首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the two subtypes of the human estrogen receptor (ER), ERalpha and ERbeta, share only 56% amino acid sequence identity in their ligand binding domain (LBD), the residues that surround the ligand are nearly identical; nevertheless, subtype-selective ligands are known. To understand the molecular basis by which diarylpropionitrile (DPN), an ERbeta-selective ligand, is able to discriminate between the two ERs, we examined its activity on ER mutants and chimeric constructs generated by DNA shuffling. The N-terminal region of the ERbeta LBD (through helix 6) appears to be fully responsible for the ERbeta selectivity of DPN. In fact, a single ERalpha point mutation (L384M) was largely sufficient to switch the DPN response of this ER to that of the ERbeta type, but residues in helix 3 are also important in achieving the full ERbeta selectivity of DPN. Using molecular modeling, we found an energetically favorable fit for the S-DPN enantiomer in ERbeta, in which the proximal phenol mimics the A ring of estradiol, and the nitrile engages in stabilizing interactions with residues in the ligand-binding pocket of ERbeta. Our findings highlight that a limited number of critical interactions of DPN with the ERbeta ligand-binding pocket underlie its ER subtype-selective character.  相似文献   

2.
The interactions of human estrogen receptor subtypes ERalpha and ERbeta with DNA and a 210 amino acid residue fragment of the coactivator protein SRC-1 bearing three nuclear receptor interaction motifs were investigated quantitatively using fluorescence anisotropy in the presence of agonist and antagonist ligands. ERalpha and ERbeta were found to bind in a similar manner to DNA, and both salt and temperature affected the affinity and/or stoichiometry of these interactions. The agonist ligands estradiol, estrone and estriol did not modify the binding of ERalpha to the fluorescein-labeled target estrogen response element. However, in the case of ERbeta, these ligands led to the formation of some higher-order protein-DNA complexes and a small decrease in affinity. The partial agonist 4-hydroxytamoxifen had little effect on either ER subtype, whereas the pure antagonist ICI 182,780 led to the cooperative formation of protein-DNA complexes of higher order than dimer, as further demonstrated by competition experiments and gel mobility-shift assays. In addition to DNA binding, the interaction of both ER subtypes with the Alexa488-labeled SRC-1 coactivator fragment was investigated by fluorescence anisotropy. The agonist ligands estrone, estradiol, estriol, genistein and ethynyl estradiol exhibited distinct capacities for inducing the recruitment of SRC-1 that were not correlated with their affinity for the receptor. Moreover, estrone and genistein exhibited subtype specificity in that they induced SRC-1 recruitment to ERbeta with much higher efficiency than in the case of ERalpha. The differential coactivator recruitment capacities of the ER agonists and their receptor subtype coactivator recruitment specificity may be linked to the molecular structure of the agonists with respect to their interactions with a specific histidine residue located at the back of the ligand-binding pocket. Altogether, these quantitative in vitro studies of ER interactions reveal the complex energetic and stoichiometric consequences of changes in the chemical structures of these proteins and their ligands.  相似文献   

3.
4.
Benzopyrans are selective estrogen receptor (ER) beta agonists (SERBAs), which bind the ER receptor subtypes alpha and beta in opposite orientations. We have used structure based drug design to show that this unique phenomena can be exploited via substitution at the 8-position of the benzopyran A-ring to disrupt binding to ERalpha, thus improving ERbeta subtype selectivity. X-ray cocrystal structures with ERalpha and ERbeta are supportive of this approach to improve selectivity in this structural class.  相似文献   

5.
The distinct roles of the two estrogen receptor (ER) isotypes, ERalpha and ERbeta, in mediating the physiological responses to estrogens are not completely understood. Although knockout animal experiments have been aiding to gain insight into estrogen signaling, additional information on the function of ERalpha and ERbeta will be provided by the application of isotype-selective ER agonists. Based on the crystal structure of the ERalpha ligand binding domain and a homology model of the ERbeta-ligand binding domain, we have designed steroidal ligands that exploit the differences in size and flexibility of the two ligand binding cavities. Compounds predicted to bind preferentially to either ERalpha or ERbeta were synthesized and tested in vitro using radio-ligand competition and transactivation assays. This approach directly led to highly ER isotype-selective (approximately 200-fold) and potent ligands. To unravel physiological roles of the two receptors, in vivo experiments with rats were conducted using the ERalpha- and ERbeta-selective agonists in comparison to 17beta-estradiol. The ERalpha agonist induced uterine growth, caused bone-protective effects, reduced LH and FSH plasma levels, and increased angiotensin I, whereas the ERbeta agonist did not at all or only at high doses lead to such effects, despite high plasma levels. It can thus be concluded that estrogen effects on the uterus, pituitary, bone, and liver are primarily mediated via ERalpha. Simultaneous administration of the ERalpha and ERbeta ligand did not lead to an attenuation of ERalpha-mediated effects on the uterus, pituitary, and liver parameters.  相似文献   

6.
7.
8.
9.
3-Aryl-tetrahydroquinolines, aza analogues of equol, are synthesized and evaluated for their binding properties to the estrogen receptors ERalpha and ERbeta. Several of these compounds exhibited binding selectivity for ER similar to that of genistein. Compounds 8c and 8d were found to have dual actions: antagonists for ERalpha and agonists for ERbeta in a yeast two-hybrid assay. These compounds have no estrogenic effects on the uterus and bone in vivo.  相似文献   

10.
11.
We have prepared a novel series of 2-amino-4,6-diarylpyridines that function as ligands of estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta). These compounds bind to both ERalpha and ERbeta with a modest selectivity for the alpha subtype. The most potent of these analogues, compound 19, has a K(i)=20nM at ERalpha. These molecules represent a novel template for designing potentially useful ligands for the estrogen receptor.  相似文献   

12.
13.
14.
15.
Estrogens have important physiological roles in the cardiovascular system. We use DNA microarray technology to study the molecular mechanism of estrogen action in the heart and to identify novel estrogen-regulated genes. In this investigation we identify genes that are regulated by chronic estrogen treatment of mouse heart. We present our detailed characterization of one of these genes, lipocalin-type prostaglandin D synthase (L-PGDS). Northern and Western blot analysis revealed that L-PGDS was induced both by acute and chronic estrogen treatment. Northern blot analysis, using estrogen receptor (ER)-disrupted mice, suggests that L-PGDS is specifically induced by ERbeta in vivo. In further support of ERbeta-selective regulation, we identify a functional estrogen-responsive element in the L-PGDS promoter, the activity of which is up-regulated by ERbeta, but not by ERalpha. We demonstrate that a one-nucleotide change (A to C) in the L-PGDS estrogen-responsive element affects receptor selectivity.  相似文献   

16.
17.
18.
19.
20.
Benzopyrans are selective estrogen receptor (ER) beta agonists (SERBAs), which bind the ER subtypes alpha and beta in opposite orientations. Here we describe the syntheses of cyclopentanone and cyclohexanone intermediates for SAR studies of the C-ring on the benzopyran scaffold. Modification of the C-ring disrupts binding to ERalpha, thus improving ERbeta selectivity up to 100-fold. X-ray cocrystal structures confirm previously observed binding modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号