首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Huang YJ  Parker MM  Belfort M 《Genetics》1999,152(4):1501-1512
The Schizosaccharomyces pombe checkpoint gene named rad3(+) encodes an ATM-homologous protein kinase that shares a highly conserved motif with proteins involved in DNA metabolism. Previous studies have shown that Rad3 fulfills its function via the regulation of the Chk1 and Cds1 protein kinases. Here we describe a novel role for Rad3 in the control of telomere integrity. Mutations in the rad3(+) gene alleviated telomeric silencing and produced shortened lengths in the telomere repeat tracts. Genetic analysis revealed that the other checkpoint rad mutations rad1, rad17, and rad26 belong to the same phenotypic class with rad3 with regard to control of the telomere length. Of these mutations, rad3 and rad26 have a drastic effect on telomere shortening. tel1(+), another ATM homologue in S. pombe, carries out its telomere maintenance function in parallel with the checkpoint rad genes. Furthermore, either a single or double disruption of cds1(+) and chk1(+) caused no obvious changes in the telomeric DNA structure. Our results demonstrate a novel role of the S. pombe ATM homologues that is independent of chk1(+) and cds1(+).  相似文献   

2.
The Neurospora CYT-18 protein, a tyrosyl-tRNA synthetase, which functions in splicing group I introns in mitochondria, promotes splicing of mutants of the distantly related bacteriophage T4 td intron. In an in vivo assay, wild-type CYT-18 protein expressed in E. coli suppressed mutations in the td intron's catalytic core. CYT-18-suppressible mutations were also suppressed by high Mg2+ or spermidine in vitro, suggesting they affect intron structure. Both the N- and C-terminal domains of CYT-18 are required for efficient splicing, but CYT-18 with a large C-terminal truncation retains some activity. Our results indicate that CYT-18 interacts with conserved structural features of group I introns, and they provide direct evidence that a protein promotes splicing by stabilizing the catalytically active structure of the intron RNA.  相似文献   

3.
The amino acid sequence of the lysozyme from phage P22 is shown to be homologous (26% identity) with the lysozyme from bacteriophage T4. The sequence correspondence suggests that the structure of P22 lysozyme is similar to the known structure of T4 lysozyme within the "core" of the molecule, including the active site cleft. However, P22 lysozyme appears to lack two surface loops present in T4 lysozyme. It is possible that P22 lysozyme may provide an "evolutionary link" between the phage-type lysozymes and the goose-type lysozymes.  相似文献   

4.
Here we describe the discovery of a group I intron in the DNA polymerase gene of Bacillus thuringiensis phage Bastille. Although the intron insertion site is identical to that of the Bacillus subtilis phages SPO1 and SP82 introns, the Bastille intron differs from them substantially in primary and secondary structure. Like the SPO1 and SP82 introns, the Bastille intron encodes a nicking DNA endonuclease of the H-N-H family, I-BasI, with a cleavage site identical to that of the SPO1-encoded enzyme I-HmuI. Unlike I-HmuI, which nicks both intron-minus and intron-plus DNA, I-BasI cleaves only intron-minus alleles, which is a characteristic of typical homing endonucleases. Interestingly, the C-terminal portions of these H-N-H phage endonucleases contain a conserved sequence motif, the intron-encoded endonuclease repeat motif (IENR1) that also has been found in endonucleases of the GIY-YIG family, and which likely comprises a small DNA-binding module with a globular ββααβ fold, suggestive of module shuffling between different homing endonuclease families.  相似文献   

5.
6.
7.
Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3′ 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TψC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages.  相似文献   

8.
We have determined the DNA sequence of intron 1 and flanking exons in the mitochondrial apocytochrome b gene of the Neurospora laboratory strain 74A and the natural isolate North Africa. In contrast to a previous report, we find that this intron contains an open reading frame (ORF) of 951 bases in frame with the upstream exon. The putative intron-encoded protein resembles those of other intron ORFs with respect to length, calculated isoelectric point, and proportion of basic, acidic, polar, and non-polar amino acids; however, no amino acid sequences resembling the "decapeptides" characteristic of maturase-like ORFs were found. Coupled with the previous finding that this intron is capable of self-splicing in vitro in the absence of proteins, the observations discussed here raise the possibility that other introns with long, in-frame ORFs may also be capable of RNA-catalyzed splicing in vitro.  相似文献   

9.
10.
Based upon analyses of purified enzyme preparations, T4 bacteriophage-coded ribonucleotide reductase is considered to be relatively insensitive to control by allosteric inhibition. However, two factors suggest that CDP reduction to dCDP is feedback-controlled by dTTP in infected cells. First, the pool of 5-hydroxymethyldeoxycytidine triphosphate, which expands manyfold upon infection by a dCMP deaminase-deficient T4 mutant, shrinks to near-normal levels as a consequence of dTTP accumulation, and ribonucleotide reductase is the only apparent control point. Second, analysis of mutagenesis by 5-bromodeoxyuridine suggests that most induced mutations result from localized pool depletion of 5-hydroxymethyl-dCTP at replication sites, as if 5-bromo-dUTP were behaving like dTTP in inhibiting the CDP reductase activity of the phage enzyme. We found that CDP reductase activity in crude extracts of T4 phage-infected bacteria is sensitive to inhibition by either dTTP or 5-bromo-dUTP, at concentrations as low as 0.01 mM. However, in partially purified enzyme preparations that sensitivity is lost. Although we don't know the basis for this loss of feedback sensitivity, the results suggest that kinetic properties of enzymes in intact cells are determined by the cellular milieu in ways not apparent from analysis of purified enzymes.  相似文献   

11.
12.
13.
A protein induced by wild-type T4 phage which is absent in Escherichia coli infected with nuclear disruption-deficient phage (with mutations in gene ndd) was identified by polacrylamide gel electrophoresis. This protein was synthesized at maximum rate at 3 to 6 min after infection. It had a molecular weight of 15,000 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was associated with sedimentable fractions of the cell from which it can be dissociated with 1 M guanidine-hydrochloride. The dissociated protein can be partly recovered in a form soluble in dilute buffer after partial purification and dialysis. The occurrence of this protein in a particulate cell fraction is of interest because of the postulated role of the bacterial cell membrane in nuclear disruption.  相似文献   

14.
15.
S Kleff  B Kemper 《The EMBO journal》1988,7(5):1527-1535
Heteroduplex DNAs with single-stranded loops of 51 nt or 8 nt were constructed in vitro and used in reactions with purified endonuclease VII (endo VII) from phage T4. The enzyme makes double-strand breaks by introducing pairs of staggered nicks flanking the loops. Regardless of loop-size the nicking sites map exclusively at the 3' side of the loop in the looping strand and at the 3' side of the base of the loop in the non-looping strand. The number of potential cleavage sites is small (less than 5) and their distribution depends on DNA sequence. The two closest staggered nicks are 4 bp apart, 2 bp on either side of the loop. Nicking always occurs in the double-stranded part of the molecules; the single-stranded loops are not attacked by endo VII. The nicks are introduced in a stepwise fashion and selection of the strand for the first nick depends on the sequence of 31 base pairs flanking the loops.  相似文献   

16.
We have examined the restriction map of the c-myc gene in 15 BL cell lines carrying the variant t(8;22) translocation in which c-myc is known to remain on chromosome 8. Using 3 restriction enzymes cutting outside the c-myc domain (EcoRI, BamHI, HindIII), we found no evidence for a c-myc/Ig lambda rearrangement in 14 BL cell lines. In the last one, BL 37, the 3' flanking region was rearranged corresponding to the already identified breakpoint located 400 pb downstream from the c-myc gene (9). Using 4 restriction enzymes cutting inside the c-myc gene (PvuII, PstI, SacI, HincII) we looked for discrete abnormalities within the gene limits, and we found in 9 BL cell lines several abolished and created sites, compatible with multiple independent somatic mutations. They are significantly clustered in the 5' non coding region, with a striking prevalence at the end of exon 1. The role of mutations in the non-coding first exon region for the deregulation of c-myc expression is discussed.  相似文献   

17.
How premature translation termination codons (PTCs) mediate effects on nuclear RNA processing is unclear. Here we show that a PTC at nucleotide (nt) 385 in the NS1/2 shared exon of P4-generated pre-mRNAs of the autonomous parvovirus minute virus of mice caused a decrease in the accumulated levels of doubly spliced R2 relative to singly spliced R1, although the total accumulated levels of R1 plus R2 remained the same. The effect of this PTC was evident within nuclear RNA, was mediated by a PTC and not a missense transversion mutation at this position, and could be suppressed by improvement of the large intron splice sites and by mutation of the AUG that initiated translation of R1 and R2. In contrast to the PTC at nt 385, the reading frame-dependent effect of the PTC at nt 2018 depended neither on the initiating AUG nor the normal termination codon for NS2; however, it could be suppressed by a single nucleotide deletion mutation in the upstream NS1/2 common exon that shifted the 2018 PTC out of the NS2 open reading frame. This suggested that there was recognition and communication of reading frame between exons on a pre-mRNA in the nucleus prior to or concomitant with splicing.  相似文献   

18.
19.
20.
Most splice-site mutations lead to a limited array of products, including exon skipping, use of cryptic splice-acceptor or -donor sites, and intron inclusion. At the intron 8 splice-donor site of the COL1A1 gene, we identified a G+1-->A transition that resulted in the production of several splice products from the mutant allele. These included one in which the upstream exon 7 was extended by 96 nt, others in which either intron 8 or introns 7 and 8 were retained, one in which exon 8 was skipped, and one that used a cryptic donor site in exon 8. To determine the mechanism by which exon-7 redefinition might occur, we examined the order of intron removal in the region of the mutation by using intron/exon primer pairs to amplify regions of the precursor nuclear mRNA between exon 5 and exon 10. Removal of introns 5, 6, and 9 was rapid. Removal of intron 8 usually preceded removal of intron 7 in the normal gene, although, in a small proportion of copies, the order was reversed. The proportion of abnormal products suggested that exon 7 redefinition, intron 7 plus intron 8 inclusion, and exon 8 skipping all represented products of the impaired rapid pathway, whereas the intron-8 inclusion product resulted from use of the slow intron 7-first pathway. The very low-abundance cryptic exon 8 donor site product could have arisen from either pathway. These results suggest that there is commitment of the pre-mRNA to the two pathways, independent of the presence of the mutation, and that the order and rate of intron removal are important determinants of the outcome of splice-site mutations and may explain some unusual alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号