缺锰降低大豆叶片叶绿素荧光的高能态猝灭 总被引:9,自引:0,他引:9
缺锰大豆叶片光合速率比对照低 5 0 %左右。缺锰叶片的Fv/Fm较对照低约 30 %~ 40 % ,而Fo比对照高 2~ 3倍左右。强光下 ,缺锰叶片的qP为对照的5 0 %。缺锰降低了叶片的高能态猝灭 (qE) ,仅占其NPQ的 6 0 %左右 ;而对照 qE组分占NPQ的 90 %左右。对照和缺锰叶片叶黄素库的脱环氧化程度分别为36 %和 2 1%左右。认为缺锰叶片 qE的降低可能是由于叶黄素脱环氧化程度减少所致 相似文献
9.
持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响 总被引:61,自引:0,他引:61
持续常温弱光(25℃/18℃,l00umol m-2 s-1)、低温弱光(12℃/12℃,100 umol m-2 s-1和7℃/7℃,l00μmolm-2s-1)均导致黄瓜生长减慢或停滞、叶绿素含量、气孔导度和净光合速率、光合电子传递速率下降以及胞间CO2浓度上升.常温弱光和12℃弱光处理对光系统II的最大光化学效率Fv/Fm无显著影响,而7℃弱光处理导致Fv/Fm的可逆性下降.常温弱光和7℃、12℃弱光处理均导致了光化学反应速率的降低以及天线热耗散和反应中心过剩能量的增加.在胁迫后,12℃弱光0比7℃弱光更有利于植株光合功能的恢复. 相似文献
10.
以来自不同水分生境的金发藓(Polytrichum commune)和湿地匐灯藓(Plagiomnium acutum)为材料,利用叶绿素荧光成像技术比较了脱水和复水过程中两种藓类的荧光光响应曲线、光系统Ⅱ光能转化效率(ratio ofchlorophyll variation fluorescence,Fv/Fm)、光系统Ⅱ光量子产量(quantum yielding of PSⅡ,Y(Ⅱ))、光化学猝灭(photochemical quenching,qP)和非光化学猝灭(none-photochemical quenching,NPQ)的变化.结果显示,在脱水过程中,金发藓的抑制光强可维持在800μmol/(m2.s)以上,而湿地匐灯藓可低至400μmol/(m2.s)左右;金发藓ETR(electron transportation rate)值始终可维持在20附近,而湿地匐灯藓可降至0;两种藓类的Fv/Fm、Y(Ⅱ)、qP均下降,但金发藓较湿地匐灯藓高;NPQ先升后降,金发藓的峰值早于湿地匐灯藓,而幅度低于湿地匐灯藓.在复水过程中,两种藓类抑制光强和ETR均迅速恢复后略有下降,金发藓的恢复较湿地匐灯藓慢但波动小;两种藓类Fv/Fm和Y(Ⅱ)均能恢复到正常水平,金发藓均高于湿地匐灯藓;两种藓类qP略有上升,NPQ则略有下降.说明藓类植物对脱水伤害的耐受能力主要体现在复水的修复能力上,而脱水持续和程度会对不同生境的藓类产生不同的胁迫效应.从光保护能力的角度来看,生活于易产生水分亏缺条件下的金发藓比生活在水分充沛条件下的湿地匐灯藓具有更强的脱水耐受能力. 相似文献
11.
The effects of drought and the diurnal changes in photosynthetic electron transport were studied in non-nodulated plants of Casuarina equisetifolia. The induction of fluorescence showed a slightly higher I step in water-stressed than control plants, and the time from the start of irradiation to the P step of induction was significantly shortened by drought. The quantum efficiency of photosystem 2 (PS2) in the dark-adapted state (Fv/Fm) was generally not affected by drought, whereas it decreased during the central hours of the day. The decrease in quantum yield of PS2 electron transport (2) in water-stressed plants was associated with decreases in the photochemical efficiency of open (oxidised) PS2 centres (Fv'/Fm') and increases in non-photochemical quenching (qN) rather than with increased closure of PS2 centres (lowered photochemical quenching, qP). In contrast, the changes in quantum yield of electron transport during the day were related to changes in qP rather than in Fv'/Fm'. When chlorophyll fluorescence was measured at the same irradiance during the day, a greater qN was observed at the end of the drying cycle than after watering, and early and late in the photoperiod than in the central hours of the day. The greater qN at the beginning and end of the day did not prevent an increase in energy not used photochemically nor dissipated non-photochemically. Drought did not affect this excess of photon energy. 相似文献
12.
Imaging of chlorophyll a fluorescence from leaves has enabled the spatial resolution of the fluorescence parameter, F/Fm-;. Although this parameter provides a reliable estimate of photosynthetic efficiency under most conditions, the extent to which this efficiency is defined by (i) competition with other energy-dissipating processes operating at photosystem II and (ii) by processes on the reducing side of photosystem II, such as carbon assimilation, requires the use of additional parameters. Of particular value are qP, which quantifies the photochemical capacity of photosystem II, and Fv-;/Fm-;, which quantifies the extent to which photochemistry at photosystem II is limited by competition with thermal decay processes. Imaging of both qP and Fv-;/Fm-; requires measurement of Fo-; (the minimum fluorescence yield in the light-adapted state), which cannot be imaged with existing systems. In this paper, a method is described which estimates Fo-; through a simple equation involving the minimum fluorescence yield in the dark-adapted state (Fo), the maximum fluorescence yield in the dark-adapted state (Fm), and the maximum fluorescence yield in the light-adapted state (Fm-;). This method is tested here, through comparison of measured and calculated values of Fo-;. An example of the application of this method to analysis of photosynthetic performance in leaves, from images of chlorophyll a fluorescence, is also presented. 相似文献
13.
Alexander G. Ivanov Vaughan Hurry Prafullachandra V. Sane Gunnar Öquist Norman P. A. Huner 《Journal of Plant Biology》2008,51(2):85-96
In addition to the energy dissipation of excess light occurring in PSII antenna via the xanthophyll cycle, there is mounting evidence of a zeaxanthin-independent pathway for non-photochemical quenching based within the PSII reaction centre (reaction centre quenching) that may also play a significant role in photoprotection. It has been demonstrated that acclimation of higher plants, green algae and cyanobacteria to low temperature or high light conditions which potentially induce an imbalance between energy supply and energy utilization is accompanied by the development of higher reduction state of QA and higher resistance to photoinhibition (Huner et al., 1998). Although this is a fundamental feature of all photoautotrophs, and the acquisition of increased tolerance to photoinhibition has been ascribed to growth and development under high PSII excitation pressure, the precise mechanism controlling the redox state of QA and its physiological significance in developing higher resistance to photoinhibition has not been fully elucidated. In this review we summarize recent data indicating that the increased resistance to high light in a broad spectrum of photosynthetic organisms acclimated to high excitation pressure conditions is associated with an increase probability for alternative non-radiative P680+QA - radical pair recombination pathway for energy dissipation within the reaction centre of PSII. The various molecular mechanisms that could account for non-photochemical quenching through PSII reaction centre are also discussed. 相似文献
14.
Luca Dall'Osto Stefano Cazzaniga Masamitsu Wada Roberto Bassi 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1640)
Over-excitation of photosynthetic apparatus causing photoinhibition is counteracted by non-photochemical quenching (NPQ) of chlorophyll fluorescence, dissipating excess absorbed energy into heat. The PsbS protein plays a key role in this process, thus making the PsbS-less npq4 mutant unable to carry out qE, the major and most rapid component of NPQ. It was proposed that npq4 does perform qE-type quenching, although at lower rate than WT Arabidopsis. Here, we investigated the kinetics of NPQ in PsbS-depleted mutants of Arabidopsis. We show that red light was less effective than white light in decreasing maximal fluorescence in npq4 mutants. Also, the kinetics of fluorescence dark recovery included a decay component, qM, exhibiting the same amplitude and half-life in both WT and npq4 mutants. This component was uncoupler-sensitive and unaffected by photosystem II repair or mitochondrial ATP synthesis inhibitors. Targeted reverse genetic analysis showed that traits affecting composition of the photosynthetic apparatus, carotenoid biosynthesis and state transitions did not affect qM. This was depleted in the npq4phot2 mutant which is impaired in chloroplast photorelocation, implying that fluorescence decay, previously described as a quenching component in npq4 is, in fact, the result of decreased photon absorption caused by chloroplast relocation rather than a change in the activity of quenching reactions. 相似文献
15.
Membrane barriers and Mehler-peroxidase reaction limit the ascorbate available for violaxanthin de-epoxidase activity in intact chloroplasts 总被引:3,自引:0,他引:3
The presence of an acidic lumen and the xanthophylls, zeaxanthin and antheraxanthin, are minimal requirements for induction of non-radiative dissipation of energy in the pigment bed of Photosystem II. We recently reported that ascorbate, which is required for formation for these xanthophylls, also can mediate the needed lumen acidity through the Mehler-peroxidase reaction [Neubauer and Yamamoto (1992) Plant Physiol 99: 1354–1361]. It is demonstrated that in non-CO2-fixing intact chloroplasts and thylakoids of Lactuca sativa, L. c.v. Romaine, the ascorbate available to support de-epoxidase activity is influenced by membrane barriers and the ascorbate-consuming Mehler-peroxidase reaction. In intact chloroplasts, this results in biphasic kinetic behavior for light-induced de-epoxidation. The initial relatively high activity is due to ascorbate preloaded into the thylakoid before light-induction and the terminal low activity due to limiting ascorbate from the effects of chloroplast membranes barriers and a light-dependent process. A five-fold difference between the initial and final activities was observed for light-induced de-epoxidation in chloroplasts pre-incubated with 120 mM ascorbate for 40 min. The light-dependent activity is ascribed to the competitive use of ascorbic acid by ascorbate peroxidase in the Mehler-peroxidase reaction. Thus, stimulating ascorbic peroxidase with H2O2 transiently inhibited de-epoxidase activity and concomitantly increased photochemical quenching. Also, the effects inhibiting ascorbate peroxidase with KCN, and the KM values for ascorbate peroxidase and violaxanthin de-epoxidase of 0.36 and 3.1 mM, respectively, support this conclusion. These results indicate that regulation of xanthophyll-dependent non-radiative energy dissipation in the pigment bed of Photosystem II is modulated not only by lumen acidification but also by ascorbate availability.Abbreviations APO
ascorbate peroxidase
- MP
Mehler ascorbate-peroxidase
- NIG
nigericin
- NPQ
non-photochemical quenching
- Fo
dark fluorescence
- F
fluorescence at any time
- FM
maximal fluorescence of the (dark) non-energized state
- FM
maximal fluorescence of the energized state
- qP
coefficient for photochemical fluorescence quenching
- VDE
violaxanthin de-epoxidase
-
k
first-order rate constant for violaxanthin de-epoxidase activity 相似文献
16.
Bean plants Phaseolus vulgaris L. (cv. Carioca and Negro Huasteco) and Vigna unguiculata L. Walp (cv. Epace-10) were grown in a growth chamber with a photosynthetic photon flux density of 200 mol m–2 s–1 at leaf level and air temperature of 25+1 °C. Fully expanded, first pair leaves of 12-d-old plants were submitted for 90 min to high temperature (25, 30, 35, 40, 45, and 48 °C). Chlorophyll a fluorescence parameters (ETR, qP, qN, and F0) were investigated using a modulated fluorimeter at 25 °C during recovery considered here as 48 h after stress induction period. An accentuated decrease in qP and an increase in qN at 48 °C in Carioca and Negro Huasteco was not observed in Epace-10. In response to excitation irradiance a great potential for ETR was found in Negro Huasteco at 25 °C, also demonstrated by net photosynthetic rate. At 48 °C ETR was high for Epace-10 while it was equal to zero for Carioca and Negro Huasteco. Tolerance to high temperature observed in Epace-10 provided important information about the adaptative characteristics of Vigna cultivars to warm climates. 相似文献
17.
光强转换对不同生长环境下桑树叶片光化学效率的影响 总被引:3,自引:0,他引:3
以桑树品种‘蒙古桑’为试验材料,利用叶绿素荧光技术研究了光强转换对生长在不同光强下的桑树叶片实际光化学效率(ΦPSⅡ)、电子传递速率(ETR)和非光化学淬灭(NPQ)的影响,分析了非光化学淬灭(NPQ)3个组分的变化.结果表明:当光强从黑暗或弱光转换到自然光条件下,自然光桑树叶片的光量子转化效率高于弱光叶片,ΦPSⅡ、ETR诱导平衡较快,NPQ诱导呈先升后降趋势.自然光叶片在强光下状态转换淬灭组分(qT)占NPQ的18%,而弱光叶片qT仅占NPQ的7%.与弱光桑树叶片相比,自然光桑树叶片可以通过较高的光量子转化效率和较强的调节激发能在PSⅠ和PSⅡ之间的分配能力来适应光强的变化. 相似文献
18.
Koblížek M. Ciscato M. Komenda J. Kopencký J. Šiffel P. Masojídek J. 《Photosynthetica》1999,37(2):307-323
The dark-adapted cells of the green alga Spongiochloris sp. were exposed to "white light" of 1000 μmol(photon) m−2 s−1 for 2 h and then dark adapted for 1.5 h. Changes of photochemical activities during photoadaptation were followed by measurement
of chlorophyll (Chl) fluorescence kinetics, 77 K emission spectra, photosynthetic oxygen evolution, and pigment composition.
We observed a build-up of slowly-relaxing non-photochemical quenching which led to a decrease of the Fv/Fm parameter and the connectivity. In contrast to the depression of Fv/Fm (35 %) and the rise of non-photochemical quenching (∼ 1.6), we observed an increase in effective absorption cross-section
(20 %), Hill reaction (30 %), photosynthetic oxygen evolution (80 %), and electron transport rate estimated from the Chl fluorescence
analysis (80 %). We showed an inconsistency in the presently used interpretation schemes, and ascribe the discrepancy between
the increase of effective absorption cross-section and the photosynthetic activities on one side and the effective non-photochemical
quenching on the other side to the build-up of a quenching mechanism which dissipates energy in closed reaction centres. Such
a type of quenching changes the ratio between thermal dissipation and fluorescence without any effect on photochemical yield.
In this case the Fv/Fm ratio cannot be used as a measure of the maximum photochemical yield of PS2.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献