首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initial studies of the prophylactic effect of parenterally administered respiratory syncytial virus (RSV)-neutralizing antibodies in cotton rats indicated that virus replication in lung tissues was restricted when animals with preexisting antibody titers in serum of 1:100 or more (as measured by plaque reduction) were challenged intranasally with 10(4) PFU of virus. Subsequently, a therapeutic effect of parenterally administered RSV antibodies (present in human gamma globulin) was demonstrated in both cotton rats and owl monkeys. Parenteral inoculation of RSV-infected cotton rats or owl monkeys with purified human immunoglobulin licensed for intravenous administration in humans (IVIG) effected a 10(-1.7) to 10(-2.7) reduction in the level of pulmonary virus at the height of infection. Because of these encouraging results, we examined topical administration of IVIG to determine whether it was also effective and whether it offered an advantage over the parenteral route with regard to simplicity and the dose required for full therapeutic effect. IVIG (0.025 g/kg) administered topically by the intranasal route to anesthetized cotton rats at the height of RSV infection effected a 10(2.2)-fold reduction in viral titers of pulmonary tissues and a complete clearance of detectable virus in 92% of the animals within 24 h. In contrast, 4 g of IVIG per kg was required to produce a comparable therapeutic effect when the material was administered parenterally. Thus, the therapeutic effect of IVIG was 160 times greater by the topical route than by parenteral inoculation.  相似文献   

2.
Cotton rats were immunized via intranasal, intradermal, or enteric routes with respiratory syncytial virus (RSV) or a live recombinant vaccinia virus expressing the RSV F glycoprotein (vaccinia F). The animals were tested for the appearance of RSV-specific antibody responses in the serum, bronchoalveolar lavage, and nasal wash after immunization and for virus replication 4 days after intranasal challenge with RSV. RSV antibody response in the serum and respiratory tract was demonstrated in all immunization groups and was significantly increased after intranasal challenge with RSV. Immunoglobulin A (IgA) antibody response in bronchoalveolar lavage fluid after intranasal or enteric immunization was two- to threefold higher than that after intradermal immunization. Nasal-wash IgA antibody response was not significantly different among three immunization groups, although mean antibody titer was the highest in intranasal immunization group. Complete resistance to replication of RSV challenge was observed in the lungs of cotton rats immunized by the intranasal or enteric routes, whereas a low level of replication was detected in the lungs of rats immunized intradermally. Enteric or intradermal immunization conferred partial protection to the upper respiratory tract, but complete protection of the upper respiratory tract was observed in the intranasal immunization group. These observations suggest that while enteric immunization is quite effective in inducing antibody responses in the respiratory tract, the magnitude of antiviral immunity induced in the respiratory tract after intranasal immunization may be superior to that observed after enteric immunization.  相似文献   

3.
Nerve growth factor (NGF) controls sensorineural development and responsiveness and modulates immunoinflammatory reactions. Respiratory syncytial virus (RSV) potentiates the proinflammatory effects of sensory nerves in rat airways by upregulating the substance P receptor, neurokinin 1 (NK(1)). We investigated whether the expression of NGF and its trkA and p75 receptors in the lungs is age dependent, whether it is upregulated during RSV infection, and whether it affects neurogenic inflammation. Pathogen-free rats were killed at 2 (weanling) to 12 (adult) wk of age; in addition, subgroups of rats were inoculated with RSV or virus-free medium. In pathogen-free rats, expression of NGF and its receptors in the lungs declined with age, but RSV doubled expression of NGF, trkA, and p75 in weanling and adult rats. Exogenous NGF upregulated NK(1) receptor expression in the lungs. Anti-NGF antibody inhibited NK(1) receptor upregulation and neurogenic inflammation in RSV-infected lungs. These data indicate that expression of NGF and its receptors in the lungs declines physiologically with age but is upregulated by RSV and is a major determinant of neurogenic inflammation.  相似文献   

4.
The intent of this study was to compare the cellular and biochemical inflammatory responses of mice infected with the paramyxovirus pathogens respiratory syncytial virus (RSV) and pneumonia virus of mice (PVM). Although RSV is not a natural pathogen of mice, it has been used extensively in mouse models of the human disease, as a limited respiratory infection can be established via intranasal inoculation of virus at high titer. In earlier work, we found that acute infection with the natural rodent pathogen, PVM, elicited a rapid and sustained pulmonary inflammatory response (peak, 1.7 x 10(6) leukocytes/ml BAL fluid) that was dependent on both local production of MIP-1alpha and signaling via its receptor, CCR1. We find here that MIP-1alpha is also produced in response to RSV, although relatively few leukocytes (<200 ml BAL fluid) are recruited to the lungs in response. Further experiments with CCR1-deficient mice confirm the finding that although MIP-1alpha is produced in response to RSV infection, leukocytes do not respond via this pathway. Among the explanations for these findings, we propose that there are other, as yet to be identified proinflammatory mediators elicited in response to PVM (but not in response to RSV) that serve to prime the leukocytes in vivo, thus enabling them to respond to MIP-1alpha signaling via CCR1. Furthermore, the differences in disease pathogenesis seen in response to each of these pneumovirus infections in mice raise questions regarding the extent to which primary RSV infection in mice can be used as a model of primary RSV infection in humans.  相似文献   

5.
呼吸道合胞病毒载体疫苗研究进展   总被引:2,自引:0,他引:2  
人呼吸道合胞病毒(human respiratory syncytial virus, RSV)是引起婴幼儿下呼吸道感染的最重要的病毒病原,RSV载体疫苗可在人细胞内从头合成,形成的蛋白质构象与RSV自然感染后表达的完全相同,不会导致抗原表位的丧失或变化,形成的免疫力更利于抵抗随后的自然感染;经黏膜途径免疫不会产生疾病增强作用,且能突破母传抗体的干扰,因而受到广泛关注。对近年来RSV载体疫苗的研究进展进行了综述。  相似文献   

6.
Respiratory syncytial virus (RSV) is an important viral pathogen that causes severe lower respiratory tract infection in infants, the elderly, and immunocompromised individuals. There are no licensed RSV vaccines to date. To prevent RSV infection, immune responses in both the upper and lower respiratory tracts are required. Previously, immunization with Venezuelan equine encephalitis virus replicon particles (VRPs) demonstrated effectiveness in inducing mucosal protection against various pathogens. In this study, we developed VRPs encoding RSV fusion (F) or attachment (G) glycoproteins and evaluated the immunogenicity and efficacy of these vaccine candidates in mice and cotton rats. VRPs, when administered intranasally, induced surface glycoprotein-specific virus neutralizing antibodies in serum and immunoglobulin A (IgA) antibodies in secretions at the respiratory mucosa. In addition, fusion protein-encoding VRPs induced gamma interferon (IFN-γ)-secreting T cells in the lungs and spleen, as measured by reaction with an H-2Kd-restricted CD8+ T-cell epitope. In animals vaccinated with F protein VRPs, challenge virus replication was reduced below the level of detection in both the upper and lower respiratory tracts following intranasal RSV challenge, while in those vaccinated with G protein VRPs, challenge virus was detected in the upper but not the lower respiratory tract. Close examination of histopathology of the lungs of vaccinated animals following RSV challenge revealed no enhanced inflammation. Immunization with VRPs induced balanced Th1/Th2 immune responses, as measured by the cytokine profile in the lungs and antibody isotype of the humoral immune response. These results represent an important first step toward the use of VRPs encoding RSV proteins as a prophylactic vaccine for RSV.  相似文献   

7.
The degree of antigenic relatedness between human respiratory syncytial virus (RSV) subgroups A and B was estimated from antibody responses induced in cotton rats by respiratory tract infection with RSV. Glycoprotein-specific enzyme-linked immunosorbent assays of antibody responses induced by RSV infection demonstrated that the F glycoproteins of subgroups A and B were antigenically closely related (relatedness, R approximately 50%), whereas the G glycoproteins were only distantly related (R approximately 5%). Intermediate levels of antigenic relatedness (R approximately 25%) were seen in neutralizing antibodies from cotton rats infected with RSV of the two subgroups. Immunity against the F glycoprotein of subgroup A, induced by vaccinia-A2-F, conferred a high level of protection which was of comparable magnitude against challenge by RSV of either subgroup. In comparison, immunity against the G glycoprotein of subgroup A, induced by vaccinia-A2-G, conferred less complete, but significant, protection. Importantly, in vaccinia-A2-G-immunized animals, suppression of homologous challenge virus replication was significantly greater (13-fold) than that observed for the heterologous virus.  相似文献   

8.

Background

To characterise the acute physiological and inflammatory changes induced by low-dose RSV infection in mice.

Methods

BALB/c mice were infected as adults (8 wk) or weanlings (3 wk) with 1 × 105 pfu of RSV A2 or vehicle (intranasal, 30 μl). Inflammation, cytokines and inflammatory markers in bronchoalveolar lavage fluid (BALF) and airway and tissue responses to inhaled methacholine (MCh; 0.001 – 30 mg/ml) were measured 5, 7, 10 and 21 days post infection. Responsiveness to iv MCh (6 – 96 μg/min/kg) in vivo and to electrical field stimulation (EFS) and MCh in vitro were measured at 7 d. Epithelial permeability was measured by Evans Blue dye leakage into BALF at 7 d. Respiratory mechanics were measured using low frequency forced oscillation in tracheostomised and ventilated (450 bpm, flexiVent) mice. Low frequency impedance spectra were calculated (0.5 – 20 Hz) and a model, consisting of an airway compartment [airway resistance (Raw) and inertance (Iaw)] and a constant-phase tissue compartment [coefficients of tissue damping (G) and elastance (H)] was fitted to the data.

Results

Inflammation in adult mouse BALF peaked at 7 d (RSV 15.6 (4.7 SE) vs. control 3.7 (0.7) × 104 cells/ml; p < 0.001), resolving by 21 d, with no increase in weanlings at any timepoint. RSV-infected mice were hyperresponsive to aerosolised MCh at 5 and 7 d (PC200 Raw adults: RSV 0.02 (0.005) vs. control 1.1 (0.41) mg/ml; p = 0.003) (PC200 Raw weanlings: RSV 0.19 (0.12) vs. control 10.2 (6.0) mg/ml MCh; p = 0.001). Increased responsiveness to aerosolised MCh was matched by elevated levels of cysLT at 5 d and elevated VEGF and PGE2 at 7 d in BALF from both adult and weanling mice. Responsiveness was not increased in response to iv MCh in vivo or EFS or MCh challenge in vitro. Increased epithelial permeability was not detected at 7 d.

Conclusion

Infection with 1 × 105 pfu RSV induced extreme hyperresponsiveness to aerosolised MCh during the acute phase of infection in adult and weanling mice. The route-specificity of hyperresponsiveness suggests that epithelial mechanisms were important in determining the physiological effects. Inflammatory changes were dissociated from physiological changes, particularly in weanling mice.  相似文献   

9.
Cigarette smoke and virus infections contribute to the pathogenesis and exacerbation of chronic obstructive pulmonary disease and asthma. The objective of this study was to examine the effects of a water-soluble cigarette smoke extract (CSE) and/or respiratory syncytial virus (RSV) infection on release from monocytes of the blood from donors of tumour necrosis factor alpha (TNF-alpha) and nitric oxide (NO). Both RSV infection and CSE stimulated TNF-alpha release from monocytes and there was an additive effect if both the agents were present. There was a decrease in NO release, but the effect was significant only with CSE or a combination of CSE and RSV infection. Interferon gamma significantly increased TNF-alpha release and cotinine significantly increased NO release. Nicotine decreased both TNF-alpha and NO responses. The general pattern observed for individual donors was increased TNF-alpha and decreased NO. The proportion of extreme responses with very high TNF-alpha and very low NO in the presence of both RSV and CSE increased to 20% compared with 5% observed with CSE or RSV alone. The results show that RSV infection and components of cigarette smoke elicit inflammatory responses that could contribute to damage to the respiratory tract and these individual factors could be more harmful in combination.  相似文献   

10.
反向遗传学在呼吸道合胞病毒减毒活疫苗研究中的应用   总被引:1,自引:0,他引:1  
人呼吸道合胞病毒(human respiratory syncytial virus, RSV)是引起婴幼儿下呼吸道感染的最重要的病毒病原,减毒RSV活疫苗能模拟自然感染充分活化机体固有免疫系统,并诱导产生体液免疫和细胞免疫,不会产生疾病增强作用,经黏膜途径应用,能突破母传抗体的干扰,因而受到广泛关注,反向遗传学(reverse genetics)在减轻野生型RSV毒力和增强其免疫原性等方面具有传统减毒技术不可比拟的优势,所以综述了反向遗传学在RSV减毒活疫苗研究中的应用。  相似文献   

11.
Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in infants and children worldwide. We wished to determine whether intratracheal administration of beta-agonists improved alveolar fluid clearance (AFC) across the distal respiratory epithelium of RSV-infected mice. Following intranasal infection with RSV strain A2, AFC was measured in anesthetized, ventilated BALB/c mice by instillation of 5% BSA into the dependent lung. We found that direct activation of protein kinase A by forskolin or 8-bromo-cAMP increased AFC at day 2 after infection with RSV. In contrast, short- and long-acting beta-agonists had no effect at either day 2 or day 4. Insensitivity to beta-agonists was not a result of elevated plasma catecholamines or lung epithelial cell beta-adrenergic receptor degradation. Instead, RSV-infected mice had significantly higher levels of phosphorylated PKCzeta in the membrane fractions of their lung epithelial cells. In addition, insensitivity to beta-agonists was mediated in a paracrine fashion by KC (the murine homolog of CXCL8) and reversed by inhibition of either PKCzeta or G protein-coupled receptor kinase 2 (GRK2). These results indicate that insufficient response to beta-agonists in RSV may be caused, at least in part, by impaired beta-adrenergic receptor signaling, as a consequence of GRK2-mediated uncoupling of beta-adrenergic receptors from adenylyl cyclase.  相似文献   

12.
Lower respiratory tract disease caused by respiratory syncytial virus (RSV) is characterized by profound airway mucosa inflammation, both in infants with naturally acquired infection and in experimentally inoculated animal models. Chemokines are central regulatory molecules in inflammatory, immune, and infectious processes of the lung. In this study, we demonstrate that intranasal infection of BALB/c mice with RSV A results in inducible expression of lung chemokines belonging to the CXC (MIP-2 and IP-10), CC (RANTES, eotaxin, MIP-1beta, MIP-1alpha, MCP-1, TCA-3) and C (lymphotactin) families. Chemokine mRNA expression occurred as early as 24 h following inoculation and persisted for at least 5 days in mice inoculated with the highest dose of virus (10(7) PFU). In general, levels of chemokine mRNA and protein were dependent on the dose of RSV inoculum and paralleled the intensity of lung cellular inflammation. Immunohisthochemical studies indicated that RSV-induced expression of MIP-1alpha, one of the most abundantly expressed chemokines, was primarily localized in epithelial cells of the alveoli and bronchioles, as well as in adjoining capillary endothelium. Genetically altered mice with a selective deletion of the MIP-1alpha gene (-/- mice) demonstrated a significant reduction in lung inflammation following RSV infection, compared to control littermates (+/+ mice). Despite the paucity of infiltrating cells, the peak RSV titer in the lung of -/- mice was not significantly different from that observed in +/+ mice. These results provide the first direct evidence that RSV infection may induce lung inflammation via the early production of inflammatory chemokines.  相似文献   

13.
Although RSV causes serious pediatric respiratory disease, an effective vaccine does not exist. To capture the strengths of a live virus vaccine, we have used the murine parainfluenza virus type 1 (Sendai virus [SV]) as a xenogeneic vector to deliver the G glycoprotein of RSV. It was previously shown (J. L. Hurwitz, K. F. Soike, M. Y. Sangster, A. Portner, R. E. Sealy, D. H. Dawson, and C. Coleclough, Vaccine 15:533-540, 1997) that intranasal SV protected African green monkeys from challenge with the related human parainfluenza virus type 1 (hPIV1), and SV has advanced to clinical trials as a vaccine for hPIV1 (K. S. Slobod, J. L. Shenep, J. Lujan-Zilbermann, K. Allison, B. Brown, R. A. Scroggs, A. Portner, C. Coleclough, and J. L. Hurwitz, Vaccine, in press). Recombinant SV expressing RSV G glycoprotein was prepared by using reverse genetics, and intranasal inoculation of cotton rats elicited RSV-specific antibody and elicited protection from RSV challenge. RSV G-recombinant SV is thus a promising live virus vaccine candidate for RSV.  相似文献   

14.
Respiratory syncytial virus (RSV) is an important cause of acute lower respiratory tract disease in infants, young children, immunocompromised individuals, and the elderly. However, despite ongoing efforts to develop an RSV vaccine, there is still no authorized RSV vaccine for humans. Baculovirus has attracted attention as a vaccine vector because of its ability to induce a high level of humoral and cellular immunity, low cytotoxicity against various antigens, and biological safety for humans. In this study, we constructed a recombinant baculovirus- based vaccine expressing the M2 protein of RSV under the control of cytomegalovirus promoter (Bac_RSVM2) to induce CD8+ T-cell responses which play an important role in viral clearance, and investigated its protective efficacy against RSV infection. Immunization with Bac_RSVM2 via intranasal or intramuscular route effectively elicited the specific CD8+ T-cell responses. Most notably, immunization with Bac_RSVM2 vaccine almost completely protected mice from RSV challenge without vaccine-enhanced immunopathology. In conclusion, these results suggest that Bac_RSVM2 vaccine employing the baculovirus delivery platform has promising potential to be developed as a safe and novel RSV vaccine that provides protection against RSV infection.  相似文献   

15.
Viral respiratory infections can cause bronchial hyperresponsiveness and exacerbate asthma. In mice, respiratory syncytial virus (RSV) infection results in airway hyperresponsiveness (AHR) and eosinophil influx into the airways. The immune cell requirements for these responses to RSV infection are not well defined. To delineate the role of CD8 T cells in the development of RSV-induced AHR and lung eosinophilia, we tested the ability of mice depleted of CD8 T cells to develop these symptoms of RSV infection. BALB/c mice were depleted of CD8 T cells using anti-CD8 Ab treatment before intranasal administration of infectious RSV. Six days postinfection, airway responsiveness to inhaled methacholine was assessed by barometric body plethysmography, and numbers of lung eosinophils and levels of IFN-gamma, IL-4, and IL-5 in bronchoalveolar lavage fluid were monitored. RSV infection resulted in airway eosinophilia and AHR in control mice, but not in CD8-depleted animals. Further, whereas RSV-infected mice secreted increased amounts of IL-5 into the airways as compared with noninfected controls, no IL-5 was detectable in both bronchoalveolar lavage fluid and culture supernatants from CD8-depleted animals. Treatment of CD8-depleted mice with IL-5 fully restored both lung eosinophilia and AHR. We conclude that CD8 T cells are essential for the influx of eosinophils into the lung and the development of AHR in response to RSV infection.  相似文献   

16.
Severe respiratory viral infection in early life is associated with recurrent wheeze and asthma in later childhood. Neonatal immune responses tend to be skewed toward T helper 2 (Th2) responses, which may contribute to the development of a pathogenic recall response to respiratory infection. Since neonatal Th2 skewing can be modified by stimulation with Toll-like receptor (TLR) ligands, we investigated the effect of exposure to CpG oligodeoxynucleotides (TLR9 ligands) prior to neonatal respiratory syncytial virus (RSV) infection in mice. CpG preexposure was protective against enhanced disease during secondary adult RSV challenge, with a reduction in viral load and an increase in Th1 responses. A similar Th1 switch and reduction in disease were observed if CpG was administered in the interval between neonatal infection and challenge. In neonates, CpG pretreatment led to a transient increase in expression of major histocompatibility complex class II (MHCII) and CD80 on CD11c-positive cells and gamma interferon (IFN-γ) production by NK cells after RSV infection, suggesting that the protective effects may be mediated by antigen-presenting cells (APC) and NK cells. We conclude that the adverse effects of early-life respiratory viral infection on later lung health might be mitigated by conditions that promote TLR activation in the infant lung.  相似文献   

17.

Background

A subset of the virus-specific CD8+ cytotoxic T lymphocytes (CTL) isolated from the lungs of mice infected with human respiratory syncytial virus (RSV) is impaired in the ability to secrete interferon γ (IFNγ), a measure of functionality. It was suggested that the impairment specifically suppressed the host cellular immune response, a finding that could help explain the ability of RSV to re-infect throughout life.

Results

To determine whether this effect is dependent on the virus, the route of infection, or the type of infection (respiratory, disseminated, or localized dermal), we compared the CTL responses in mice following intranasal (IN) infection with RSV or influenza virus or IN or intradermal (ID) infection with vaccinia virus expressing an RSV CTL antigen. The impairment was observed in the lungs after IN infection with RSV, influenza or vaccinia virus, and after a localized ID infection with vaccinia virus. In contrast, we observed a much higher percentage of IFNγ secreting CD8+ lymphocytes in the spleens of infected mice in every case.

Conclusion

The decreased functionality of CD8+ CTL is specific to the lungs and is not dependent on the specific virus, viral antigen, or route of infection.  相似文献   

18.
Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in infants and the elderly. While the primary infection is the most serious, reinfection of the upper airway throughout life is the rule. Although relatively little is known about either RSV infection of the upper respiratory tract or host mucosal immunity to RSV, recent literature suggests that RSV is the predominant viral pathogen predisposing to bacterial otitis media (OM). Herein, we describe mouse and chinchilla models of RSV infection of the nasopharynx and Eustachian tube. Both rodent hosts were susceptible to RSV infection of the upper airway following intranasal challenge; however, the chinchilla proved to be more permissive than the mouse. The chinchilla model will likely be extremely useful to test the role of RSV in bacterial OM and the efficacy of RSV vaccine candidates designed to provide mucosal and cytotoxic T-lymphocyte immunity. Ultimately, we hope to investigate the relative ability of these candidates to potentially protect against viral predisposal to bacterial OM.  相似文献   

19.

Objective

Few comprehensive studies have searched for viruses in infants and young children with community-acquired pneumonia (CAP) in China. The aim of this study was to investigate the roles of human herpes viruses (HHVs) and other respiratory viruses in CAP not caused by typical bacterial infection and to determine their prevalence and clinical significance.

Methods

Induced sputum (IS) samples were collected from 354 hospitalised patients (infants, n = 205; children, n = 149) with respiratory illness (CAP or non-CAP) admitted to Wenling Hospital of China. We tested for HHVs and respiratory viruses using PCR-based assays. The epidemiological profiles were also analysed.

Results

High rate of virus detection (more than 98%) and co-infection (more than 80%) were found among IS samples from 354 hospitalised infants and children with respiratory illness in this study. Of 273 CAP samples tested, CMV (91.6%), HHV-6 (50.9%), RSV (37.4%), EBV (35.5%), HBoV (28.2%), HHV-7 (18.3%) and rhinovirus (17.2%) were the most commonly detected viruses. Of 81 non- CAP samples tested, CMV (63%), RSV (49.4%), HHV-6 (42%), EBV (24.7%), HHV-7 (13.6%) and HBoV (8.6%) were the dominant viruses detected. The prevalence of several viral agents (rhinovirus, bocavirus, adenovirus and CMV) among IS samples of CAP were significantly higher than that of non-CAP control group. We also found the prevalence of RSV coinfection with HHVs was also higher among CAP group than that of non-CAP control.

Conclusions

With sensitive molecular detection techniques and IS samples, high rates of viral identification were achieved in infants and young children with respiratory illness in a rural area of China. The clinical significance of rhinovirus, bocavirus, adenovirus and HHV (especially CMV) infections should receive greater attention in future treatment and prevention studies of CAP in infants and children.  相似文献   

20.
Mice sensitized to the G (attachment) or F (fusion) glycoproteins of respiratory syncytial virus (RSV) expressed different patterns of cytokine production and lung pathology when challenged by intranasal infection with RSV. Five days after challenge, mice sensitized to G glycoprotein produced high levels of interleukin-4 (IL-4) and IL-5 in the lungs and spleens and developed extensive pulmonary eosinophilia, while mice sensitized to F glycoprotein produced IL-2 and developed a mononuclear cell infiltration. Memory lymphocytes isolated 2 weeks after intranasal challenge of mice primed to the G or F glycoprotein secreted only IL-2 and gamma interferon (IFN-gamma) when stimulated with RSV. IL-4 and IL-5 production characteristic of Th2-type effectors in the lung was observed only after multiple rounds of in vitro stimulation of RSV G-specific memory T lymphocytes with antigen. Also IFN-gamma production appeared to play only a minor role in the expression of pulmonary pathology characteristic of Th1 or Th2 T-lymphocyte responses, because mice genetically deficient in IFN-gamma production by gene disruption displayed the same pattern of pulmonary inflammation to RSV infection after priming to RSV F or G as conventional mice. These results suggest that effector T lymphocytes exhibit a different pattern of cytokine production than memory T-lymphocyte precursors precommitted to a Th1 or Th2 pattern of differentiation. Furthermore, these observations raise the possibility that the cytokine response of human memory T lymphocytes after a single exposure to antigen in vitro may not accurately reflect the cytokine response of differentiated effector T lymphocytes at the site of infection in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号