首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Attraction to sexually mature males and the immobilization response were evaluated after postpubertal estrogen treatment of ovariectomized females and of males castrated within 48 hr after birth or at 4 or 8 months of age. The time spent in the end of an evaluation pen which housed a mature intact male, the proportion of animals that showed the immobilization response, and the latency to onset and the duration of this response were similar in ovariectomized females and males castrated within 48 hr after birth. These two groups spent more time in the male end of the evaluation pen as opposed to the opposite end which housed an ovariectomized female, showed a shorter latency to the onset of the immobilization response, and expressed this response for a greater number of days than males castrated either at 4 or 8 months of age. Males castrated at 4 or 8 months did not show a strong preference for either a mature male or an ovariectomized female. The immobilization response in estrogen-treated males castrated at 4 or 8 months of age diminished as these animals became older. On the basis of the observations made in this study, attraction to a mature, intact male is a sexually dimorphic behavioral trait in pigs, and defeminization of this trait in male pigs is associated with the pubertal increase in testicular steroid secretion. Presently, pigs are the only mammalian species in which a role has been identified for pubertal, testicular steroid secretion in the defeminization process.  相似文献   

2.
Sexual receptivity was evaluated in female and male pigs that had experienced varying periods of exposure to testosterone pre- and postnatally. For prenatal exposure, pregnant sows were treated with testosterone propionate (TP) from Day 29-35 or Day 39-45 of gestation at a dosage that caused virilization of the external genitalia of their female offspring. Eighty-three percent of the females that received TP prenatally had regular estrous cycles, but reached puberty later than control females. Only 26% of the females that received TP both pre- and postnatally (4-6 mo of age) were observed in estrus by 10 mo of age. After ovariectomy and acute treatment with estradiol benzoate (EB), the proportion of females that showed the immobilization response (receptivity) was similar for all groups of females independent of pre- or postnatal TP treatment. Females treated prenatally from Day 39-45 showed the immobilization response for fewer days after treatment with a high dosage of EB than did controls. On the basis of these observations, we conclude that receptivity in female pigs is not affected greatly by testosterone treatment at the stages of development that were investigated. Males castrated at birth and treated with a single injection of EB after 9.5 mo showed the immobilization response. In contrast, few males castrated at 8 mo or castrated at birth and treated with TP from 3 to 6 mo showed the immobilization response after EB treatment. These observations provide direct evidence for a postnatal component of testosterone-dependent defeminization of receptivity in male pigs.  相似文献   

3.
Gonadally intact pseudohermaphroditic female and normal female and neonatally castrated male rhesus monkeys were given estrogen treatment as adults and evaluated for attractivity, proceptivity, and receptivity during tests with a tethered stud male. Pseudohermaphrodites were produced by injecting their mothers during pregnancy with either testosterone propionate (TP) or dihydrotestosterone propionate (DHTP). Castrated males had reliably lower attractivity than normal females on all indicator responses shown by the tethered males. Additionally, castrated males showed reliably fewer proceptive responses on 4 of 5 measures than normal females. Receptivity could not be assessed in this situation for castrated males, because tethered males never contacted them unless the castrated males were displaying presentation. No reliable differences were observed between pseudohermaphrodites produced by prenatal treatments with TP or DHTP. Pseudohermaphrodites generally showed reliably less attractivity and proceptivity than normal females and reliably more of these traits than castrated males. Attractivity scores for pseudohermaphrodites were not different from those for normal females until proximity to the tethered male was established. Receptivity was not different in pseudohermaphrodites compared with normal females. Results indicate prenatal androgenization and its developmental sequelae lead to a defeminization in adulthood which, in this testing situation, was principally manifested by a deficiency in the performance of proceptive behaviors. Additionally, defeminization in rhesus monkeys, unlike that demonstrated in rodents, does not depend upon actions of an aromatizable androgen.  相似文献   

4.
Adult rhesus monkeys were observed in standardized tests for female-typical sexual and related social responses. In the first experiment reported, 7 castrated males and 5 spayed females were paired with each of 4 intact males on two occasions following intramuscular injection with estradiol benzoate (EB) (6 micrograms/kg X 14 days) and on two other occasions without such treatment. In tests without EB, males and females did not behave differently toward the intact male partners, and all responses were displayed at low frequencies. In tests with EB, females showed reliably higher frequencies than males of approaching, sitting close to, grooming, and soliciting, and they presented to a higher proportion of the male partner's sexual contacts. EB reliably increased the frequency of display of all of these same five responses in females but not in castrated males. The intact male partners displayed reliably fewer approaches, sexual contacts, mounts, intromissions, and ejaculations to castrated males than to spayed females regardless of estrogenization. In a second experiment 10 intact adult pseudohermaphroditic females and 6 intact control females were tested following EB injections with each of the same 4 intact males. Pseudohermaphrodites were experimentally produced by injecting pregnant females with either testosterone propionate (TP) or dihydrotestosterone propionate (DHTP). Pseudohermaphrodites, regardless of type of androgen used in their production, showed reliably fewer solicits than controls to male partners. Moreover, they displayed most of the other responses at lower average frequencies than controls. Frequencies of intromission and ejaculation by intact male partners were reliably lower with pseudohermaphrodites than with control females, but frequencies of approach, sexual contact, and mount were not reliably different. We conclude that in this testing and measurement situation male and female rhesus monkeys differ markedly in the degree of expression of female-typical sexual behaviors, and genotypic males are behaviorally less responsive to estrogens than females. Exposing genotypic females to androgens during fetal life decreases the expression of female-typical, estrogen-influenced responses, and the effect is most pronounced on those soliciting responses that subserve proceptivity.  相似文献   

5.
Two studies were conducted to determine the consequences of extended treatment with estradiol or testosterone on sexual behavior in postpubertal, female pigs. After ovariectomy, either steroid was administered for 6 weeks at dosages sufficient to maintain serum concentrations similar to those observed in mature male pigs. Behavioral evaluations were initiated 2 months after the last steroid treatment. These treatments reduced receptivity (immobile stance when placed with a mature male) and proceptivity (preference to remain near a mature male) in association with an increase in aggressive behavior. In females treated previously with both estradiol and progesterone, sexual behaviors 2 months later were similar to those of control females. When evaluations were repeated 5 months after extended estradiol treatment had ceased, receptivity and proceptivity had returned to that of control pigs and aggressive behavior had diminished greatly. Interpretation of these changes in behavior is that extended periods of estradiol or testosterone treatment sustain activational influences for a considerable amount of time after treatments cease and progesterone antagonizes estradiol's effect on these behaviors. In a companion study, pubertal and post-pubertal females were similar for receptivity but pubertal females spent less time near a mature male. This difference in proceptivity likely reflects a maturational change associated with sexual development in female pigs. Collectively, these observations in postpubertal, female pigs document that prolonged estrogen treatment will activate aggressive behaviors in association with reduced proceptivity and receptivity. Because these behavioral changes are reversible by 5 months after cessation of treatment, they are not the result of sexual differentiation.  相似文献   

6.
Luteinizing hormone-releasing hormone (LHRH) has been reported to facilitate lordotic behavior in estrogen-primed ovariectomized (OVX) female rats in a manner similar to progesterone (P). This study compared P and LHRH with respect to their behavioral effects and site of action within the brain. The hormones were compared using two different components of sexual behavior, receptivity and proceptivity. To test for receptivity, OVX females were given behaviorally ineffective estradiol benzoate (EB) injections sc 48 hr before testing. They were then treated with either P, LHRH, or vehicle by various routes. Two and/or four hours later, receptivity (LQ) was measured. Treatments for the proceptivity test were similar except that a larger EP-priming dose, which facilitates preceptive behavior, was used. Four hours later, LQ and hopping, darting, and earwiggling were scored. In the receptivity test, sc administration of 1 mg P or 1 μg LHRH (but not 0.5 or 5.0 μg) significantly elevated LQ with respect to vehicle injection 4 hr after treatment. In the proceptivity test, 0.5, 1.0, and 5.0 μg of LHRH given sc failed to alter significantly either LQ or soliciting behavior. Progesterone facilitated both parameters. Implantation of crystalline P into the midbrain reticular formation (MRF) has been shown to elicit both the receptive and preceptive effects of the steroid. Microinjection of as much as 100 ng of LHRH in 1.0 μl saline into the same region failed to enhance lordotic behavior compared to saline injection alone, while a 200-ng intracerebroventricular dose significantly facilitated lordosis at 4 hr. The data indicate that LHRH does not induce proceptive behavior. The effects of peripherally administered LHRH on receptive behavior are similar but less pronounced than those of P. The two hormones elicit this effect from different sites in the brain.  相似文献   

7.
Mating terminates behavioral estrus in the female lizard, Anolis carolinensis. Postcopulatory sexual inhibition was not observed in females receiving estradiol benzoate (EB) in 10-mm Silastic implants (0.025-in. i.d. × 0.047-in. o.d.). To determine the role of the ovaries in mating-induced inhibition, intact and ovariectomized females received either a 6-mm EB implant or a 0.8-μg EB injection. Ovariectomized females remained sexually receptive after copulation while intact females were no longer receptive. Progesterone was implicated in the regulation of postcopulatory sexual receptivity. Several models are proposed to explain these results, and the adaptive significance of coition-induced sexual inhibition is discussed.  相似文献   

8.
High lordosis quotients (LQ) were observed when female Wistar rats injected with 1.25 mgm of testosterone propionate (TP) on Day 4 of postnatal life were tested as intact adults. The high LQ was not due to testing during the lights-on period, the age at which the females were tested, the use of a strain that was insensitive to the masculinizing action of TP or estradiol benzoate (EB), the age at which the females were injected with TP or EB, or an abnormal response to estrogen. High LQ values were found in similar tests on adult female rats of two other strains injected with 1.25 mgm TP on Day 4 of life. A marked reduction of the facilitatory action of progesterone on receptivity in estrogen-primed animals was demonstrated in the females of all three strains treated with TP or EB during the neonatal period and for males after castration as adults.Analysis of the experimental records of the mating tests showed that females anovulatory following TP or EB administration during the neonatal period and tested either intact and under the influence of endogenous hormones or under the influence of exogenous estrogen showed a rapid and highly significant increase in receptivity during the course of prolonged (20 min) tests with two or three active stimulus males. This effect was very much reduced if the treated females were under the influence of exogenous estrogen plus progesterone. The effect was not seen in males castrated as adults and treated with estrogen, or in females not treated with steroids in the neonatal period and tested intact at proestrus alone or under the influence of exogenous steroids after ovariectomy. A significant increase in LQ during the test period was observed in females of the Wistar strain which were anovulatory as a result of exposure to constant light and were tested intact without any exogenous hormone being administered.It is suggested that although tests involving a limited number of mounts or attempts to mount at low rates over a short period of time may be adequate to determine the degree of receptivity of normal female rats they are not adequate to establish the capacity of female rats treated with steroid hormones during the neonatal period to display the lordosis response.  相似文献   

9.
The neuropeptide cholecystokinin (CCK) inhibits lordosis behavior when infused into the ventromedial nucleus of the hypothalamus (VMN) of female rats and has no effect when infused into the VMN of male rats. To test whether this sex difference develops under the control of perinatal steroids, male rats were castrated or given sham surgeries within 3 h of birth and female rats were injected with either 0 or 100 micrograms testosterone propionate on postnatal day 5. As adults, these rats were castrated as necessary, implanted with unilateral cannulae directed at the VMN, and tested for their ability to display female sexual behavior and to respond to CCK. Neonatal castration of males prevented defeminization of this response. When treated with 5 micrograms estradiol benzoate (EB), neonatally castrated males showed both lordosis behavior and a profound inhibition of that behavior after infusions of CCK. Neonatally castrated males did not display lordosis behavior when treated with 2 micrograms EB. Control males showed no lordosis behavior and, therefore, no response to CCK. Both doses of EB induced lordosis behavior in neonatally androgenized females. Significantly, these neonatally androgenized females were less responsive to CCK's inhibition of lordosis and were also anovulatory. These results imply that androgens alter the development of CCK responsive circuits as well as defeminize cyclic gonadotropin release. Levels of 125I-sCCK-8 binding in the VMN were correlated closely with an individual's ability to respond to sCCK-8. In summary, the inhibition of female sexual behavior caused by exogenously administered CCK in normal adult female rats appears to be controlled at least partially by levels of CCK receptors in the VMN and to differentiate under the control of perinatally present testosterone.  相似文献   

10.
Intracranial implantation of minute pellets of gonadal steroids was performed to determine neuroanatomical loci at which steroids activate sexual behavior in the Japanese quail (Coturnix japonica). In this species, systemic treatment of castrated males with either testosterone propionate (TP) or estradiol benzoate (EB) restores male-typical copulatory behavior (head grabbing, mounting, and cloacal contact movements). In addition, EB activates female-typical receptive behavior (crouching). Adult male castrated quail were implanted intracranially with 300-micrograms pellets containing TP, EB, or cholesterol (CHOL) and behavior was tested with intact males and females. Either TP or EB pellets in the preoptic area (POA) activated male-typical copulatory behavior. Mounting was specifically activated without concomitant activation of other steroid-sensitive sexual and courtship behaviors. TP and EB implants in adjacent nuclei containing receptors for these steroids and CHOL implants in POA had no effect on male-typical copulatory behavior. Eighteen percent of all males tested for female-typical receptivity crouched, but no specific effect of EB was seen at any site. The similarity of the POA sites for activation of mounting by TP and EB is consistent with the hypothesis that cells within the POA aromatize testosterone to estrogens, which directly stimulate the cellular processes leading to behavioral activation.  相似文献   

11.
Effects of sex steroids on urine-marking activity were studied in male, female, and neonatally androgenized female mice. Urine marking was estimated by suspending ceramic tubes that were connected in a horizontal row with a steel rod into the home cage of an isolated mouse. Intact males showed high marking activity, which was diminished after castration. Both testosterone propionate (TP) and estradiol benzoate (EB) were effective in restoring the marking activity of castrated males, while 5-alpha-dihydrotesterone (DHT) did not have any stimulative effects. Intact normal females showed quite low marking activity and ovariectomy further depressed it. TP and DHT enhanced the marking of ovariectomized females, but EB restored the activity only to the preovariectomy level. In intact females which were neonatally androgenized, the marking activity was much higher than that of normal females. The pattern of the change induced by gonadectomy and hormone treatment in these females resembled that in males. Thus, ovariectomy reduced the activity and both TP and EB restored the level. These results indicate that the sexual dimorphism in the urine marking in mice is primarily determined by hormonal environment during early postnatal age. Hormonal control of scent marking is discussed in relation to the studies in other rodents.  相似文献   

12.
The goals of this study were to characterize sex behaviors of female South African clawed frogs, Xenopus laevis, and to explore the behavioral effects of endocrine manipulation. The responses of females to clasp assaults by sexually active males were observed. Two patterns of female responses predominated. In one, females exhibited extreme leg extension and ticking vocalizations when clasped (unreceptive behaviors). In the other, females responded to being clasped by adduction of the thighs and increased flexion at the knee; ticking vocalizations were absent (receptive behaviors). When the female was unreceptive, clasps by males generally lasted less than 1 min. With a receptive female, on the other hand, amplexus could last up to 2 days. In intact females, injection of human chorionic gonadotropin (HCG) or of luteinizing hormone-releasing hormone (LHRH) into the dorsal lymph sac results in significant increases in receptivity. These hormones do not promote receptivity in ovariectomized females. Neither estradiol (E) nor progesterone (P) when administered alone was effective in restoring receptivity to ovariectomized females. In combination, E + P increased sexual receptivity. The releasing hormone, LHRH, when given to ovariectomized, E + P-treated females, further increased receptivity and led to the prolonged amplexus otherwise observed with an HCG-injected intact female. The behavioral effects of LHRH may be independent of action on the pituitary since they are not mimicked by gonadotropin.  相似文献   

13.
Treatment of nestling zebra finches with estradiol benzoate (EB) has been shown to masculinize singing in females and demasculinize copulatory behavior in males, suggesting that sexual differentiation of these behaviors is under hormonal control such that testicular hormones induce the capacity for song and ovarian hormones suppress the capacity for mounting. Two experiments were carried out to obtain a more complete picture of sexual differentiation in this species. In Experiment 1, nestlings were injected daily for the first 2 weeks after hatching with testosterone propionate (TP), dihydrotestosterone propionate (DHTP), or a combination of DHTP and EB. As adults, birds were gonadectomized and implanted with TP prior to testing, then tested again after implantation with EB. Singing was not increased in females by any of the treatments. The only effect of either TP or DHTP given alone was defeminization of female proceptive behavior by DHTP. Thus androgens appear to have less influence than estrogens on sexual differentiation of behavior in this species. The combination of DHTP and EB demasculinized mounting in males. In Experiment 2, nestlings were gonadectomized at 7-9 days of age and implanted with TP prior to testing in adulthood. Early gonadectomy had little effect on later behavior; early castrated males sang, danced, and copulated normally and early ovariectomized females neither sang nor mounted.  相似文献   

14.
Two brain areas behaviorally responsive to progesterone (P) were examined to determine their possible involvement in the control of rat preceptive behavior, i.e., solicitation behavior directed at the male. Progesterone implants were placed in the habenular nuclei and the interpeduncular nucleus-ventral tegmental area of the midbrain reticular formation (MRF). Different testing procedures and levels of priming with estradiol benzoate (EB) were used in order to distinguish the effects of P in either region on proceptive and receptive behavior during exposure to 10 mounts by stimulus males. To test for receptivity, sexually experienced 60-day-old ovariectomized (ovx) rats bearing stereotaxically placed guide cannulas extending to the habenula or MRF were given 10 μg EB subcutaneously. Forty-eight hours later, lordosis quotient (LQ) was determined. Immediately following this test, each animal was implanted with cholesterol (C) or P and was retested 2 hr later. Treatments for the proceptivity test were similar except that the animals received 2.5 μg EB/100 g body wt sc for 7 days before testing on the eighth day; LQ as well as hopping, darting, and ear wiggling were scored. In the receptivity test, P implantation in both the medial portions of the habenula and the MRF significantly increased lordosis above the levels found both in their preimplantation tests and following control implantation of C. Little proceptivity was observed. In the proceptivity test, P implants in both regions also significantly increased proceptive behavior above both types of control tests. All animals were highly receptive, and there was no difference in LQ among the groups. There was no increase of plasma P levels in similarly implanted animals during a 24-hr monitoring period, indicating that systemic leakage of the hormone was not responsible for the observed behavior. The data indicate that both the habenula and MRF are P-sensitive regions. Progesterone's action on the two areas facilitates expression of both proceptive and receptive components of female sexual behavior, indicating that the neural regulation of the two kinds of behavior is integrated at these levels.  相似文献   

15.
The mechanisms involved in the control of precocious sexual receptivity were studied in 4-day cyclic female Wistar rats injected with 10 μg estradiol benzoate (EB) and caged with a male during the night from diestrus II to proestrus. Early mating frequencies were compared in intact females, in animals ovariectomized on the morning of diestrus I, in adrenalectomized and in adrenalectomized-ovariectomized females. No change in early sexual receptivity occurred either in ovariectomized, or in adrenalectomized animals. On the contrary, a significant decrease of precocious mating frequencies was noted in adrenalectomized-ovariectomized females. The role played by the ovary in the control of precocious receptivity was supposed to be due to the secretion of progesterone which has been evidenced on the late afternoon of diestrus II in estrogen treated females.Concerning the mechanisms by which the adrenals may compensate for the ovaries in the control of early sexual receptivity in estrogen-primed females it was observed that notwithstanding an inhibitory action exerted by EB on the adrenal progesterone secretion, a low rate of progesterone was maintained in the peripheral plasma which was compatible with early mating in ovariectomized animals.  相似文献   

16.
Intact, ovariectomized and ovariectomized estradiol (E)-treated female gray short-tailed opossums were placed in a test situation in which they could choose between an intact and a castrated male. Intact females chose to visit intact males first and visited them more frequently and spent more time with intact than with castrated males. Ovariectomized (OVX) females did not show this preference for visiting intact males over castrates. When compared to OVX females with blank implants, OVX females with E implants spent less time with castrated males. Like intact females, OVX and OVX-E-treated females preferred to stay in close proximity to but not actually in the cage of intact rather than castrated males. To our knowledge, this is the first experimental study of partner preference and its relationship to hormonal condition in a female marsupial.  相似文献   

17.
Three heterosexual groups of six to eight monkeys were studied; all females were ovariectomized, whereas males were either intact or castrated. Aggressive hierarchies were evident in all groups, with females generally outranking males. When females were treated with estradiol, all males looked more frequently at the latters' sexual skin swellings, but only one male who was both dominant and intact copulated with them. Thus, either castration or low rank resulted in decreased levels of sexual behavior in male talapoins. The sexual behavior of dominant castrated males was restored by testosterone therapy, whereas subordinate castrates never copulated, even after large doses of testosterone, though penile erections and ejaculatory reflex (during masturbation) were restored. Following removal of a dominant male, the sexual behavior of the next male in rank was restored, provided he was not castrated and untreated. In contrast to males, female talapoins showed no consistent correlation between their rank and sexual activity. Estradiol therapy was without overall effect upon the frequency of female mounting behavior, though some females mounted and presented to one another more often. Estradiol treatment also caused females to present to males more frequently, but only to those that were sexually active (i.e., who mounted females).  相似文献   

18.
The neural mechanisms controlling sexual behavior are sexually differentiated by perinatal actions of gonadal hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estrogens, that exposure to prenatal estrogens completely defeminized their potential to show lordosis behavior in adulthood. Therefore, we determined here whether mate preferences were also affected in female AFP-KO mice. We observed a robust preference for an estrous female over an intact male in female AFP-KO mice, which were ovariectomized in adulthood and subsequently treated with estradiol and progesterone, whereas similarly treated WT females preferred the intact male over the estrous female. Gonadally intact WT males preferred the estrous female over the male, but only when visual cues were blocked by placing stimulus animals behind opaque partitions. Furthermore, when given the choice between an intact male and a castrated male, WT females preferred the intact male, whereas AFP-KO females showed no preference. Finally when given the choice between an estrous female and an ovariectomized female, WT males preferred the estrous female whereas AFP-KO females preferred the ovariectomized female or showed no preference depending on whether they could see the stimulus animals or not. Taken together, when AFP-KO females are tested under estrous conditions, they do not show any male-directed preferences, indicating a reduced sexual motivation to seek out the male in these females. However, they do not completely resemble males in their mate preferences suggesting that the male-typical pattern of mate preferences is not solely organized by prenatal estrogens.  相似文献   

19.
Mating behavior in both intact and gonadectomized garter snakes (Thamnophis sirtalis sirtalis) was measured following hormone administration. Male courtship was androgen-dependent; subcutaneous implants of crystalline testosterone propionate (TP) pellets induced mating behavior within 2 days in both intact, reproductively inactive males and castrated males. Female attractivity, as measured by male courtship of the female, was stimulated by exogenous estrogen; 20 μg/day of estradiol benzoate (EB) was the minimum effective dose for stimulating female attractivity in both intact, reproductively inactive females and ovariectomized females. TP-implanted males selectively courted EB-primed females in both sequential and simultaneous (choice) mating tests. It is probable that males use estrogen-dependent olfactory cues produced by the females to discriminate between hormone- and vehicle-injected females.  相似文献   

20.
In many species of small mammals, including meadow voles, Microtus pennsylvanicus, females come into postpartum estrus (PPE) within 12–24 h of giving birth, allowing them to mate and become pregnant while raising the current litter. PPE females show increases in attractivity, proceptivity, and receptivity, the three components of sexual behavior, relative to females not in PPE. Several studies have shown that food deprivation and restriction reduce attractivity, proceptivity, and receptivity of females not in PPE. We tested the hypothesis that food deprivation and restriction during late gestation cause deficits and decrease the attractivity, proceptivity, and receptivity of females when they enter PPE. Our data support the hypothesis. On day 1 of lactation, females that were food deprived and food restricted produced scent marks that were significantly less attractive as those produced by control PPE females. Food deprivation but not food restriction caused females to no longer display significant preferences for the scent marks of males over those of females (proceptivity). Food deprivation and food restriction were sufficient to induce females to become significantly less sexually receptive than control females. Eleven of 12 control PPE females mated, 4 of 12 food‐restricted females mated, and 3 of 12 food‐deprived females mated. Dams facing food deprivation or restriction during late gestation may have to balance the benefits of mating during PPE with the increased costs associated with getting pregnant while they are lactating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号