首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A new animal model, the streptomycin-treated mini-pig, was developed in order to allow colonization of defined strains of Enterococcus faecalis in numbers sufficient to study plasmid transfer. Transfer of the pheromone-inducible pCF10 plasmid between streptomycin-resistant strains of E. faecalis OG1 was investigated in the model. The plasmid encodes resistance to tetracycline. Numbers of recipient, donor, and transconjugant bacteria were monitored by selective plating of fecal samples, and transconjugants were subsequently verified by PCR. After being ingested by the mini-pigs, the recipient strain persisted in the intestine at levels between 106 and 107 CFU per g of feces throughout the experiment. The donor strain, which carried different resistance markers but was otherwise chromosomally isogenic to the recipient strain, was given to the pigs 3 weeks after the recipient strain. The donor cells were initially present in high numbers (106 CFU per g) in feces, but they did not persist in the intestine at detectable levels. Immediately after introduction of the donor bacteria, transconjugant cells appeared and persisted in fecal samples at levels between 103 and 104 CFU per g until the end of the experiment. These observations showed that even in the absence of selective tetracycline pressure, plasmid pCF10 was transferred from ingested E. faecalis cells to other E. faecalis organisms already present in the intestinal environment and that the plasmid subsequently persisted in the intestine.  相似文献   

2.
The Enterococcus faecalis conjugative plasmid pCF10 was used to introduce Tn925 into Acetobacterium woodii by filter mating. Tetracycline resistance was transferred at frequencies of about 10(-6) per donor, but no plasmid DNA was found in the transconjugants. DNA hybridization analyses of HindIII-digested chromosomal DNA demonstrated the insertion of Tn925 at a variety of locations, whereas wild type DNA showed no hybridization at all. The transconjugants were used as donor in mating experiments with tetracycline-sensitive Bacillus subtilis. Transfer of tetracycline resistance was observed at frequencies of 10(-8) per recipient.  相似文献   

3.
4.
Conjugative transfer of the Enterococcus faecalis tetracycline resistance plasmid pCF10 is stimulated by a peptide pheromone, cCF10. Once a recipient strain acquires pCF10 and thus becomes a pheromone-responsive donor, cCF10 activity is no longer detected in culture filtrates. Here we show that pCF10 encodes a peptide inhibitor, iCF10, secreted by donor cells; this inhibitor antagonizes the cCF10 activity in culture filtrates. In order to detect and quantitate iCF10, we developed a reverse-phase high-performance liquid chromatography assay in which the inhibitor peptide elutes separately from the pheromone; this type of assay enabled us to determine that lack of pheromone activity in donor culture filtrates was due to secretion of a mixture of iCF10 and cCF10, rather than abolition of cCF10 secretion. The gene encoding iCF10, prgQ, is located on the EcoRI-C fragment of pCF10. The open reading frame comprising the prgQ gene encodes a 23-amino-acid precursor that resembles a signal peptide. This precursor is cleaved to the mature heptapeptide iCF10 during the secretion process.  相似文献   

5.
The human microbiota is suggested to be a reservoir of antibiotic resistance (ABR) genes, which are exchangeable between transient colonizers and residing bacteria. In this study, the transfer of ABR genes from Enterococcus faecalis to Listeria monocytogenes and to commensal bacteria of the human gut microbiota was demonstrated in a colonic fermentation model. In the first fermentation, an E. faecalis donor harboring the marked 50-kb conjugative plasmid pRE25(*) and a chromosomal marker was co-immobilized with L. monocytogenes and infant feces. In this complex environment, the transfer of pRE25(*) to L. monocytogenes was observed. In a second fermentation, only the E. faecalis donor and feces were co-immobilized. Enumeration of pRE25(*) and the donor strain by quantitative PCR revealed an increasing ratio of pRE25(*) to the donor throughout the 16-day fermentation, indicating the transfer of pRE25(*) . An Enterococcus avium transconjugant was isolated, demonstrating that ABR gene transfer to gut commensals occurred. Moreover, pRE25(*) was still functional in both the E. avium and the L. monocytogenes transconjugant and transmittable to other genera in filter mating experiments. Our study reveals that the transfer of a multiresistance plasmid to commensal bacteria in the presence of competing fecal microbiota occurs in a colonic model, suggesting that commensal bacteria contribute to the increasing prevalence of antibiotic-resistant bacteria.  相似文献   

6.
Tetracycline resistance was transferred at frequencies between 10(-7) and 10(-6) per recipient cell in anaerobic matings between two strains of the strictly anaerobic rumen bacterium Bacteroides ruminicola. The donor strain, 223/M2/7, was a multiple-plasmid-bearing tetracycline-resistant strain from the ovine rumen, and the recipient, F101, was a rifampin-resistant mutant of B14, a bovine strain belonging to B. ruminicola subsp. brevis. Resistance transfer could occur in the presence of DNase, but not in dummy mating mixtures in which filtrate from a donor culture replaced donor cells. Acquisition of tetracycline resistance by the recipient was accompanied by the appearance of a 19.5-kilobase pair plasmid (designated pRRI4) which was homologous with a plasmid of similar size and restriction pattern present in the donor strain. A transconjugant (F115) carrying pRRI4 was also able to act as a donor of tetracycline resistance and plasmid DNA in matings with another recipient. Derivatives of F115 that had spontaneously lost tetracycline resistance lacked detectable plasmid DNA. It is concluded that pRRI4 mediated the transfer of tetracycline resistance. Transfer of resistance was not detectably enhanced by pregrowth of the donor in medium containing tetracycline. Transfer of tetracycline resistance was not detected from 223/M2/7 to a strain, 23 belonging to B. ruminicola subsp. ruminicola.  相似文献   

7.
8.
Tetracycline resistance was transferred at frequencies between 10(-7) and 10(-6) per recipient cell in anaerobic matings between two strains of the strictly anaerobic rumen bacterium Bacteroides ruminicola. The donor strain, 223/M2/7, was a multiple-plasmid-bearing tetracycline-resistant strain from the ovine rumen, and the recipient, F101, was a rifampin-resistant mutant of B14, a bovine strain belonging to B. ruminicola subsp. brevis. Resistance transfer could occur in the presence of DNase, but not in dummy mating mixtures in which filtrate from a donor culture replaced donor cells. Acquisition of tetracycline resistance by the recipient was accompanied by the appearance of a 19.5-kilobase pair plasmid (designated pRRI4) which was homologous with a plasmid of similar size and restriction pattern present in the donor strain. A transconjugant (F115) carrying pRRI4 was also able to act as a donor of tetracycline resistance and plasmid DNA in matings with another recipient. Derivatives of F115 that had spontaneously lost tetracycline resistance lacked detectable plasmid DNA. It is concluded that pRRI4 mediated the transfer of tetracycline resistance. Transfer of resistance was not detectably enhanced by pregrowth of the donor in medium containing tetracycline. Transfer of tetracycline resistance was not detected from 223/M2/7 to a strain, 23 belonging to B. ruminicola subsp. ruminicola.  相似文献   

9.
As part of an effort to develop systems for genetic analysis of strains of Bacillus pumilus which are being used as a microbial hay preservative, we introduced the conjugative Enterococcus faecalis transposon Tn916 into B. pumilus ATCC 1 and two naturally occurring hay isolates of B. pumilus. B. pumilus transconjugants resistant to tetracycline were detected at a frequency of approximately 6.5 x 10(-7) per recipient after filter mating with E. faecalis CG110. Southern hybridization confirmed the insertion of Tn916 into several different sites in the B. pumilus chromosome. Transfer of Tn916 also was observed between strains of B. pumilus in filter matings, and one donor strain transferred tetracycline resistance to recipients in broth matings at high frequency (up to 3.4 x 10(-5) per recipient). Transfer from this donor strain in broth matings was DNase-resistant and was not mediated by culture filtrates. Transconjugants from these broth matings contained derivatives of a cryptic plasmid (pMGD302, approx 60 kb) from the donor strain with Tn916 inserted at various sites. The plasmids containing Tn916 insertions transferred to a B. pumilus recipient strain at frequencies of approx 5 x 10(-6) per recipient. This evidence suggests that pMGD302 can transfer by a process resembling conjugation between strains of B. pumilus.  相似文献   

10.
The effect of synthetic sex pheromone on pheromone-inducible conjugation between the isogenic Enterococcus faecalis strains OG1RF and OG1SS was investigated in (i) Todd-Hewitt broth medium and (ii) intestinal mucus isolated from germ-free rats. In broth, the presence of synthetic pheromone cCF10 had no detectable effect on the transfer kinetics observed for the tetracycline resistance encoding plasmid pCF10. In mucus, presence of the same pheromone significantly increased the transfer efficiency observed during the first 2 h of conjugation, while the effect was less pronounced later in the experiment. We suggest that due to differences in diffusion rates and medium-binding of the pheromones, the effect of the synthetic cCF10 was immediately dominated by the effect of pheromones produced by the recipient E. faecalis strain in broth, while this happened later in mucus.  相似文献   

11.
A computer simulation model was used to predict the dynamics of survival and conjugation of Pseudomonas cepacia (carrying the transmissible recombinant plasmid R388:Tn1721) with a nonrecombinant recipient strain in simple rhizosphere and phyllosphere microcosms. Plasmid transfer rates were derived for a mass action model, and donor and recipient survival were modeled as exponential growth and decay processes or both. Rate parameters were derived from laboratory studies in which donor and recipient strains were incubated in test tubes with a peat-vermiculite solution or on excised radish or bean leaves in petri dishes. The model predicted donor, recipient, and transconjugant populations in hourly time steps. It was tested in a microcosm planted with radish seeds and inoculated with donor and recipient strains and on leaf surfaces of radish and bean plants also growing in microcosms. Bacteria were periodically enumerated on selective media over 7 to 14 days. When donor and recipient populations were 10(6) to 10(8) CFU/g (wet weight) of plant or soil, transconjugant populations of about 10(1) to 10(4) were observed after 1 day. An initial rapid increase and a subsequent decline in numbers of transconjugants in the rhizosphere and on leaf surfaces were correctly predicted.  相似文献   

12.
A computer simulation model was used to predict the dynamics of survival and conjugation of Pseudomonas cepacia (carrying the transmissible recombinant plasmid R388:Tn1721) with a nonrecombinant recipient strain in simple rhizosphere and phyllosphere microcosms. Plasmid transfer rates were derived for a mass action model, and donor and recipient survival were modeled as exponential growth and decay processes or both. Rate parameters were derived from laboratory studies in which donor and recipient strains were incubated in test tubes with a peat-vermiculite solution or on excised radish or bean leaves in petri dishes. The model predicted donor, recipient, and transconjugant populations in hourly time steps. It was tested in a microcosm planted with radish seeds and inoculated with donor and recipient strains and on leaf surfaces of radish and bean plants also growing in microcosms. Bacteria were periodically enumerated on selective media over 7 to 14 days. When donor and recipient populations were 10(6) to 10(8) CFU/g (wet weight) of plant or soil, transconjugant populations of about 10(1) to 10(4) were observed after 1 day. An initial rapid increase and a subsequent decline in numbers of transconjugants in the rhizosphere and on leaf surfaces were correctly predicted.  相似文献   

13.
Fragments, generated by restriction enzyme digestion, of the 58-kilobase Enterococcus (Streptococcus) faecalis tetracycline resistance plasmid pCF10 were cloned and introduced into Escherichia coli and E. faecalis to characterize the pheromone-inducible conjugation system encoded by this plasmid. Western blot (immunoblot) analyses revealed that a 130-kilodalton (kDa) antigen, identical to the Tra130 antigen shown previously to be involved in pCF10-mediated pheromone-inducible surface exclusion, was produced by both bacterial hosts carrying the recombinant plasmid pINY1825 (cloned EcoRI C fragment). Both bacterial hosts carrying pINY1825 also produced various amounts of immunologically related 118- to 125-kDa antigens (designated pre-Tra130) that resembled antigens produced by E. faecalis cells carrying pCF10. An additional 150-kDa antigen, Tra150, probably involved in pheromone-induced cellular aggregation, was produced by Escherichia coli and E. faecalis hosts carrying pINY1801 (cloned EcoRI C and E fragments). The coding sequences for the Tra150 and Tra130 antigens were further localized in the TRA region of pCF10 by transposon insertion mutagenesis. Western blot analyses of the recombinant strains, and of strains carrying derivatives of pCF10 or various recombinant plasmids containing Tn5 or Tn917 insertions, suggested that the portion of pCF10 comprising the tra3 through -6 segments (previously defined by Tn917 insertional mutagenesis) contained several genes that are involved in regulating the synthesis of Tra130 and Tra150.  相似文献   

14.
The house fly (Musca domestica L.) alimentary canal was evaluated for the potential of horizontal transfer of tetM on plasmid pCF10 among Enterococcus faecalis. Two sets of experiments were conducted: (1) house flies without surface sterilization and (2) surface-sterilized flies. Both sets of flies were exposed to E. faecalis OG1RF:pCF10 as donor for 12 h and then E. faecalis OG1SSp as recipient for 1 h. Another group of flies received the recipient first for 12 h followed by exposure to the donor strain for 1 h. House flies were screened daily to determine the donor, recipient, and transconjugant bacterial load for up to 5 days. In addition, the sponge-like mouth parts used for food uptake (labellum) of surface-sterilized house flies were removed and analyzed for donors, recipients, and transconjugants, separately. In both groups of flies (n = 90 flies/group), transfer occurred within 24 h after exposure with a transconjugant/donor rate from 8.6 × 10−5 to 4.5 × 101. Transconjugants were also isolated from the house fly labellum. Our data suggest that the house fly digestive tract provides a suitable environment for horizontal transfer of conjugative plasmids and antibiotic resistance genes among enterococci. Our results emphasize the importance of this insect as a potential vector of antibiotic-resistant bacterial strains.  相似文献   

15.
We have identified two 19-kb conjugative transposons (Tn5381 and Tn5383) in separate strains of multiply resistant Enterococcus faecalis. These transposons confer resistance to tetracycline and minocycline via a tetM gene, are capable of both chromosomal and plasmid integration in a Rec- environment, and transfer between strains in the absence of detectable plasmid DNA at frequencies ranging from < 1 x 10(-9) to 2 x 10(-5) per donor CFU, depending on the donor strain and the growth conditions. Hybridization studies indicate that these transposons are closely related to Tn916. We have identified bands of ca. 19 kb on agarose gel separations of alkaline lysis preparations from E. faecalis strains containing chromosomal copies of Tn5381, which we have confirmed to be a circularized form of this transposon. This phenomenon has previously been observed only when Tn916 has been cloned in Escherichia coli. Overnight growth of donor strains in the presence of subinhibitory concentrations of tetracycline results in an approximately 10-fold increase in transfer frequency of Tn5381 into enterococcal recipients and an increase in the amount of the circular form of Tn5381 as detectable by hybridization. These results suggest that Tn5381 is a Tn916-related conjugative transposon for which the appearance of a circular form and the conjugative-transfer frequency are regulated by a mechanism(s) affected by the presence of tetracycline in the growth medium.  相似文献   

16.
Enterococci are one of the major facultative anaerobic bacterial groups that reside in the human gastrointestinal tract. In the present study, the composition of the enterococcal fecal flora in three healthy humans was analyzed before, during, and after the daily consumption of approximately 125 g of a raw-milk Cheddar-type cheese containing 3.2 x 10(4) enterococci/g of cheese. Enterococcal counts ranged between 1.4 x 10(2) and 2.5 x 10(8) CFU/g of feces and differed from subject to subject and from week to week. The cheese contained mainly Enterococcus casseliflavus and a small population of Enterococcus faecalis. Clonal relationships were determined by pulsed-field gel electrophoresis. Before and after consumption of the cheese, samples from humans contained mainly Enterococcus faecium, with some of the clones being resident. During consumption of the cheese, one particular transient clone of E. faecalis, clone Fs2, which was present in small numbers in the cheese, largely dominated the feces. Two clones of E. casseliflavus from the cheese were also found in the feces of one of the subjects during cheese consumption. These results suggest that a clone need not be present in a food in high numbers to establish itself in the intestine.  相似文献   

17.
Conjugative transfer of Enterococcus faecalis plasmid pCF10 is induced by the heptapeptide pheromone cCF10. cCF10 produced by plasmid-free recipient cells is detected by pCF10-containing donor cells, which respond by induction of plasmid-encoded transfer functions. The pCF10-encoded membrane protein PrgY is essential to prevent donor cells from responding to endogenously produced pheromone while maintaining the ability to respond to pheromone from an exogenous source; this function has not been identified in any nonenterococcal prokaryotic signaling system. PrgY specifically inhibited endogenous cCF10 and cPD1 (a pheromone that induces transfer of closely related plasmid pPD1) but not cAD1 (which is specific for less-related plasmid pAD1). Ectopic expression of PrgY in plasmid-free recipient cells reduced pheromone activity in culture supernatants and reduced the ability of these cells to acquire pCF10 by conjugation but did not have any effect on the interaction of these cells with exogenously supplied cCF10. The cloned prgY gene could complement a pCF10 prgY null mutation, and complementation was used to identify point mutations impairing PrgY function. Such mutations also abolished the inhibitory effect of PrgY expression in recipients on pheromone production and on acquisition of pCF10. Most randomly generated point mutations identified in the genetic screen mapped to a predicted extracellular domain in the N terminus of PrgY that is conserved in a newly identified family of related proteins from disparate species including Borrelia burgdorferi, Archaeoglobus fulgidus, Arabidopsis thaliana, and Homo sapiens. The combined genetic and physiological data suggest that PrgY may sequester or inactivate cCF10 as it is released from the membrane.  相似文献   

18.
Enterococcus faecalis, a leading cause of nosocomial antibiotic resistant infections, frequently possesses a 150 kb pathogenicity island (PAI) that carries virulence determinants. The presence of excisionase and integrase genes, conjugative functions and multiple insertion sequence elements suggests that the PAI, or segments thereof, might be capable of horizontal transfer. In this report, the transfer of the E. faecalis PAI is demonstrated and a mechanism for transfer elucidated. In filter matings, chloramphenicol resistance was observed to transfer from strain MMH594b, a clinical isolate possessing the PAI tagged with a cat marker, to OG1RF (pCGC) with a frequency of 3.2 x 10(-10) per donor. Secondary transfer from primary transconjugant TCRFB1 to strain JH2SS in filter and broth matings occurred with a frequency of 1 and 2 x 10(-1) per donor respectively. Analysis of the transconjugants demonstrated that a 27,744 bp internal PAI segment was capable of excision and circularization in the donor, and is mobilized as a cointegrate with a pTEF1-like plasmid. High-frequency transfer also occurred from TCRFB1 to JH2SS during transient colonization of the mouse gastrointestinal tract. This is the first demonstration of the horizontal transfer of PAI-encoded virulence determinants in E. faecalis and has implications for genome evolution and diversity.  相似文献   

19.
Most gene transfer studies have been performed with relatively homogeneous soil systems in the absence of soil macrobiota, including invertebrates. In this study we examined the influence of earthworm activity (burrowing, casting, and feeding) on transfer of plasmid pJP4 between spatially separated donor (Alcaligenes eutrophus) and recipient (Pseudomonas fluorescens) bacteria in nonsterile soil columns. A model system was designed such that the activity of earthworms would act to mediate cell contact and gene transfer. Three different earthworm species (Aporrectodea trapezoides, Lumbricus rubellus, and Lumbricus terrestris), representing each of the major ecological categories (endogeic, epigeic, and anecic), were evaluated. Inoculated soil microcosms, with and without added earthworms, were analyzed for donor, recipient, and transconjugant bacteria at 5-cm-depth intervals by using selective plating techniques. Transconjugants were confirmed by colony hybridization with a mer gene probe. The presence of earthworms significantly increased dispersal of the donor and recipient strains. In situ gene transfer of plasmid pJP4 from A. eutrophus to P. fluorescens was detected only in earthworm-containing microcosms, at a frequency of (symbl)10(sup2) transconjugants per g of soil. The depth of recovery was dependent on the burrowing behavior of each earthworm species; however, there was no significant difference in the total number of transconjugants among the earthworm species. Donor and recipient bacteria were recovered from earthworm feces (casts) of all three earthworm species, with numbers up to 10(sup6) and 10(sup4) bacteria per g of cast, respectively. A. trapezoides egg capsules (cocoons) formed in the inoculated soil microcosms contained up to 10(sup7) donor and 10(sup6) recipient bacteria per g of cocoon. No transconjugant bacteria, however, were recovered from these microhabitats. To our knowledge, this is the first report of gene transfer between physically isolated bacteria in nonsterile soil, using burrowing earthworms as a biological factor to facilitate cell-to-cell contact.  相似文献   

20.
Plasmid transfer between strains of Bacillus thuringiensis subsp. israelensis was studied under a range of environmentally relevant laboratory conditions in vitro, in river water, and in mosquito larvae. Mobilization of pBC16 was detected in vitro at a range of temperatures, pH values, and available water conditions, and the maximum transfer ratio was 10(-3) transconjugant per recipient under optimal conditions. Transfer of conjugative plasmid pXO16::Tn5401 was also detected under this range of conditions. However, a maximum transfer ratio of 1.0 transconjugant per recipient was attained, and every recipient became a transconjugant. In river water, transfer of pBC16 was not detected, probably as a result of the low transfer frequency for this plasmid and the formation of spores by the introduced donor and recipient strains. In contrast, transfer of plasmid pXO16::Tn5401 was detected in water, but at a lower transfer ratio (ca. 10(-2) transconjugant per donor). The number of transconjugants increased over the first 7 days, probably as a result of new transfer events between cells, since growth of both donor and recipient cells in water was not detected. Mobilization of pBC16 was not detected in killed mosquito larvae, but transfer of plasmid pXO16::Tn5401 was evident, with a maximum rate of 10(-3) transconjugant per donor. The reduced transfer rate in insects compared to broth cultures may be accounted for by competition from the background bacterial population present in the mosquito gut and diet or by the maintenance of a large population of B. thuringiensis spores in the insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号